
E N T E R P R I S E
Managing
Enterprise Development

B Y M A R K S E W E L L
The keys to
successful enterprise
development are
training, judgment,
and standardization.

technical review of a VB project at a large
corporation.

“You’ve used very few comments or
subroutine headers. You don’t seem to
have followed the naming conventions
specified in the standards and you’ve used
magic numbers rather than constants
throughout.”

He shifted in his seat. “We’re under so
much pressure from the business to de-
liver that I haven’t been able to code
properly, much as I’d like to. The users
saw an early prototype and loved it, and
then expected to be able to use it straight
away.”

“Well, then, is there any technical docu-
mentation?” I asked.

“Er...no...we’ll write that after we’ve
delivered and I’ll comment the code and
generally tidy it up then, too. It will look
great.”

“Hmmm...”

his is going to be a pretty diffi-
cult app to maintain, Jim,” I
said to the programmer after a“T
Mark Sewell is cofounder of The Mandelbrot
Set International (TMS), a VB/Windows
specialist consulting and development group
in southern England. TMS develops its own
products and provides software services to
corporate clients. Mark cowrote TMS Tools,
a VB developer’s toolkit, and is currently
project manager for the development of a
new VB4 tool. Reach him on CompuServe at
100337,772.

©1991–1995 Fawcette Technical Publicatio
“Schedules were squeezed when we
accidentally overwrote the latest version
of the app with some old code and lost
about a week’s work,” said Jim. “That was
bad luck.”

“Hmmm...presumably the prototype
evolved into the application I’m looking
at today?”

“Yes, how did you guess?”
I smiled to myself. “Did you plan to use

the prototype when the project started?”
“No,” said Jim, “we had intended to throw

it away and design the application prop-
erly, but the pressure from the business
was so great that we just kept coding.”

“So, was there a formal design phase?”
“Er... not really.”
It showed.
The application was in classic spa-

ghetti code, the sort of stuff you thought
went out with the shuffling of punched
cards. Worse, in its hurry to deliver, the
team re-invented many wheels. I saw some
of Jim’s routines in other team members’
code the week before.

The team—mainframe programmers
only six months earlier—had no idea of
how to implement MDI properly. Com-
mand buttons disappeared when child
forms were resized and tiled because dia-
logs implemented as MDI child forms
should have been non-resizable forms.

I found two error handlers in the
application’s 20 forms and two modules,
and measured a 35 percent drop in sys-
tem resources. The system ran like a
dog—rather than use a JET query, the
designers opened tables and wrote their
own search criteria code. The tale of woe
went on and on.

Ironically, this large corporation had
good VB design and code standards that
covered many of these items—so why
was it going so wrong?

I was really depressed. I had reviewed
poor-quality applications for this client in
the past. Despite repeatedly highlighting
Visual Basic Progns H O M E
the seriousness of the problem to senior
management, project managers, and de-
velopers, I saw the same mistakes repeat-
edly. Why was there no improvement?

You may think I’m making this up, but
I’m not. In fact, it gets worse. This is not a
problem peculiar to this project, or even
to this company. It’s a VB industry-wide
problem.

As a VB consultancy, my company
typically becomes involved in team
projects at three main points. Our favor-
ite point of entry is when a company is on
the verge of switching to VB and invests in
help to set up an appropriate develop-
ment infrastructure. We help develop and
implement standards, organization and
team structures, and processes and com-
munications. We are also involved in
change-control strategy and implementa-
tion, tool choice and procurement, inter-
nationalization strategy, and more.

The second point when my company
becomes involved is near the end of a
project when there are some nasty bugs
to find. That’s fun!

The third point is somewhere in be-
tween, when a client wonders why things
just aren’t going right. In this situation, we
normally carry out a project health check,
including a technical review similar to the
one I’ve described. Unfortunately, we
spend 75 percent of our time on this third
type of involvement.

In the haste to deliver, developers, from
project managers to junior programmers,
abandon tried and trusted software engi-
neering disciplines that have evolved over
30 years on the mainframe. As a result, a
high proportion of our clients, big and small,
produce low-quality, unmaintainable VB
code. So is there a VB quality crisis? And if
there is, will VB4 help?

QUALITY YIELDS TO DEMAND
VB is great! It’s an easy, cheap, and fast
application development tool, it’s a good
rammer’s Journal NOVEMBER 1995 81

E N T E R P R I S E
prototyping tool, it’s open, and develop-
ers love to use it. It’s even fun.

But there’s bad news too. Using VB,
you can screw up more easily and quickly.
It can be hard to maintain. It can be hard
to adapt to changing business require-
ments. Developers may focus too much on
a pretty front end. It can be hard to share
and reuse code—programmers can attach
important business logic to GUI widgets
rather than to reusable objects. All of these
can lead to quality problems.

Managers often forget that the VB cod-
ing phase typically takes less than 20 per-
82 NOVEMBER 1995 Visual Basic Program
cent of the overall development life cycle.
They have totally unrealistic expectations
of massive productivity gains from using
VB. They’ve been suckered by the RAD
hype. They draw up and agree upon unre-
alistic plans and then complain that they
can’t achieve their goals.

