
National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l’information

Software Cost Estimation
and Control

M.R. Vigder and A.W. Kark
Software Engineering
February 1994

NRC No. 37116

Copyright 1994 by
National Research Council of Canada

Permission is granted to quote short excerpts and to
reproduce figures and tables from this report,
provided that the source of such material is fully
acknowledged.

Additional copies are available free of charge from:

Publication Office
Institute for Information Technology
National Research Council of Canada
Ottawa, Ontario, Canada
K1A 0R6

Copyright 1994 par
Conseil national de recherches du Canada

Il est permis de citer de courts extraits et de
reproduire des figures ou tableaux du présent rapport,
à condition d’en identifier clairement la source.

Des exemplaires supplémentaires peuvent être
obtenus gratuitement à l’addresse suivante:

Bureau des publications
Institut de technologie de l’information
Conseil national de recherches du Canada
Ottawa (Ontario) Canada
K1A 0R6

Software Cost Estimation 1

Table of Contents

Table of Contents... 1

0. Executive Summary... 3

1. Introduction.. 9

1.1 Definition of Terms... 10

1.2 Scope of Work .. 11

1.3 Cost Estimates and the Software Process 12

2. Data Gathering ... 13

2.1 Initial approach to the study ... 13

2.2 The questionnaire.. 13

2.3 Interviews... 15

2.4 Organizations Interviewed.. 16

3. The Estimation Process - Current State of the Art...................................... 17

3.1 Modeling the Cost Estimation Process .. 17

3.1.1 Estimation and the software process.................................... 17

3.1.2 Inputs and Outputs to the Estimation Process 18

3.1.3 The Estimation Process .. 21

3.2 Current Practices.. 22

3.2.1 Timing of the estimates ... 23

3.2.2 Estimation Constraints .. 25

3.2.3 Estimation Process .. 28

3.2.4 Personnel involved.. 30

3.2.5 Data gathering.. 30

3.2.6 Cost Estimate and Cost Control .. 32

4. Problems with the Cost Estimation Process.. 37

4.1 Problems with Requirements... 38

4.2 Maintenance organizations.. 40

4.3 The Procurement Process.. 41

4.4 System Size.. 43

4.5 The Software Process and Process Maturity.................................. 43

4.6 Monitoring Progress of the Project.. 45

4.7 Lack of Historical Data .. 46

4.8 Lack of Application Domain Expertise ... 46

4.9 Software Within a Larger System ... 47

2 Software Cost Estimation

5. Conclusions and Recommendations ... 49

5.1 Conclusions .. 49

5.2 General Recommendations ... 50

5.2.1 Software Process Improvements .. 51

5.2.2 Maintaining a Historical Database.. 52

5.2.3 Project Management ... 54

5.3 DND Recommendations... 54

5.3.1 Cost Estimates from a Procurement Agency’s
Perspective.. 54

5.3.2 Life-Cycle Costing.. 55

5.3.3 Maintaining Software Expertise Within DND...................... 56

5.3.4 Software within a System... 58

Appendix A.. 59

Bibliography.. 69

Software Cost Estimation 3

0 . Executive Summary

The Software Engineering Laboratory (SEL) of the Institute for Information
Technology of the National Research Council was asked by the Chief Research
and Development (CRAD) of the Department of National Defence (DND)
(contract number 220792NRC08) to perform a study of software cost estimation
methodologies used within defence and industry, recommend improvements in
the process and, if necessary, identify research directions in the area of
software cost estimation.

The initial approach taken by SEL was to concentrate on a few projects within
the DND, both from the procuring agency and supplier point of view. All aspects
of the projects were to be studied. These included original estimates and
methodology used to arrive at the software cost estimates, changes in the
project as defined by contract amendments, and comparison of the result with
the original estimates. On the basis of the data gathered, SEL was to evaluate
methodologies within the domain of specific projects' types. As part of the data
gathering, the comparison between cost estimates for hardware- and software-
oriented projects was to be made.

The selected approach was very quickly proven not to be viable, as the required
data were simply not available. The focus of the study has therefore changed.
We decided to look at the process of procuring and developing systems -- but
with software cost estimation in mind. We significantly increased the number of
the DND and industry interviews we carried out. As a result of these interviews
we were able to determine the definite patterns in which projects are procured,
costed, and executed. These patterns show that

• Software cost estimation is done too early in the procurement
process and is based on -- usually -- wrong specifications;

• Once established, the estimates are very difficult to change;

• Parametric models for software cost estimation are rarely used within
either the military or the industry developing systems for the military;

• Business-oriented software producers are more likely to use some
parametric models;

• There are no historical data on which to base the estimates for the
new software projects;

• Very often the price for the software development for the DND does
not reflect the actual estimates for the software as a function of the
requirements, but is a function of many others non-technical factors;

This state of disarray is not unique to the DND and DND contractors. From the
studies conducted by the Software Engineering Institute (SEI) - associated with
the Carnegie Mellon University it is clear that, at the present time only a small
percentage of software developers are able to effectively handle the full

4 Software Cost Estimation

software life cycle from the requirements through the development to the
support.

Clearly, many of these problems can be corrected through "low-tech, common-
sense" actions. Only after the basic process problems are resolved, can we start
talking about sophisticated methodologies aimed at substantially improving the
estimation accuracy.

The recommendations outlined in Chapter 5 are divided into two parts: those,
that we believe are applicable to the software development industry in general
and those that are DND specific. The general recommendations are based on
the assumptions that- there is in fact room for improvements in the accuracy of
the cost estimates and despite the possibility of improvements there will
continue to be a large margin for error in these estimates.

Recommendations that can be applied within the software development
industry include:

• Improvements in the software development process by:

- Formalizing when and how cost estimates are performed.
This should include definitions of a company-customized
methodology, a process by which the methodology is to
be applied, when the estimates and re-estimates are
performed, and what is being estimated for a project.

- Permitting effective monitoring and control of the software
costs. If there are no effective measurements during the
development process the accuracy of the estimates
cannot be established. But the measurement process
cannot be a burden to the project personnel, must be
performed to a proper level of detail, and must contain an
objective measure of completeness.

- Analyzing problems reported during the development
process. This applies to the process itself and is used to
improve future performance of the organization.

- Effective control over functional requirements. The most
practical way of achieving this goal is to introduce
effective change control process, as it is very difficult if not
impossible to produce perfect requirements specification.
Parties involved in the development process on both the
customer and developer sides must realize and accept
that the requirements will change during the development.

• Collecting and analyzing the historical data for the projects. This is a
vital step towards improvement of the accuracy of software
development costs. The collected data should include information on
both products (projects) and process by which these products were
built. These metrics must be customized for each organization;

Software Cost Estimation 5

however, one can generalize the areas necessary for cost estimation
improvements:

- Basic characteristics of the development process in order
to understand the context in which the system was
developed;

- All estimates and re-estimates for the project.

- Actual costs of the final system. This metric must clearly
indicate what was included.

- Characteristics of the completed product. This must
include size and complexity metrics, description of the
final product, classification of software, and other
information that can be useful in developing cost
estimation models for a given organization.

- The data must be collected in a form that is easy to access
and analyze and in enough detail to be useful to the future
estimation process.