“We can’t cut functionality, the busi-
ness won’t have it.”…“We can’t slip the
deadline, it’s set in stone.”…“We can’t
throw any more bodies at it, it’ll blow the
budget.” When the going gets tough and
the choices are to push back deadlines,
add bodies, cut functionality, or reduce
mer’s Journal ©1991–1995 Fawcette Te
quality, invariably, quality yields.
The goals of the organization and the

goals of the VB team often conflict. The
organization realizes that building reus-
able components increases its ability to
build better solutions quicker. Individual
project teams typically focus on solving
specific problems under tight schedules.
With no time to consider problems out-
side the immediate demands of their
projects, the possibility of generalizing
code for reuse by other teams never enters
the planning.

So is VB bad for team development? We
Business Requirements

IT Management

Development

Support Services

Problem

Agreed new
projects

Support/Help DeskUsers

Project
requests

Enhancement
request

 Maintenance Team

Enhanced
system

Project
Request

Prototyping

Implementation

Operation and
Networks

Business Analysis/
Project Management

IT ManagerIT Steering
Committee

Accept/
reject

Decision

Departmental
plan

Process Starts Here:
Business Area

Steering Committees

Fix

Bug fix
request

Tested system

Acceptance
testing

Planning
interaction

Project
mgmt/technical
lead interaction

Resource Pool
• Technical leads
• Analyst/
 programmers
• Programmers
• Testers
• Prototypers
• etc.

Departmental
Coordination

• Resourcing
• Planning
• Staff issues
• Recruitment
• Conflict
 Identification
• Communications
• Project initiation

Direction, advise,
components,
quality, etc.

Technical Services
• Architecture and
 design
• Component building
• Component selection
• Capacity planning
• Source control
• Technical publicity
• QA (reviews and
 standards)
• DBA

Solution Teams

System tested system

Team creation

Team selection

Legend

New
projects

Departmental
plan

Communication is Key. Departmental coordination is the key to successful enterprise development. Team leaders must
develop skills for motivating programmers, managing user expectations, and selling senior management on the software and

development process. For ease of tracking the process, four main teams are grouped into users and steering committees (mauve), which
drive the requests for business systems; IT management (green), which is the main interface with the users (IT management consists
of high-level leadership and project-based management); developers (yellow), including the central pool of developers, project-based
solution teams (drawn from the resource pool), and a centralized Technical Services Team. Lastly, there are various support functions
(pink) such as support, technical services, operations/networks, and implementation.

FIGURE 1
chnical Publications H O M E

don’t think so. Will VB4 solve the prob-
lems? It will certainly help. For example,

the integration of SourceSafe, the three-
tiered model for enterprise solutions, the
add-ins, and OLE support are all excellent
improvements.

But VB4 can’t help with many of the
problems I’ve highlighted. Most of the prob-
lems relate to people, their attitudes to-
ward VB software development, and the
processes they use.

How can a team maintain VB software
quality? My firm devotes about a third of
our two-day advanced VB programming
course to answering that question. Ad-
vanced programmers, whether in corpo-
rate, team environments or working inde-
pendently, can apply some simple mea-
sures that are essential to the production
of high-quality VB applications.

STRUCTURE SUPPORTS PROCESS
Start with an appropriate corporate VB
development structure and process. VB
teams must work within an organizational
structure where the process of developing
VB code is agreed upon, well understood
by all, and strictly followed. Though I’ve
geared the suggestions in this case study
toward a particular real-world organiza-
tion, some of the generalized suggestions
are relevant for any VB team environment.

A new client who intended to migrate
from mainframe systems recently asked
us to recommend an optimum VB client/

©1991–1995 Fawcette Technical Publicatio
E N T E R P R I S E

Skill or Knowledge Business Analysis Developer Technical Services
Visual Basic Programmer’s Journal NOVEMBER 1995 83

server development structure and pro-
cess without regard to current process
and structure. They asked us to consider
the following questions:

• How will they maintain VB software
quality?
• How will people multitask new VB appli-
cation development, mainframe application

Development Team Skills. You need the right people with the right mix of
skills to give your team project the best chance for success. Key personnel

require these skills and skill levels to make a first VB client/server project work smoothly.
They are necessary basics of individual training plans.

TABLE 1

Business knowledge and
business analysis High Medium Low
Project management High Low Low
Database modeling High High Medium
Help files, user documentation, etc. High Medium Low
Awareness of component availability Medium High High
Systems analysis Low High Low
GUI design skills Medium High Low
VB prototyping Medium High Low
Client/server design Medium High High
GUI testing Medium High Medium
VB/VBA programming Low High High
Diagnostics, logging, trace,
error handling, and more Low High High
Windows operating system and the
Windows API Low Medium High
PC architecture, DOS, memory, etc. Low Medium High
Connectivity, performance, etc. Low Medium High
Networking Low Medium High
Server operating system and database,
DBA, and more Low Medium High
Security, back-out, recovery, etc. Medium Medium High
Implementation, installation, etc. Medium Medium High

ns H O M E

E N T E R P R I S E
maintenance, and support?
• How will they install and implement VB
applications?
• How will individual projects fit in with an
overall client/server architecture?
• How will the optimum culture and atti-
tude be attained?
• How will we make the team dynamic and
responsive?
• How will we properly plan, track, and
manage projects, and who will ensure that
this happens?
• How will we achieve code reuse?
• How should we use prototyping?
• How will we assess, procure, and control
external components, such as OLE servers,
DLLs, VBXs, OCRs, and VB classes?

I’ve developed a list of suggestions
generated from a series of workshops my
company ran (see Figure 1). The diagram
in Figure 1 shows a process, not a struc-
ture. The boxes represent people or teams
84 NOVEMBER 1995 Visual Basic Program
and the arrows represent what passes
between them. The approach is project
based. Here’s a summary of what each
person or team does:

• The Business Area Steering Commit-
tees meet periodically to discuss projects
and priorities, and to refine their plan for
the next12 to18 months. The IT Steering
Committee must approve the Business
Area Steering Committees’ new project
requests.
• The IT Steering Committee meets quar-
terly to plan for the next 12 to 18 months.
They accept, reject, and prioritize project
requests from the Business Area Steering
Committees. The IT Managers represent
their departments on this committee.
• The IT Manager uses the coordination
team’s departmental plan to form an ac-
curate picture of his entire department’s
activities before he or she decides to take
mer’s Journal

Project Branching in SourceSafe

©1991–1995 Fawcette Tec
on a new project at the IT Steering Com-
mittee meeting. He informs the coordina-
tion team of new projects.
• The Departmental Coordination Team
receives new project requests, maintains
the departmental plan, manages resource
levels, identifies project and resource con-
flicts, recruits, manages people issues, and
promotes good departmental communi-
cations. The team identifies a business
analyst/project manager, and a prototype
from the resource pool for new projects.
From the resource pool it creates a solu-
tion team with a technical lead, the day-to-
day team leader who communicates with
the business analyst/project manager. The
business analyst/project manager feeds
his project plan into the overall high-level
departmental plan along with any amend-
ments during the tracking of the project.
• The Business Analysis/Project Manage-
ment Team members are specialists in
At some point in your project, you’ll
need to manage the parallel development
of the same source files, usually when
you need to fix bugs that occurred early
in a release whose development has
progressed. You can simply branch the
files you need to modify, but it’s generally
easier to manage your code if you branch
the entire project whenever you deliver
a release. Managing branches at the
project level isn’t straightforward in
SourceSafe, because it implements
branching at the file level and the
branching mechanism is idiosyncratic.
Here’s one scheme that lets you manage
project-level branching.

Because SourceSafe allows you to set
project hierarchies, you can define a

Project Hierarchies. Develop-
ment of TypicalProject takes

place in the Develop subproject. When you
create new releases, you add new sub-
projects under the Release subproject to
keep succeeding versions of TypicalProject.

FIGURE A
project structure for all releasable
products. Mainstream development takes
place in the Develop subproject (see Figure
A) Depending on the complexity of the
project, subprojects may be necessary.
Whenever you create a release—for
delivery to a customer, for example—you
add a new subproject under the Release
subproject. Subprojects of Release have
the same structure as Develop. They are
distinct development streams created with
SourceSafe’s branch function and used
for maintenance of delivered products.

Imagine you’re about to create release
01.02.00 of TypicalProject for delivery to a
customer. Create the project structure
shown in Figure A in your copy of
SourceSafe and follow these steps:

• In SourceSafe’s project window, select
the Develop subproject for the product
being released—here, $/TypicalProject/
Develop. Click on the Label button on
the toolbar or choose File/Label from
the menu bar.
• Enter a version label. The precise format
of the label is not important, but ideally it
should be systematic. You’re going to
create a new subproject for your release,
so it makes sense to use a label you can use
as the project name. For this exercise, type
01.02.00. You can also enter a comment in
the comment box if you like.
• Now the release is complete and
development work can continue. The next
steps create a parallel development stream
for maintenance of the release. You can do
it at any time, but it’s generally best to do
it as part of the release process to avoid
unnecessary complications when dealing
with the first urgent bug fix.
• Select the Develop subproject again
and click on the History button on the
toolbar or choose Tools/ShowHistory
from the menu bar. When the Project
History Options dialog appears, check
the Labels Only box, uncheck the others,
and click on OK. Select the history line
corresponding to the release you want to
branch. If you do it immediately after
you label a release, you’ll have the top
line of the history display.
• Click on the Share button to bring up
the Share dialog, which should have
Share From $/TypicalProject/Develop
in the title bar. The panel labeled
Projects is where you choose the home
of the new project you are about to
create. Previous releases of SourceSafe
unobtrusively labeled this box To, but
even that small clue to its purpose has
now disappeared.
• Select the Release subproject in the
Projects panel. Check the Branch After
Share box and click on OK. When
prompted for the new project name,
enter the release label used earlier but
use underscores instead of periods as
separators. Because SourceSafe
generates a working directory name
from the project name, and a name
with periods in it doesn’t work very
well. Again, type a comment in the
comment box if you desire.
• Check the Recursive box and click on
OK. A new subproject called 01_02_00
should now appear under $/
TypicalProject/Release. It is a
completely separate project to
TypicalProject. —Mark Hurst
hnical Publications H O M E

E N T E R P R I S E

Third-Party Source Control
A number of third-party vendors offer
strong source-code management
competitors to SourceSafe. Here’s a look
at a few of them.