• Changes in the project management procedures. Unless proper
management procedures are in place within an organization, then
cost estimates, no matter how accurate, are irrelevant. At any point in
time, project managers must be aware of the state of the project. This
includes incurred costs, level of completion, and estimates of effort
required to complete the project.

DND is involved in software development in two different roles: software
procurer and software developer and maintainer. Where DND is involved in
software development and maintenance the same recommendations as for the
industry will apply. There are, however, additional recommendations that are
DND specific:

• From a Procurement Agency perspective, DND must recognize the
problems existing with the preparation of the requirements
specification. In fact, it must be recognized that the Procurement
Process itself causes unrealistic or inaccurate estimates. The
possible approaches to a solution of this problem include

- Different procurement processes for systems that are
relatively standard versus those which are innovative.

- The procurement process must have provision for
modifying the requirements and the corresponding cost
estimate in order to arrive at the correct and final
requirements as early in the development process as
possible.

6 Software Cost Estimation

• Improve the relations between the procuring agencies and the
contractors. To that end, "Common Purpose Procurement" should be
investigated and experimented with.

• Effective monitoring of the project should be based on the
assumption that the contractor is a technically competent and
therefore the reviews should focus on

- Functionality.

- Process.

Large software systems have a long life span. It has been shown that the
majority of the costs of the system are incurred after the initial development has
been completed. Given that fact, only a few organizations make conscious
tradeoffs between development and maintenance costs. The DND should
therefore

• Investigate and record the current proportion of maintenance to
development costs.

• Introduce full life-cycle costing for software products to permit tradeoff
of the development costs for reduced maintenance costs.

• Sponsor research into re-engineering and reverse engineering for
software. Many current systems are delivered without proper
documentation and are given to the maintenance centers without the
necessary knowledge. This increases the cost of maintenance and
reduces the quality of work performed.

One key observation is that there is a difficulty within DND in building up a core
knowledge of software expertise. We believe that DND must strive towards
building such an expertise and to that effect it is recommended that

• DND investigate the development of a group with the mandate of
researching, developing, retaining, and disseminating software
expertise throughout DND. To ensure the effectiveness of such an
organization it must have a stable work force not affected by the
customary military rotation process. Such an organization would

- Assist project managers in various areas of the software
development process.

- Have the mandate and the power to collect, analyze, and
disseminate data on software procurement, development,
and maintenance throughout the DND.

 - Monitor and evaluate contractors.

- Perform research in the area of the development and
procurement processes.

Software Cost Estimation 7

- Participate in the definition of procurement standards.

- Promote transfer of knowledge between various
organizations within DND.

• To initiate and facilitate the creation of such an organization it is
recommended that a pilot project be started. Such a project would
initially focus on data collection and transfer of knowledge.

Clearly, implementation of any of the above recommendation will contribute to
the improvement of the predictability and accuracy of the software cost
estimates.

8 Software Cost Estimation

Software Cost Estimation 9

1 . Introduction

This report summarizes a study which the National Research Council (NRC) of
Canada performed for the Chief Research and Development of the Department
of National Defence (DND). The study focused on issues and research
directions relating to cost estimation of systems that contain significant amounts
of software. The primary long term goal of the project is to develop improved
methodologies for forecasting and controlling software development costs. The
immediate objectives of this study were to

• Determine the current "state of the art" in use in Canada for
estimating the costs of military and civilian software systems.

• Analyze the (in)accuracy of software cost estimates, e.g., how
inaccurate are they and why are they inaccurate.

• Identify factors affecting the cost of software systems.

• Identify steps for improving software cost estimating practices within
DND, based on current technology.

• Identify research directions for estimating and controlling software
costs.

In Chapter 1 of this report we will define the terms used in the report and
describe the general approach and methodology used during the project.
Chapter 2 describes the data gathering phase of the project. Chapter 3 talks
about current cost estimation methodologies in general, as well as issues
specifically pertaining to the study.

Chapter 4 contains our observations regarding the problems with the cost
estimations and software development process as collected during our study.
This chapter describes differences in problems faced and approaches used
between the development and maintenance organizations. Chapter 5
summarizes our findings and makes recommendations.

The project can be divided into three distinct phases.

First, we familiarized ourselves with the organization of DND and clearly
formulated the objectives of our study. As part of this phase of the project we
analyzed data available to us through the Industry Research Assistance
Program (IRAP) on 21 completed projects. This analysis was used not only to
define the types of data we expected to collect during the subsequent phases of
the project, but also to provide a comparison between cost estimation models
and effectiveness of project management techniques of research projects in the
hardware and software domains. The results of this study are briefly described
in [Vigd-94].

The data gathering phase of the project involved preparing the questionnaire
and visiting a number of organizations involved in software development
projects, either as developers or procurers. The purpose of these visits was to

10 Software Cost Estimation

obtain information about software costs from a representative cross section of
Canadian organizations involved in software development. These interviews
provided us with information regarding the current state of the art of software
cost estimation and control, information on cost drivers for software
development, and indications of whether there is an actual problem in
accurately estimating software costs. The questionnaire and the interview
process are described in Chapter 2.

The data analysis phase of the project put into context the information gathered
from the visited organizations both in the DND and industry. The analysis
suggested solutions to the problems and pointed to possible further research.

1 . 1 Definition of Terms

Despite the terminology, software cost does not refer directly to the dollar figure
associated with software development. Such a figure, as we have discovered, is
almost impossible to arrive at and not always useful. The questions people are
more interested in are “What’s the effort involved?” and “How long will it take?”
The answers to these two questions can then be translated to the dollar figure.
This leads to the following definition of software cost.

Software Cost

Software cost consists of the following three elements:

• Manpower loading is the number of engineering and management
personnel allocated to the project as a function of time.

• Effort is defined as the engineering and management effort required
to complete a project, usually measured in units such as person-
months. The types and the levels of skills for the resources will come
into play here.

• Duration is the amount of time (usually measured in months)
required to complete the project.

Webster’s (Ninth New Collegiate Dictionary, 1985) defines a “cost estimate” as
“...to arrive at an often accurate but usually only approximate statement of the
cost of a job to be done.” Arriving at a cost estimate involves using a number of
different factors to try to determine the overall cost of a system. Deciding which
factors to include and combining them to arrive at the estimate make up the
software cost estimation process that is defined as follows:

Software Cost Estimation Process

A software cost estimation process is the set of techniques and procedures that
an organization uses to arrive at a software cost estimate. Generally there is a
set of inputs to the process (e.g., system requirements) and an output of effort,
manpower loading, and/or duration.

Software Cost Estimation 11

We discovered very early in our study, that it is very difficult to examine the
software cost estimation process without the overall context of the software
development process in use within a given organization.

Software Process

The set of procedures, techniques, and standards that an organization uses for
organizing, managing, and controlling software development projects is called
the software process.

Organizations have different software processes, depending on the type of
software they are developing. For many organizations, the development
process is very informal; in other cases it is well documented and stringently
monitored.

1 .2 Scope of Work

In identifying software development work to include in this study, we purposely
chose a very broad cross section of classes of software and classes of
organizations. Our objective was to identify common problems and trends within
organizations involved in the development of software. The types of software
development projects studied included

• Management Information Systems (MIS);

• Embedded systems;

• One of a kind systems and mass produced systems;

• New development work;

• Maintenance of legacy systems;

• Procurement agencies that contract out the development of software.