Versions/VB 1.1c ($99): StarBase
Corp.’s Versions/VB (VVB) is an excellent
entry-level SCM product. It has the basic
features essential for single or multiuser
source-code management. It is mail aware
and integrates so well with Visual Basic

that it almost feels
like a Microsoft VB
for Workgroups.
 VVB has multifile
labeling, yet its lack
of branching and
security rule it out
as an industrial-
strength SCM tool.
It can deal only with

files that belong to a VB project, a problem
that goes away if you also use StarBase’s
companion product, Versions, for which
you will need a separate license.

VVB also begins to creak if you want
to share files between projects. You can
do it, but you’ll do some inelegant
messing around with dummy make files
to hold shared code.

Paradoxically, VVB’s clever
integration is in some ways its downfall
because it highlights one of Visual Basic’s
most irritating problems: caching forms
in memory. When someone checks in an
edited form, other users don’t see the
changes until they reload the project
into VB. StarBase promises a satisfactory
resolution in its upcoming VB4-
compatible release. StarBase Corp.: 714-
442-4400 or 800-891-3262. Fax: 714-253-
6712.

VB ProjectWorks 1.04.200 ($295): VB
ProjectWorks, from The Young Software
Works Inc., is another product designed
specifically for VB. Like Versions/VB, it
integrates itself into the VB environment,
but there the similarities end. Instead of
providing extra windows or toolbar
buttons, ProjectWorks takes control of
key VB menu items. It is an effective
approach because there are no new
buttons to press.

The authors wrote ProjectWorks in
VB. The project-oriented check-out
model, for example, seems to be a
compromise to sidestep VB’s treacherous
form-caching feature. The authors also
understand SCM systems, because
ProjectWorks claims heavyweight
functionality. It includes private
archives that let you check things in
and out any number of times before
committing your changes.
©1991–1995 Fawcette Technical Publicati
Still, some things are wrong with
ProjectWorks, suggesting that it’s an
unfinished product. Errors in the tutorial
include help buttons that aren’t wired up,
and the MergeWorks functionality
described in the manual is completely
absent. All could be forgiven if the program
were reliable, but, sadly, it isn’t. It copes
well enough with mundane operations
such as creating projects and checking
them in and out. However, a number of
complex operations fail consistently with
VB errors such as “invalid property array
index.” The Young Software Works: 212-
982-4127. Fax: 212-673-1715.

PVCS Version Manager 5.2.06 ($599):
Intersolv’s PVCS Version Manager is the
yardstick by which all PC SCMs are
measured. The PVCS engine is as fully
featured as they come. PVCS compensates
for its lack of project nesting by providing
folders that allow you to define subsets of
the files stored in your project. These

subsets can intersect,
so you can build
different views to
accommodate any
logical grouping.
Thus you can share
files with equal status
between different
programs. PVCS also
has comprehensive

labeling functions, branching and
merging, and the most complete access
control system of any product considered
here.

The recent addition of a graphical front
end to PVCS, however, has tarnished its
long-standing reputation. The new PVCS
5.2 GUI is cumbersome and buggy and,
when pressed, Intersolv admits that most
serious PVCS users still work with the
command line.

The PVCS GUI causes GPFs far too
frequently for comfort, often on the most
routine operations, and functional bugs
abound. Bugs apart, much of the bad
feeling toward the GUI is due to usability.
Intersolv: 301-230-3200 or 800-547-4000.
Fax: 301-231-7813.

PVCS for Visual Basic ($595): PVCS/VB
is an add-on for PVCS Version Manager.
You’ll need a fully licensed copy of Version
Manager. It rules out PVCS/VB as a cheap
option, but in principle you should be able
to use the full power of the PVCS engine to
manage the VB parts of your project.
Unfortunately, PVCS/VB is a somewhat
schizophrenic product. The fact that you
can’t use the PVCS branch and merge
functions with the VB interface, for
example, immediately pegs it as a small
Visual Basic Proons H O M E
project tool.
PVCS/VB integrates itself with VB by

adding its own menu items. The interface
is impenetrable, with some impressively
bewildering dialogs and no visual
indications of locked files. With the
exclusion of branching and merging, the
functionality barely matches Versions/
VB. One problem with the VB interface is
that although Version Manager can embed
its master configuration into one of its
DLLs, it can ignore VB-specific settings
because it reads the VB interface’s private
configuration file before this DLL. If you’re
managing a large project with many
different access requirements, by all
means choose PVCS. Intersolv: 301-230-
3200 or 800-547-4000. Fax: 301-231-7813.