We were interested specifically in software development as opposed to system
development. When looking at system development projects, we isolated and
focused on the software component of the system, at how the software was
estimated and controlled. The fact that the software was embedded within a
larger system being developed affected the constraints on the software cost
estimation and software development processes, and these are discussed
further in Section 3, but the focus of the research was limited to the software
itself.

Items included in "software costs" vary considerably from organization to
organization. Direct costs include items such as analysis, design, coding,
testing and integration. Depending on who is doing the development and why,
software cost may also include a number of other items such as training,
customer support, installation, level of documentation, configuration
management, and quality assurance. As part of the study we looked at what

12 Software Cost Estimation

organizations included within their definition of “cost estimate” and how this
affected their estimation technique.

1 .3 Cost Estimates and the Software Process

The software process in use by an organization defines why, when, and how
cost estimates are made.

There are a number of reasons why an estimate is being done:

• Planning and budgeting. Senior managers make strategic decisions
based on the accuracy of estimates. Such decisions include whether
to proceed with a project, how much to bid, etc.

• Project management. Project managers use estimates to plan,
monitor, and control the implementation of a project.

• Communication among project members. A cost estimate frequently
includes a complete work breakdown structure (WBS), which project
team members use as a basis for understanding their roles within the
team.

The reason for performing an estimate will dictate the outputs and the accuracy
required of the cost estimate process. For example, for management to make a
decision of whether to proceed with a feasibility study, all that may be required
is a rough order of magnitude effort estimate. Project planning requires a much
more detailed (and hopefully accurate) estimate.

Estimates and re-estimates are performed throughout the software development
process; the software process defines when these estimates are to be done. Re-
estimations of a job serve a number of purposes. First, since an estimate is
“often accurate but usually only approximate”, re-estimates are done to improve
accuracy once more information regarding the job is known. The new
information that is used in the re-estimate can be, for example, the overall Work
Breakdown Structure (WBS) or the progress of the project during
implementation. Second, re-estimates are done because outputs different from
the ones generated in previous cost estimates are needed. For example, an
initial estimate may give a level of effort for the entire project; a re-estimate can
be used to provide levels of effort for the individual tasks of within the overall
project.

Software Cost Estimation 1313

2 . Data Gathering

The longest phase of the software cost estimation study was collecting data
from different organizations involved in software development. The objectives of
this phase were to determine the current state of the art of software cost
estimation across a broad spectrum of organizations and to identify any
software cost estimation problems common to a large number of organizations.

2 .1 Initial approach to the study

Our initial expectation was to proceed as follows. First, we wished to identify a
set of development projects that had recently been completed. To achieve this,
we met with a number of key DND personnel. These initial meetings were used,
not only to get the list of projects that we should be looking at, but also to
familiarize ourselves with the procurement process used within DND as
described in An Introduction to the Defence Program Management System (C
Prog 500). Those meetings were used to help us to design our questionnaire.

Having prepared the questionnaire and collected the names of the projects
within DND, we approached the organizations involved in these projects. We
also selected a number of companies within the software industry that we
believed would provide us with an insight into non-military software project cost
estimation. We suspected, and were subsequently proven right, that the
motivation for the estimates and the key cost drivers would be quite different in
that environment.

2 . 2 The questionnaire

The questionnaire (Appendix A) was designed to cover not only software cost
estimation but also most of the software development life cycle. This proved to
be very valuable during the data gathering process. We found quite quickly that
most of the organizations were not prepared to be interviewed unless and until
we ensured them of full anonymity and confidentiality. The questionnaire has an
introduction and eight sections. The introduction to the questionnaire (which
was expanded from the original short paragraph) reflects our attempt to deal
with this problem. Only one company approached by us did not agree to
participate in the survey. The content of the questionnaire reflected our belief
that we would be able to gather the hard data in various areas, which we would
use to perform statistical analysis of the information and draw our conclusions. It
was clear to us, however, that the numbers themselves would not be
meaningful. We therefore asked many "environment questions" in order to put
the numbers in a proper context and be able to normalize them in a reasonable
fashion.

Section 1 of the questionnaire refers to the project properties. We needed to
know where the project was being executed (procuring agency, development
organization), the type of system that was being developed (weapon system,
Command and Control, MIS ...), and whether it was primarily a software project
or if the software part of a larger system. We also needed to know the size of the
project in terms of the organization’s perception of the size.

Software Cost Estimation14

Section 2 of the questionnaire was intended for the organizations contracting
(procuring) software. Here, we could not expect to ask questions regarding
overall software development cycle, but only look at the "end points." We asked
about the difference between expected bids and contracted price, perceived
reasons for the difference between actual and estimated costs and who ended
up paying the difference.

Section 3 was intended to determine what types of estimates were performed
during the project and what were the goals of those estimates (obtain budgetary
approval, man-power loading). We wanted to know in what phase of project life
cycle the estimates were done, what was estimated (duration, man-power
loading, or effort), and who was the customer for those estimates. For completed
products we wanted to know the accuracy of these estimates (i.e., the
comparison between estimates and actuals). This section also asked questions
about items included in the estimates (software, hardware, testing, training,
etc.).

The people doing the estimates are an important factor in the accuracy of the
estimates. Section 4 of the questionnaire dealt with that aspect of the estimation
process. We inquired about experience level of people involved, their positions
and status within the organization, and the level of training of those people.

Section 5 of the questionnaire dealt with the estimation process itself. We
wanted to know the process used to arrive at the estimates, what were the
inputs, to the process and what was the quality of these inputs (in terms of
completeness, architectural design, details of User Interface, and so on). We
were also interested in whether and how parametric models and tools were
used in the estimation process.

Sections 6 and 7 dealt with project tracking and metrics. We assumed that most
of the organizations would track the progress of the project in an orderly fashion
and that there would exist a set of metrics for both the product produced by the
organization and the process by which that product is produced. We wanted to
know what these metrics were and how the knowledge gained during a project
is transferred and applied to the subsequent projects in which an organization
is involved.

The last section of the questionnaire was the basis for an open discussion of
software cost drivers. We wanted to gather both DND and the industry
perception of the main problems of software cost estimation.

As can be seen, the format of the questionnaire assumed that we were seeking
information on a specific project. It was thus “vertical” in nature in that it
assumed we would get detailed information on a specific project. We could then
use these data as a basis for determining the current state of the art in software
cost estimation.

Software Cost Estimation 1515

2 .3 Interviews

Using the questionnaire as a basis, we gathered data from the different
organizations involved in software developing. The data gathering focused on
historical data relevant to cost estimation.

Our initial approach was to make contact with an organization, explain our
study, and ask it was willing to participate. With only a few exceptions, all
groups we contacted felt that participating in such a study would be useful. We
then sent the questionnaire to the contact person within the organization and
followed up with a meeting at the company premises. We initially expected that
the company would prepare written answers, which would serve as an anchor
for the discussions. As it turned out, in most cases we did not receive written
responses to the questionnaire (there were only two exceptions). We therefore
used the questionnaire as a basis for our discussions with the organization.
These discussions would generally last about half a day, although with some
large organizations we spent up to two days interviewing various people.