MKS Source Integrity 7.1b ($449).
Mortice Kern Systems (MKS) has built a
solid reputation with their suite of Unix-
compatible development tools for PC
platforms. MKS is now putting
considerable effort into visual tools. The
latest version of their source-code
management system includes a
standalone GUI, a command line version,
and embedded interfaces for Visual Basic.

Source management in Source
Integrity is project based and uses the
conventional working method where a
local copy of the project is maintained
for each developer. MKS’s designers
have chosen to call this sandboxing. A
sandbox encompasses a local copy of
the project directory structure and a
clone of the on-screen project window.
The GUI veneer is thin in some places—
in particular, project abstraction is weak
because it is inextricably bound up
with file names and directory
structures. The only way to build a
nested project structure, for example,
is to use the Add File function to add a
project file to another project.

Source Integrity supports advanced
project structures by providing
hierarchical projects and simple linear
promotion models. Branching is
supported, but only at the file level.
Copies (variants) of a project can be
created for maintenance or parallel
development, but there is no way to
branch the files in a variant except by
checking each one out and then in again.
There’s also no obvious way to share
files between different projects or
variants. Where intuition suggests that
branched files in parallel variants be
linked, changing a file in one place doesn’t
change it in the others. MKS: 519-884-
2251 or 800-265-2797. Fax: 519-884-2251.
E-mail: sales@mks.com. —Mark Hurst
grammer’s Journal NOVEMBER 1995 85

E N T E R P R I S E
particular business areas. A business ana-
lyst/project manager is responsible for an
entire project, including both technical
and user-related tasks, such as user train-
ing. The team interacts with users and may
receive project and enhancement requests.
It manages the requirements specification
and prototyping. After the solution team
has built the system, the business analy-
sis/project management team performs
user acceptance testing before passing it
on for implementation.
86 NOVEMBER 1995 Visual Basic Program
• The Resource Pool is a virtual pool of
people with a wide range of experience
and skill that does not exist as a team or
department and requires no management.
The coordination team draws upon it to
create solution teams. A person in the
resource pool could wear different hats
on different projects at any time.
• Solution Teams design, code, unit test,
and system test. They work closely with
the technical services team to ensure that
the project design fits in with the overall
mer’s Journal ©1991–1995 Fawcette Tec
architecture, and they use any generally
available components, and have their
deliverables reviewed and QA tested.
• The Technical Services Team offers tech-
nical services, mainly to the solution
teams. They take generally useful code
from solution teams and turn it into ro-
bust components for the benefit of other
teams. They dictate overall architecture
for solution teams and provide a QA func-
tion to ensure that solution teams pro-
duce high quality deliverables.
• Users must involve themselves heavily
with projects, even participate on teams,
for maximum benefit in the VB/RAD world.
Their role is particularly important during
the early stages of developing prototypes
and at acceptance testing at the end.
• The Support/Help Desk typically deals
with faults or passes them on to a mainte-
nance team.
• The Maintenance Team stands between
solution teams and constant interruption
by tactical fire fighting, which allows the
solution teams a better chance of sticking
to project plans. The maintenance team
fixes bugs in live systems and responds to
user requests. During slack periods, the
team does housekeeping tasks such as re-
views for the solution teams. Members come
from the resource pool and typically stay in
this team for about six months.
• The Implementation Team implements
systems in both the test and live envi-
ronments.
• The Operations and Networks Team is
responsible for the day-to-day operation of
the environment, systems, and networks.

Consistency, coordination, and design
across all projects is vital. The coordina-
tion team, and to a lesser extent the IT
manager and the technical services team,
fill these needs.

DEFINE YOUR TARGET
It’s all very well to live in an esoteric world
of process and structure, but how does
one begin? The best way is to define a
target process and structure for the orga-
nization and to evolve toward this from a
pilot project. On balance, this is better
than attempting to set up the new process
and structure prior to the first project. Of
course, it’s essential for the right people
to have the right skills, especially when a
team creates its first VB client/server ap-
plication (see Table 1).

In addition to having people who pos-
sess the necessary skills, you must put
into place an appropriate infrastructure.
Implement these items in parallel with
the development of the pilot project and
allow adequate time in the schedules for
these extra tasks:

• Corporate client/server architecture and
hnical Publications H O M E

E N T E R P R I S E
strategy.
• General application design standards.
• Data design standards.
• Client/server guidelines (connectivity
method, use of stored procedures).
• A GUI style guide.
• Coding standards.
• Distribution, installation, implementa-
tion, and upgrade guidelines.
• Development environments (develop-
ment, test, and live servers).
• Source-control software and associated
procedures.
• Powerful, standardized developers’ PCs,
fully configured with VB, Microsoft Ac-
cess, relevant and tested custom con-
trols, and a range of supporting tools.
• Fully configured and tested server data-
base with associated tools to add test data,
stored procedures, and other elements.
• Fully implemented and tested worksta-
tion-to-server connectivity, including net-
work software and ODBC drivers.
• Education/training of those providing
any of the above or filling technical roles.

DISCIPLINE COUNTERACTS PRESSURE
Effective project management is a critical
factor in the success of VB team develop-
ment projects. Strong project manage-
ment can achieve success in difficult cir-
cumstances. Weak project management
can lead to failure when success is there
for the taking.

In the VB world, many good project
managers seem to have “gone walkabout.”
Managers have forgotten the most basic
disciplines such as planning, phasing,
tracking, change management, and mile-
stone setting. Project managers often find
themselves working in ways that they
know are wrong, but they do it anyway.

Proper, disciplined project management
occurs within every successful VB team. VB
project managers are typically not techni-
cal enough. They cannot lead effectively
unless they have credibility within the team
and are able to discuss critical design is-
sues. Many of the project managers I speak
to don’t know, for example, what system
resources are or what MDI is, even though
their team must code a complex finite state
machine as a result of this interface style
being chosen.

When we ask a project manager why a
substandard VB application was released,
we normally hear, “The business demanded
it,”…“Our competitors have one and so
must we,”…“We will use it now and fix it
later,”…“The users have seen it and expect
it now,” or “The users are already using it so
it cannot be withdrawn.”

Poor project management is the real
culprit here. The poor management of us-
ers’ expectations and requirements is to
blame for much VB bad press. All too
often a manager will allow a substandard
©1991–1995 Fawcette Technical Publicatio
Window Design Check List. Organize before you dive into coding. Use a
check list like this to ensure the proper design of the windows in each project’s

applications.

TABLE 2

Checkpoints Checked

The form positioning is correct relative to other forms and the screen ❏
The form has the correct border style ❏
The form has the Max, Min, and Control box set on/off as required ❏
The control tabbing order is set and is logical to the user (Top-Left to Bottom-Right) ❏
Correct colors (fore, back, fill etc.) applied to all controls as per project standards ❏
The first character of each word of text labels/menu choices is in upper case text ❏
Controls are aligned correctly ❏
The text/captions of all controls are in the correct font and size ❏
All menus, command buttons, check boxes, and option buttons have mnemonics set ❏
All mnemonics are unique ❏
Ellipses (...) are included for all routing menu choices ❏
Shortcut keys for menu options are set if relevant ❏
Command button/menu bar choices are unique ❏
Help menu option or “Help” command button exists if relevant ❏
Command buttons are positioned appropriately on the form ❏
A command button is set to be the “Cancel” ❏
A command button is set to be the “Default” if appropriate ❏
Option buttons have a frame/group box ❏
A default option button is set for each group ❏
Combo box and list box entries are ordered appropriately ❏
“Enabled” and/or “Visible” control properties are set where relevant ❏
Date fields are formatted in the correct format ❏
Image control used in preference to picture control where appropriate ❏
3D and non-3D controls of the same type have not been used on the same form ❏
Visual Basic Programmer’s Journal NOVEMBER 1995 87ns H O M E

E N T E R P R I S E
program to go live because he or she has
failed to adequately manage the expecta-
tions of the users—or perhaps of the se-
nior managers.

One of the fundamental principles of
software engineering is that a well under-
stood, repeatable, and workable develop-
ment methodology is a key factor in im-
proving quality, productivity, and efficiency.

“Yeah, yeah, yeah, we all know this,”
you may say.

So why is it that in the VB world very
few people seem to use one? Sure, there’s
the old mainframe method up on the shelf
gathering dust.

 Or maybe there’s the new RAD method,
expensively developed by consultants, gath-
ering more dust. But everyone’s so busy
cutting code that the method’s never used.
There’s too much hot air and discussion
over the most appropriate method for VB
RAD development. Just pick one (any one!)
and use it consistently across all teams in
the organization. A method that is 80 per-
cent right and used is better than a method
that’s 100 percent right and not used.

Here are my imperatives for making
VB team projects a success:
• First, good planning, analysis, and de-
sign are vital phases. Shorten them at
your peril.
• Second, nothing beats continuous user
involvement. Make sure, however, that
you carefully manage both the users’ ex-
pectations and change control.
• Third, beware of the prototyping trap. If
you ask two programmers on a VB team
what a prototype is you are likely to get
two different answers. Often the team is
unclear whether or not it’s a throwaway.
Clearly define the term prototype and
familiarize everyone, including the users,
with this definition. You may even choose
to define different types of prototypes.
The big trap is to leave it ill defined.
• Finally, phased releases work but phased
developments generally don’t. It is better
to design the entire application and then
segment it into smaller build/test release
88 NOVEMBER 1995 Visual Basic Program
phases, rather than designing and build-
ing the first release, designing and build-
ing the second release, and so forth. A lot
of people do it this way, if they design at
all, but it leads to a badly designed appli-
cation and makes maintenance difficult.