We immediately ran into a major problem with this approach: lack of available
data. Despite our numerous interviews, there were only a few organizations that
could claim that they owned any kind of the historical project data in a form that
we could collect. There were primarily two reasons for the lack of hard data:

• The data were not recorded or were not recorded in a readily
available form.

• Private companies with "hard" information, did not wish to release it.

By far the main reason for not being able to collect the data was the fact that the
data were not recorded. Most of the organizations to whom we talked recorded
only a very minimal amount of data about a project. Even some of the most
basic information that we required for any reasonable study on cost estimation,
such as “what was the original estimate” and “what was the actual cost”, was not
always known. In some of the organizations the data that were recorded were
often kept in formats not suitable for our purposes, such as paper files of time
sheets collected for accounting purposes. These time sheets seldom made a
distinction as to the specific task being done by the individual. Only a few
organizations provided us with detailed historical data on projects, others
claimed to have such information but did not provide it for proprietary reasons.
However, these organizations were few and far between.

In most cases we had to depend on peoples' memories as to what happened
during a project. In DND, which has regular rotations of personnel, there was
often no one left to interview about a project, and the corporate memory of the
project had essentially disappeared.

Because there were so few project data available, it became evident to us very
quickly that the focus of our study would have to change quite dramatically.
Thus, rather than gathering hard data on individual projects and using these as
the basis for our analysis, we ended up gathering “soft” data about the
organization itself and about different projects and processes within the

Software Cost Estimation16

organization. As mentioned previously, the structure of the questionnaire
allowed us to make such a switch without major delays in our study. The fact
that hard data were not available (either existent or not analyzable) was one of
the most crucial findings of the study.

2 .4 Organizations Interviewed

During the course of this work, we talked to 37 organizations and individuals
involved in the development or procurement of software. To get a broad
understanding of the issue, we attempted to interview organizations involved in
the following aspects of software development:

• Procurement. Procurement agencies do not develop software
directly. Rather, they identify a need for a system requiring a
significant amount of software development and then contract out the
development of the software. Their interest in estimating is to "ball-
park" the expected contract values when going to tenders and to
"sanity-check" the received contract.

• Contract. These organizations estimate software costs to establish
the price to bid on a project and to control software costs during the
duration of the project.

• Commercial software development. These organizations perform
software cost estimates primarily for estimating time to completion, as
"time to market" is their most critical issue.

• Maintenance. Maintenance organizations are involved in the
upgrading of large existing systems. Their interest in estimating is to
determine timing and content of maintenance releases.

Software Cost Estimation 1717

3 . The Estimation Process - Current State of the Art

How do organizations concerned about software development actually perform
their estimates? When are the estimates done? Why are they done? How are
they done? To improve the accuracy of software estimation, it is necessary to
provide answers to these questions.

3 . 1 Modeling the Cost Estimation Process

Organizations rely on a wide array of techniques and approaches to arrive at a
cost estimate. To gain a better understanding of the different techniques and to
contrast and compare different approaches, it is necessary to develop a “model”
of the cost estimation process. It is useful to view the estimation process model
from three perspectives:

• Estimation and the software process. What is the role of estimation in
the software process?

• Inputs and outputs to the software process. What data are available
to an estimator doing the estimate and what information is generated
by the cost estimation process?

• The process itself. How does the estimator use the information
available to generate the actual estimate.

3.1.1 Estimation and the software process

Cost of a project can be estimated for a number of reasons. Why it is done is an
important factor in determining when and how it is done. The reasons why a
cost estimation process is undertaken include the following:

• Project approval. For every project there must be a decision by the
organization to undertake the project. Such a decision requires an
estimate of the money and resources required to complete it.

• Project management. Project managers are responsible for planning
and control of projects. Both activities require an estimate of the
activities required to complete a project and the resources required
for each activity.

• Project team understanding. For members of a project team to work
together more efficiently on a project, it is necessary that each one
understand his/her role in the project and the overall activities of the
project. A project task definition, which can be used for this purpose,
is generated by a cost estimate.

The "why" of the cost estimation process can be any of the above reasons and
is one of the factors determining when the estimate is done. Project approval
requires estimates to be performed very early in the project life cycle, often
before requirements have been clearly specified. The project approval process

Software Cost Estimation18

typically has a number of points where a “go/no go” decision must be made. At
each of these points, an estimate may be required to permit management to
make the decision. Early in the project life cycle, these may be rough order of
magnitude estimates sufficient to allow the organization to determine whether
they should continue to look at a project. Late in the project, management can
get much more detailed estimates of cost to completion in order to decide
whether to cancel an ongoing project.

For managing and understanding a project, an estimate must be done early in
the development of the project to arrive at an initial estimate, and then repeated
on a regular basis during development to keep the estimate current. For these
estimates the prime concern is not necessarily the absolute “cost," but the
estimated set of tasks required to complete the project, the results of each of
these tasks, how these tasks fit together, and the resources required to
complete each task.

Re-estimates are required throughout the development cycle regardless of why
the estimate is done. As a project progresses, more information is available on
the product and the process being used to develop it. This information can be
used to increase the accuracy and detail of the estimate.

3.1.2 Inputs and Outputs to the Estimation Process

The software cost estimation process computes a set of outputs as a function of
a set of inputs. The inputs to the estimation process depend on when the
estimate is being performed. Very early estimates are necessarily based on
sparse and incomplete data regarding the project and the development
process. Preliminary estimates are needed before requirements are known or
architecture has been defined. Such estimates will necessarily be based on
sketchy data and will not have a high degree of accuracy.

Estimates performed late in the development cycle are based on a much wider
set of information. Computing cost to completion late in the development cycle
allows a great deal of project and process information to be used. Given that
more information is available, more detailed estimates can be made, which
have a much greater degree of accuracy than the initial estimates.

Most models of cost estimation view the estimation process as being a function
computed from a set of cost drivers. These drivers are assumed to be the
characteristics of a system that determine the final cost of production. In most of
the advocated cost estimation techniques, the primary cost driver is assumed to
be the software requirements [Boehm, Albrecht, De Marco]. In this model of
software cost estimation (illustrated in Figure 1), the requirements are the
primary input to the process and form the basis for the estimate. The estimate is
then adjusted according to a number of other cost drivers (such as experience
of personnel and complexity of system) to arrive at the final estimate.

In this classical view, the effort, duration, and loading are computed as fixed
numbers (perhaps with tolerances), or a set of relationships between the values
is given, allowing managers to trade off costs in order to minimize any of the
three values.

Software Cost Estimation 1919

Software cost
estimation process

Cost
drivers {

Requirements

Other cost
drivers

Effort

Duration

Loading

Figure 1. Classical view of software estimation process.

In fact, the cost estimation process can be much more complex than that
portrayed in Figure 1. There is an interdependency between many items of
information, all of which are relevant to the cost estimation process (Figure 2).
Many of the data items that are inputs to the cost estimation process are
modified and output by the process. Thus, rather than viewing the cost
estimation process as a function of the requirements, it is often more accurate to
view this process as trying to satisfy a set of constraints. The inputs to the
system are a set of constraints on the requirements, software architecture,
financial resources, etc., while the outputs are a cost estimate and a set of
assumptions that satisfy all the constraints.

This view allows the constraints to be imposed on any of the factors that affect
the cost. These factors range far beyond requirements to include issues such as
delivery date, finances and software process.

Requirements are viewed as constraints that must be satisfied. In a few cases,
these requirements are fixed, complete, and correct. In most cases, however,
during estimation the estimator detects inconsistencies and ambiguities in the
requirements. As part of the estimation process, the estimator will resolve some
of these ambiguities by imposing new constraints on the requirements. In other
cases, the problems with the requirements remain, with a corresponding affect
on the accuracy of the estimate.

Financial, calendar, manpower, architectural, and software process constraints
are also significant to the cost estimation process.

Financial, calendar, and manpower constraints limit the amount of resources
that can be allocated to a project. Financial constraints limit the amount of
money that can be budgeted for the project; calendar constraints specify a
delivery date that must be met; and manpower constraints limit the number of
people that can be allocated to the project. For example, if a fixed amount of
money is available for a project, then the estimated cost should satisfy this
financial constraint, perhaps by varying the functionality.

The software architecture defines the different components used to construct the
system and the interrelationships between these components. The stage in the
development life cycle determines whether the software architecture is a factor

Software Cost Estimation20

for the estimation process. For example, maintenance organizations that are
working with an existing system are constrained to use the existing architecture
and can base their estimates on this architecture. The cost estimation process
for new development may not make any assumptions on the software
architecture and base the estimate entirely on the basis of system functionality.

For many larger contracts, the software process becomes one of the constraints
that must be satisfied by the estimating process. Many organizations have
within their software process a standard Work Breakdown Structure (WBS),
which defines the tasks to be performed to complete a project. Frequently, the
estimating process will be working under the constraint that the standard WBS
must be used for a project. The estimating process will then tailor the WBS to
the specific project, adding sufficient detail.

For example, one situation where constraints to the software process affect the
estimation process is the requirement to develop according to the 2167a
standard. Significant cost is incurred by adhering to this standard; for small
changes, 2167a can actually be the dominant cost factor. When estimating a
system developed to this standard, estimators must be aware of the cost
incurred by use of the standard.

Software cost
estimation process

Cost
drivers { Vague

requirements

Other cost
drivers Effort

Duration

Loading
Financial

constraints

Other
resource

constraints

Constraints {

Less vague
(and modified)
requirements

Risk factors

Contingency

Tentative WBS

Less fuzzy
architectureFuzzy architecture

Software process

Other
inputs {

Figure 2. Actual cost estimation process.

Software Cost Estimation 2121

Aside from the various constraints, other factors that must be included as part of
the estimation process are the risks associated with the project. These risks
could include, for example, dependency on outside contractors, integration of
new CASE tools into the development process, lack of experience in the
application domain, etc. These risk factors should be identified as early as
possible in order include them in the decision making and project management
processes.

The effect of risk on the cost estimate affects the tolerances of the estimate and
the allocation of contingency funds. An estimate for a high risk project will have
a very high tolerance, for example, with an accuracy expected of ±100%.
Management may then decide to include a very high contingency fund for the
project.

3.1.3 The Estimation Process

An estimate is arrived at by taking the identified constraints, applying the
estimation process, and generating results that satisfy all the constraints. A
variety of techniques are used by different organizations to arrive at these
estimates. The processes used can be classified as either model based or
analogy based.

Model-based estimation builds a costing model of system development based
on the characteristics of the system being built, the process being used to build
it, and its the development environment.

A model can be a formal mathematical model or a set of informal guidelines
used by an estimator. Informal models are used by experienced developers
who have gained sufficient knowledge about system development by working
on previous projects. The informal model used by such an estimator is
expressed as a set of “rules of thumb” or, at an even more primitive level, as a
“gut feel." When questioned as to how they developed their model and how they
apply it, estimators are usually unable to say exactly what it is they do. It
appears to be an issue of gaining the required experience in order to arrive at
accurate estimates.

Formal models attempt to quantify all inputs to the cost estimation process, and
then apply a set of equations that describe the relationships between the inputs
and the outputs of the cost estimation process. The equations are developed
through analysis of historical data and must be calibrated to each individual
development environment. The best known formal models are Boehm’s
COCOMO [Boeh-81], Albrecht’s function points [Albr-83], and Putnam’s
application of Rayleigh curves to the development process [Putn-92].

The usual method of applying the formal model is to transform the requirements
into a measure of the “size” of the system. This size measure, which can be
either SLOC (Source Lines of Code) or FPs (Function Points), is used as the
basis for creating the cost estimates. The estimator can also quantify a set of
other cost drivers, examples of which include

• Product attributes, e.g., required reliability, product complexity, etc.

Software Cost Estimation22

• Computer attributes, e.g., memory constraints.

• Personnel attributes, e.g., applications experience, programming
language experience.

These cost drivers become multipliers that can be used to increase or decrease
the initial estimate.

The bulk of the current literature and research on cost estimation is devoted to
formal models, particularly as relates to new system development. As discussed
further in Section3.2.3, we found that formal models are not in general used by
estimators as a primary tool for cost estimating.

Analogy-based estimating processes estimate costs by comparing the current
development project with previous development projects undertaken by the
organization. An analogy-based technique requires maintenance of a history of
past projects; this information can be used as a reference point. Past projects
with properties similar to the current project are identified and their costs used
as a basis for estimating the current project.

At the most informal-level of analogy based techniques, the history of past
projects is maintained in the estimator’s memory. Finding past projects with
properties similar to the current project involves the estimator thinking “Which
projects does this remind me of and how much did they cost?” Such an
approach is highly dependent on the memory of the individual estimators and a
very low employee turnover.

The analogy-based approach can be made more rigorous in a number of ways.
The history of past projects can be maintained as a computerized database,
with detailed metrics and descriptions of characteristics recorded for each
project. Using a historical database, an estimator can query the database
searching for projects with similar characteristics and then base the estimate on
actual costs and process of the previous projects. Such an approach avoids the
fallibility of human memory and provides a much more detailed historic record
of what occurred in the course of a project [Cowd-89].

3 .2 Current Practices

This section summarizes the practices that we encountered at different
organizations for producing cost estimates and controlling the costs of projects.

A wide range of organizations was involved in the study. The characteristics,
purposes, and constraints of these organizations vary quite dramatically,
making it difficult to analyze and generalize the data. To allow comparisons
across projects it was necessary to categorize the organizations; the data were
then analyzed within each category. For the purposes of this study, the
organizations were classified in the following way:

• Commercial development is primarily concerned with developing
new products that can be sold to more than one group without
significant modification.

Software Cost Estimation 2323

• Contractors are organizations that agree to build a system for a
procuring agency, to the procuring agency’s specifications.

• Procurement agency is an organization responsible for obtaining a
system. For this study, we are interested only in procurement
agencies that contract for the development of new software.

• Maintenance organizations are organizations that maintain large
existing systems.

3.2.1 Timing of the estimates

Estimation is not a task done once, at the beginning of a project. Rather,
estimates and re-estimates are undertaken throughout the life of a project. The
success of an estimator is not necessarily the accuracy of the initial estimates,
but rather the rate at which the estimates converge to the actual costs.

The timing of estimates depends on the type of organization involved and why
the estimate is being performed.