DESIGN NOW, CODE LATER
When challenged, most VB developers
would claim they design their applications.
Unfortunately, little evidence of this exists.
Technical specifications are becoming his-
torical curiosities. It seems that most VB
programmers cannot resist the temptation
to start coding on day one. Code, code,
code—what’s wrong with pencil and paper
and a little upfront thought being applied to
a problem? By contrast, tackling a large C-
based development is not easy at the best
of times and you quickly learn that unless
you invest some time in designing carefully,
you will waste a lot of time and the develop-
ment will almost certainly fail.

How does this compare to VB? VB is
often abused. It’s so easy to build an
application that, rather than choosing to
design, developers build instead—they
take the code-it-and-see approach to soft-
ware development. In a team environ-
ment, this spells disaster.

Not only must the design happen, it
must fit in with an overall corporate archi-
tecture. Make the application design ob-
ject oriented by building reusable com-
mon elements. Design in error handling
and debugging aids from the start.

Be careful not to include external com-
ponents and objects in your design with-
out properly assessing their potential im-
pact on your application and on Windows.
For example, try running all potential cus-
tom controls under the Windows debug-
ging kernel—it’s often very revealing!

Measure the effect on Windows re-
sources of using a particular control, es-
pecially if your design means there will be
multiple instanciations. More broadly, I
recommend that you centrally assess,
procure, and control external components
mer’s Journal ©1991–1995 Fawcette Tec
and objects with much care and thought.
When one client didn’t do this, I found
they were using 130 different VBXs.

Documentation is the next necessity
in design. It may be boring, but it is vital.
I have established guidelines for neces-
sary documents and documentation ele-
ments that work well for VB applications:

• Specify the system requirements. The
specification should reference a VB pro-
totype, rather than the document con-
taining screen shots. The combination of
the document and the prototype together
constitutes the signed-off requirements,
provides a lively representation of the
requirements, and leads to a solution that
is close to what the users really want.
• Produce and maintain a concise design
specification that describes the key de-
sign points.
• Comment your code. Other types of docu-
mentation invariably become outdated.
How many times have you worked on
changes to someone else’s code? Do you
trust the documentation or do you review
the comments and the code itself? Descrip-
tive module and subroutine headers, block
and inline comments, and consistent nam-
ing conventions are the best type of docu-
mentation possible. Use tools that build
documentation from the source files—it’s a
good test of your commenting standards.
• Plan for testing. Testing within VB teams
is generally too informal and ad hoc. Writ-
ing a test plan forces some advanced thought
and planning, as I’ll explain.

Historically, the testing of complex
team-based applications breaks down into
two main areas: unit testing, which exam-
ines the modules of the system as indi-
vidual units having definite input and
output parameters and often a definite
single function; and testing of the system
as a whole, including intercommunica-
tion between the individual units and func-
tions of the complete system.

Many of the problems with VB applica-
tion testing result from trying to apply
conventional methods to systems for
which they aren’t appropriate. VB appli-
cations work in fundamentally different
ways compared to old-style applications.
VB applications offer many ways of doing
things that have no equivalent in a non-
GUI application, such as using a mouse;
using VB constructs such as check boxes,
option buttons, and command buttons;
and using menus. A GUI application al-
lows several ways of performing an act
that would have only one equivalent in a
non-GUI application.

We break the old testing methods into
four test streams.

• Destruction testing, during which you
Navigation Check List. This check list allows you to track the ability of the
various methods in the application to navigate to and from each window. Each

list is unique to a particular window.

TABLE 3

Navigation Action Navigation Result Checked

File : New Entry fields re-initialised for new input ❏
File : Open Windows Open Dialog box displayed ❏
File : Delete Customer details deleted after confirmation ❏
File : Print Windows Print Dialog box displayed ❏
File : Exit Application terminated ❏
View : Customer Orders Customer Orders screen displayed ❏
Options : Toolbar Toolbar display toggled ❏
Help : Contents Application Help file Contents displayed ❏
Help : Search Application Help file Search displayed ❏
Help : Using Help Windows Help file displayed ❏
Help : About Application About box displayed ❏
hnical Publications H O M E

E N T E R P R I S E
test the application until it fails. Often,
destruction testing is administered in a
totally unstructured fashion. With this
type of testing, you need to come up with
a happy medium of what is appropriate—
if you allocate 20 days for destruction
testing, for example, then you could let
one person do it for 20 days or 40 people
do it for half a day each. The best propor-
tion for maximum benefit is five or six
people for three or four days each.
• Window Design testing, which proves
that each individual window (primary,
secondary, popup, dialog, message, and
others) that constitutes the system meets
project design standards. The best
method of ensuring this is a check list
signed off by the test reviewer (see Table
2). Create a check list for each project’s
standards and circumstances.
• Navigational testing, which determines if
you can navigate to each window by initia-
tion of all the functions from any other
appropriate window in the system, without
necessarily performing any of the detailed
processing that might be required when it
gets there. A check list is the best test for
this purpose (see Table 3). Each list is
unique to the particular window being
tested. It is easy for the test reviewer to re-
test and verify the list of navigational ac-
tions and results.
• Functional testing, which examines the
nuts-and-bolts functions of the system.
When you’ve determined that an individual
window or group of windows is designed
correctly, contains all the functions it needs,
contains the required methods of initiating
those functions, and can use those func-
tions to navigate, you can move on to the
real testing of the system.

Use a check list for each window design
(see Table 2). When you separate the win-
dow design and navigational aspects of
initiating a function, the list of such tests
will be smaller. Use a check list for naviga-
tional design, too (see Table 3).

A properly thought out test strategy is
vital for any VB team development. Auto-
mated testing tools can be very useful
when you test your VB applications.

HIRE QUALITY
Good software developers are infinitely bet-
ter than average ones. The only people worth
having in the team are those who are very
good or those who are eager to learn. You
can tell people who are good at their jobs a
mile away. A team of people who are proud
of their work is a thousand times better than
a team of average people. High-quality teams
lead to real team spirit. My company’s hiring
process includes putting candidates through
a strictly monitored, two-hour written VB
examination. I never rely only on resumes,
references, or interviews.
90 NOVEMBER 1995 Visual Basic Program
Also, I firmly believe in small, highly
skilled teams. For example, my company
is producing a toolkit product for VB4
programmers, which is a set of large ap-
plications with lots of complex Windows
code. Some of our clients would staff the
project with 15 to 20 people, but we have
a part-time project manager, a technical
lead, two designer/programmers, and two
testers. The VB box is deceptively small,
but there’s an awful lot in there. Most VB
programmers become jacks of all trades,
but, of course, masters of none. That’s
why I recommend positioning specialists
across the team.

All VB programmers should have a
thorough understanding of Windows, as
well as VB functionality and syntax. They
should work at least six months alongside
an experienced Windows/VB mentor be-
fore they are allowed anywhere near an
important development project. I’ve seen
people with inadequate training and no
understanding of the workings of the Win-
dows operating system building mission-
critical VB applications. They assume that
they are working in a protected environ-
ment with limitless resources, just like
the mainframe.

So how can we improve the situation?
The old adage that prevention is better
than cure is very appropriate to VB sys-
tem development. The best way to eradi-
cate problems in a system is to not put
them in the code in the first place.

Defining standards is not enough. Re-
views, also known as walk-throughs or
inspections, are not new practices to sys-
tem development, but programmers in the
VB world rarely need to endure them. Yet
a review is the best way to improve the
quality of VB team development. The ob-
jectives of a review are to ensure that
developers adhere to standards, to im-
prove the quality of software, to improve
communication between developers, and
to improve code reuse.

From experience, I know that a re-
view is worthwhile only if it has total
management backing. In other words,
implementation should not go forward
until all reviews have passed in all cir-
cumstances, irrespective of the busi-
ness pressures to go ahead. My com-
pany implements a three-stage review:

• Requirements. The developer has an
opportunity to ensure that the quality of
the requirements specification produced
by the analyst is high and that it accurately
and unambiguously describes the system.
• Design. Early in this stage, the designer
presents to the team his design in outline
form. This informal review verifies that the
proposed design approach is sound. It
catches design flaws early, rather than after
a detailed design specification is produced.
mer’s Journal ©1991–1995 Fawcette Tec
At this point the team can determine the
reviews that should follow, because a modi-
fied review process can be appropriate
depending on the project circumstances. A
second, more formal design review at the
end of the design phase encourages careful
scrutiny of the design and the design docu-
ments produced.
• Code. Again, early in this stage, the team
verifies that the proposed coding ap-
proach is sound and that standards are
being followed. At the end of the coding a
more formal review is performed.

It may seem that this process requires
lots of extra effort, but my company has
found that it saves a tremendous amount
of time and cost in the long run. Other
ways to improve quality include proper
testing, maintaining metrics for measur-
ing VB projects, and post-implementa-
tion reviews.

You may have noticed that I have not
touched on software configuration man-
agement, a topic vital to all VB projects.
For that, read the accompanying sidebars
to this article, all of which were written by
my colleague Mark Hurst.

With introduction of VB4, VB pro-
grammers become essential to mission-
critical enterprise development. VB
teams must change their attitudes to-
ward developing higher quality and
more easily maintainable applications
to meet the demands of enterprise-wide
team programming. It is imperative to
begin now to develop solid, proven, team
programming practices.
If you want to read more on team
development topics, I recommend
several books. The team-programming
classic is The Mythical Man-Month by
Frederick P. Brooks Jr., published by
Addison-Wesley. A great book for
anyone connected with VB
development—especially senior
managers and project managers—is
Managing the Software Process by
Watts S. Humphrey, published by
Addison-Wesley. Another book that
covers a lot of team development issues
is 201 Principles of Software
Development, by Alan M. Davis,
published by McGraw-Hill.

Reference articles published in
Visual Basic Programmer’s Journal
include: “Consistent Naming Clarifies
Code,” page 64, VBPJ January 1995;
“Architecting Solid Software,” page 72,
VBPJ April 1995; and “Devise a
Configuration Management Plan,” page
58, VBPJ July 1995. —M.H.

For More Info
hnical Publications H O M E

	Managing Enterprise Development