Contractors usually perform two estimates early in the development life cycle.
The first is done to prepare a bid for the contract, usually in a relatively quick
fashion, with the objective of arriving at a winning bid. The timing of this bid is
very much dependent on the procuring agency that issues the RFP. The
contractor is required to generate an estimate at this point, basing it on
information within the RFP and obtained informally from the contracting agency.

Upon winning a bid, most contracting organizations immediately undertake a
second, more detailed, estimation process. The objective of this estimate is to
develop a more accurate and detailed cost estimate and project plan which are
based on the previous estimate and WBS. Frequently, much discussion
between the contractor and the agency is necessary to deal with previously
undetected issues and problems in the requirements.

During the course of the project, contractors may or may not perform detailed
estimates of cost to completion. The current practice varies, with some
organizations having regular and formal re-estimates of cost to completion,
while other organizations perform informal and ad hoc re-estimates as required
when initial cost estimates are clearly not going to be met. All organizations
interviewed have some type of regular review of current status and expected
cost to completion, but there was sufficient variation between the organizations
that it is difficult to generalize about when and how it is done.

All the procurement agencies involved in the study were DND organizations.
These military procurement organizations have a standard estimating
procedure leading up to budgetary approval. Larger projects are initiated by a
Project Director (PD) and move through different levels of project status (E, D, C,
and B), reflecting different levels of approval. When a project has reached the
top level status (A), Treasury Board approval for spending has been obtained.

For each project status the Project Director provides an estimate of the overall
project cost with accuracy increasing through the various status levels. The

Software Cost Estimation24

estimates are based on different levels of specification and have different
accuracy requirements. A class A estimate, which is typically found in contracts,
is expected to achieve an accuracy of ±10%. Once budgetary money has been
approved, it is difficult to revise this figure; the estimate is assumed to be correct.

An individual project within DND can have many phases and many associated
contracts. Although monitoring and re-estimates are provided in all projects, the
method and timing for performing these re-estimates is difficult to generalize
across all projects. Regardless, because the A-level funding is fixed and difficult
to alter, there is strong pressure upon the estimators not to increase cost
estimates during the monitoring and re-estimation of projects. When the project
is over budget, there is no easy mechanism within the current procurement
process by which the PM can reduce functionality or increase the budget of the
system.1

Accurate estimates by DND often require estimates done by contractors or
potential contractors. Contractors can be paid for detailed price estimates or
“price and availability” may be used. The general feeling was that you get what
you pay for and it was worth an investment of money to receive an accurate
estimate from a potential contractor.

Maintenance organizations organize their work around individual change
requests and this affects when and how they estimate. When a change request
is first received, normal practice is to perform an impact analysis on the change
request. The impact analysis includes an estimate of the impact of implementing
the change, including estimating the effect on the software architecture and the
cost of implementing the change. These estimates are usually performed by the
individuals directly involved in implementing the change. The time taken to
perform an impact analysis depends on the complexity of the change being
proposed. For simple changes, the effort involved in the impact analysis could
be as short as a few hours; for complex changes this analysis could stretch into
days or weeks.

The second stage of a maintenance organization’s estimation process is to
determine the releases. All maintenance organizations involved in the study
went through a process of defining a new release, which is essentially an
estimate of what will be released, and when, based on the effort estimates
within the impact analyses and the priorities of each of the change requests.

Re-estimates during development are performed by the different maintenance
organizations, although when and how these re-estimates are performed varies

1A number of approaches to providing a mechanism for altering functionality during development
are being looked at. The first example we encountered was common purpose procurement,
which is being defined by DSS. The objective is to define a problem and then to work with a
contractor to define and implement a solution. Another example that we encountered was the
ARDS R&D project, where the complete functionality is defined early in the project, but the actual
functionality implemented is decided much later in the project. Both of these initiatives are in
preliminary stages, and thus it is too early to attempt to define their relative successes.

Software Cost Estimation 2525

among the organizations. As each re-estimate is performed, the estimated
delivery date and functionality of the proposed release are updated.

3.2.2 Estimation Constraints

An estimation process involves arriving at an estimate that satisfies the
constraints. These constraints vary depending on the timing of the estimate and
the organization performing the estimate, but can include:

• System requirements.

• Delivery date.

• Financial.

• Manpower resources.

• System architecture.

• Software process.

Contractors. When preparing a bid to develop new software, a contracting
organization is usually faced with constraints on system requirements, delivery
date, manpower resources, and software process. Depending on the system
under construction, constraints may be placed upon the architecture.

The constraints on the requirements of the system vary considerably among
projects. Some projects have requirements which are well understood and well
documented within the Request for Proposal (RFP). In these cases, the
constraints on the requirements are well understood by all parties involved.
However, in many cases, requirements are not clearly understood up front, or
are flexible in terms of the actual functionality to be delivered as part of the end
product.

Delivery date and financial resources are constraints that are very firm and have
a large impact upon a contractor’s preparation of a bid for estimation purposes.
There are two reasons that these constraints are imposed upon contractors.
First, the procuring agency has a budget and timetable, which they are under
pressure to meet and which they are not willing to exceed. Second, there will be
competing bids submitted.

Almost all contractors indicated that they knew (or felt they knew) the budget of
the procuring agency while they were preparing the bid. They also considered
this to be vital information for preparing a competitive bid. Although not usually
included within the RFP, contractors would learn (or guess) this information
through informal contacts with the procuring agency. Any estimate was required
to satisfy the financial constraint.

If, while preparing a bid, the estimator arrived at an estimate that exceeded the
financial constraints, it was necessary to alter the bid in some way to satisfy the
constraints. In many organizations, the bidding team would put pressure on the
estimators to reduce their estimates (often while still trying to maintain all the

Software Cost Estimation26

functionality). The more realistic approach is to perform a trade off between
functionality and cost; this trade off is frequently done by contractors while
preparing the bid.

Once the bid has been won, the contractor performs another more detailed
estimate. This estimate is in many ways more realistic because there is less
pressure to satisfy financial constraints; it is usually done by the project
manager to determine how much the system is really going to cost. Although
financial constraints affect the process, the manager usually defines in much
more detail the functionality of the system and the process used to develop the
system. This results in a more accurate estimate and can determine whether the
system may be built for the contracted price.

Re-estimates done by contractors during development involve modifying the
duration, effort, and functionality. As understanding of the tasks increases, more
accurate estimates can be made regarding effort and duration. As the
requirements of the system are better understood, they can be re-estimated and
appropriate modifications made to the effort and duration estimates.

Procuring Agency. From a procuring agency’s perspective, estimates are
performed under a different set of constraints. Project Directors try to balance
the following constraints while getting approval for the project:

• Financial. How much money is the organization willing to put into this
project?

• Calendar. When do I have to show results to keep management
satisfied?

• Requirements. What is the functionality required of the system?

Each of these constraints has a different level of priority, depending on the
particular project.

Once project development begins, control of the project passes from the Project
Director to the Project Manager (PM). At this point budgetary approval has been
received and all previous estimates are considered to be cast in stone. Thus,
there is great pressure on the PM not to change any of the previous estimates.

When it is clear that the original estimates will not be satisfied, PMs must re-
estimate. The PM must decide in what order to sacrifice the financial, calendar,
and requirements constraints. Different PMs have different approaches;
generally they try to maintain the functionality of the system, but let either the
calendar or financial constraints slip. In reality, however, it appeared that if the
original estimates were incorrect, all of the constraints were affected.

Commercial organization. A commercial organization’s overriding concern is
maintaining market share, and this defines its constraints. It is required to
develop products with a sufficient number of features in as short a time period
as possible. The delivery date of the product is the overriding concern, since a
product coming in late may miss a market window. Thus, the main constraint on
commercial developers is the duration of the project. Other factors, such as

Software Cost Estimation 2727

functionality, reliability, and maintainability, can be sacrificed in reasonable
ways to maintain the release date. Commercial organizations involved in the
study usually have rules that allow them to perform these trade-offs in a
deliberate and conscious way.

Maintenance. Maintenance organizations are usually the most constrained in
what they work with. They generally have a work force whose size is fixed
before the maintenance work is estimated, the system architecture is fixed, and
frequently a release date for the new version of the software is fixed. The
estimation process comes down to the maintenance organization estimating
what functionality can be included in the next release given fixed loading, effort,
and duration. The input to this process is the set of change requests, together
with the estimated level of effort for each change request.

The initial estimates performed during the impact analysis are the least affected
by the constraints. These estimates, performed by a technical person, are
concerned primarily with determining the effort required to implement an
individual change request. At this stage, the main constraints on the estimator
are those imposed by the defined architecture of the system and the defined
development process. The estimator must determine the amount of effort
necessary to implement the change. Depending on how well defined the
change request, the estimator may be able to trade off functionality and effort.

The second estimation stage in a maintenance organization is to perform the
estimates regarding the next release. Defining the functionality of the next
release is not “cost estimation” by the strict definition of the term. Maintenance
organizations are stable organizations with a fixed amount of manpower
devoted to the maintenance activity. Thus, their effort and manpower loading
are fixed. As well, maintenance organizations are frequently given a fixed
release date. Thus effort, duration, and loading, are all fixed before the release
is defined. The estimation process reduces to determining which change
requests will be included in which releases. Because most other constraints are
fixed the estimator can make very few trade-offs, other than altering the number
of change requests to include in the next release.

During the course of the maintenance activity, procedures vary among
organizations as to when re-estimates are performed. The most rigorous
approach we encountered was to have the implementor perform a quick re-
estimate of work remaining after each milestone achieved for each change
request. For example, once design of the change request was complete, the
implementor would re-estimate the amount of work required for implementation,
testing, and integration; the inputs for this re-estimate would be a detailed
knowledge of the change to be done and the implications on the software
architecture; output would be effort and time until completion.

Maintenance units also re-estimate the next version release. This re-estimation
is usually done needed, when it becomes clear that the original version
estimate is wrong. The original version estimate can be determined to be wrong
because the change requests on which it was based are found to be wrong, or
because new change requests arrive that are deemed to be sufficiently critical
that they must be included in the release. At this point, the estimator has

Software Cost Estimation28

available not only all the information from the original estimate, but also the re-
estimates for each of the change requests. The estimator has two factors that
can be output: modify the duration by extending the release date to include all
the required change requests; or remove functionality in order to meet the
release date.

3.2.3 Estimation Process

In Section 3.1.3, the process by which estimators arrive at an estimate was
categorized as either model based or analogy based, with these categories
having different levels of formality.

By an overwhelming majority, informal analogy was the most commonly used
estimating method for all types of software and for all organizations. Estimators
used their past projects as a basis for estimating the cost of future projects. This
has two implications for the estimating process:

• The “training” provided to estimators consists of having them work
on projects within the organization for a number of years before they
perform the estimates.

• The estimates are almost always done by the people who will be
responsible for the implementation.

In general, estimators did not refer to any historical database in any significant
way in order to use informal analogy as an estimating tool. The “database”
consisted of their memories or the memories of their colleagues. Estimators
often admitted that some information was available on past projects, but it was
either in a form too difficult to access, or they did not believe accessing the
information would improve the accuracy of the estimate.

Only three organizations made any attempt to formalize the analogy process by
systematically comparing the current project being estimated to past, completed
projects. Two of these had the advantage that they were producing families of
systems, where all members of a particular family were similar in terms of the
architecture and the subsystems from which the system was constructed. This
allowed the estimators to compare the current project with previous systems on
a subsystem by subsystem basis to determine similarities and differences. The
third system was a DND weapon system procurement, and the contractor had
some data gathered from previous similar projects. The analogies were done at
the subsystem level to arrive at costs for the individual subsystems. In this case,
the data regarding previous projects were not nearly as extensive as for the
previous two cases. Since the project is in its early stages it is too soon to
determine the success of the estimate and whether the analogies are
sufficiently close and have been applied in the proper manner.

Formal models were not used extensively for cost estimation. Almost all
estimators had developed a set of “rules-of-thumb," which can be viewed as
informal modeling. The lack of formal models were notable by the exceptions:

Software Cost Estimation 2929

• Two organizations involved in MIS development made extensive use
of formal models based on Function-Point-like measures, either as
the primary estimating tool or as a backup to other estimation
techniques. Both organizations had at least two years of data
available that could be used for calibrating the model.

• One DND procurement organization made extensive use of formal
models to construct estimates of software development for a large
scale embedded system. The estimates were performed for
individual subsystems of the overall software system.

• One organization made minimal use of a very simple model based
on Source Lines of Code (SLOC) to provide a “sanity check” on
estimates developed by other means.

A “non-traditional” use of models was used by DND to estimate the size of
software maintenance units required for major weapons systems. COCOMO
was used to estimate manpower requirements for maintenance centers based
on knowledge of the size of the system and predicted volume of change
requests. This was being done for maintenance units being set up, so the
accuracy of these estimates cannot be determined at this point.

Two of the organizations that made use of formal models on a regular and
ongoing basis shared two characteristics: they recorded detailed historical data
relevant to their cost estimation models; they produced a number of systems
within a limited application domain. These organizations claimed they could
arrive at accurate estimates using these models (within 10% to 25%).

There were two major reasons given for organizations not using formal models.
First, there was a lack of confidence in the ability of a model to outperform an
expert. Managers felt that these models were expensive to implement and
provided little benefit. One perspective was summed up by the comment “if I
know how many lines of code are in the system I don’t need a model to tell me
how much it is going to cost.”

The second problem with the models is the lack of historical data available to
calibrate the model. Proponents of models emphasize the fact that models are
not transferable between organizations and that there is a great deal of effort
required to calibrate a model for a particular organization. Without calibration,
values produced by the model can fluctuate radically. For example, within the
COCOMO model simply selecting different values for the multipliers can vary
the minimum and maximum estimates by 700 times. Without historical data, it is
impossible for an organization to determine the correct values for these
multipliers.

The most difficult estimation problems encountered were those in which an
organization was developing a software system outside its immediate domain of
expertise. In this case, historical data of the organization, even if available, are
not particularly relevant. Undertaking a project in a new application domain is
generally considered to be a high risk by an organization. Although

Software Cost Estimation30

occasionally an organization arrived at an accurate estimate, in most cases the
cost was severely underestimated regardless of the estimation process used.

3.2.4 Personnel involved

There are two opposing views regarding who should perform estimates within
an organization. The first states that estimates should be performed by people
who are directly involved with and have a stake in the implementation of the
system. Thus, the persons responsible for development will estimate the
amount of work required.

A second view is that the estimate should be performed by an independent
authority who can provide a completely unbiased estimate [DeMa-82, Putn-92]
by using historical data on past project developments, to estimate the current
project. The estimator would have no personal stake in the development of the
project and his performance would be based on his ability to develop estimates
that converged quickly to actual costs of a project.

The consensus view which we found was that people involved in the estimation
were the people responsible for implementation. Almost all organizations
surveyed required one of the managers in charge of developing software to
come up with the cost estimates. Software managers would do this either on
their own, if their knowledge was sufficiently broad, or in consultation with
technical people who would be working on the development. For contracting
organizations, we occasionally found the situation where one manager would
perform the estimate while another would do the implementation, but this was
often due to manpower constraints rather than a deliberate effort to have an
estimator who was independent of the implementation process.

The people who performed the estimates were not, in general, provided with
any training in software cost estimation. They were expected to develop the
necessary skills through their work on project development. In many cases,
organizations did not provide any training to their project managers.

There was one exception to the model of the person(s) responsible for
implementation doing the estimating. This was an organization which
depended heavily on formal models for cost estimation purposes. The
organization had available a computer tool that implemented the formal model.
A few of people were trained in the use of the model and the tool and performed
most of the estimates.

3.2.5 Data gathering

It seems obvious that without knowledge of the past, it is impossible to predict
what may happen on future projects. (Even with knowledge of the past, there is
still no guarantee that the future can be predicted.) A corollary is that if an
organization wants to improve its cost estimation process, it must gather
relevant data on previous projects.

Virtually all the organizations surveyed recognized the benefits that could be
gained by gathering historical data to use in estimating. However, very few

Software Cost Estimation 3131

organizations had an effective means of gathering data on their processes and
their projects; even fewer organizations were able to apply the data gathered to
improve their estimation accuracy.

The simplest way to gather data is to have a stable work force so that project
and process data are maintained in the memory of the individuals of the
organization. The individuals can then use this information to estimate costs of
other projects. However, relying on individuals’ imperfect memories is barely
sufficient for small projects; for large projects it is completely inadequate.

To overcome the limitations of relying on individuals’ memories to record project
data it is necessary to have a more rigorous approach to data collection. A few
organizations tried to write a summary report of each project upon completion of
the project. These reports would contain a summary of the product and the
process used, and any “lessons learned” associated with the project. The few
organizations that attempted this type of historical record found that the record
was very infrequently referred to by future project managers, and so there was
little incentive to actually write these records upon completion of the project.

Metrics are quantitative means of recording the history of a project. All
organizations were trying to gather, or recognized the need to gather, metrics
on their development work. Very few organizations had yet found useful
techniques for gathering and applying metric information to cost estimation. All
organizations had some form of data gathering, but in many cases the data
gathered were not in a form useful to estimators.

It is not possible to estimate the cost of future projects unless the cost of
previous projects is known. The easiest way to determine the effort expended
on previous projects is through time sheet data, which records the person-hours
expended on a project. For many organizations, this is the only “metric”
gathered. However, such raw data alone do not necessarily assist the estimator.
Even if this information is gathered, it is often done for financial purposes and is
not used by software managers to estimate the cost of future projects. There are
a number of reasons why these data may not be useful:

• The data are not accurate. If the primary perceived purpose of time
sheets is to monitor the staff, the accuracy of the figures in the time
sheets must be questioned.

• The data are not accessible. Often time sheets are gathered for the
benefit of the financial department rather than to assist estimators.
Thus, they are kept on systems not easily accessible to estimators, or
worse, are simply stored as masses of paper files.

• The data are not broken down in a useful way. The overall cost of a
project has a limited usefulness. What is usually of more interest to
an estimator is how the project was broken down into activities and
the cost of each of these individual activities. Organizations broke
down activities differently for time sheet data collection, but many
gathered time sheet data in very broad categories.

Software Cost Estimation32

Only three organizations we encountered had a metrics program in place that
was sufficiently mature to be an assistance to estimators in trying to project
future projects. These were programs where there was a clearly defined goal in
gathering the metrics and for which sufficient data had been gathered from
previous projects to be useful.

Many other organizations were in some stage of implementing a metrics
program to gather historical data. The level of implementation ranged from
organizations that had a complete metrics plan but did not yet have sufficient
data to make valid projections of future projects, to those organizations
beginning to define their metrics plans. The problems most often cited by these
organizations included:

• Usefulness of metrics. Many organizations were not clear on how to
use the metrics gathered. One had instituted an extensive and
expensive metric gathering program, but as yet had no idea how
these metrics were to be applied to future projects. It seems that
before beginning a metrics program, organizations should ask how
the metrics are to be used, rather than gathering the metrics and then
trying to determine what to do with them.

• How to gather metrics. Depending on which metrics are gathered
and how they are gathered, metrics can be expensive. Organizations
with successful metrics programs had found a straightforward and
inexpensive means of gathering the metrics through the use of
automated tools. These included intelligent use of time sheets,
automatic recording of problem reports and their status, coding
conventions which allow SLOC and change histories to be computed
automatically, etc.

3.2.6 Cost Estimate and Cost Control

One of the purposes of performing a cost estimate is to have a means by which
the development costs can be monitored and controlled. One of the outputs of
the cost estimation process is a development plan with a defined set of tasks. If
the tasks have a well-defined output and cost associated with them, the
progress of a project can be monitored by determining the actual completion
and costs of tasks and comparing this with the estimates.

The monitoring can be performed at a macro or a micro level. At the macro
level, the monitoring agent is concerned with schedule and progress, and
monitors them primarily by reviewing major milestones. This, for example, is the
role assumed by a procurement agency whose primary means of project
monitoring is a review at major milestones, such as the preliminary design
review and critical design review. The reviewing agent typically has sign-off
authority at these reviews, and can measure completion of the project by when
the milestone reviews are completed. This is the role assumed by DND when
monitoring a project required to follow the 2167a standard.

Software Cost Estimation 3333

Monitoring projects by reviewing critical milestones frequently assumes a
waterfall model of development. As the project moves through the waterfall, the
monitoring agent can see the project fall by means of the milestone reviews.

For major projects, the critical reviews by procuring agencies were not always
an adequate means of monitoring the progress of a project. Reviewers cited the
following major problems in monitoring projects by this mean:

• Document to review is too large and incomprehensible. Regardless
of how diligent a reviewer is, a manual review of a large technical
document can never assure that the document is complete and
correct.

• Contractors modify review documents without proper configuration
control. Therefore, the final system does not correspond to the
reviewers understanding of what was to be delivered.

Two other views could be discussed here: reviewer should review the process
not the product (Watts Humphrey); and the reviewer should review the only the
functionality not the design or code.

Contractors involved in large development projects, consistently complained to
us about the difficulty in getting a proper review from the reviewing agency.
They said that it was difficult to obtain review meetings, too many people were
involved in reviews (leading to too long a review period with too many
contradictory comments), and staff turnover at the reviewing agency led to
reviewers who were unfamiliar with the project.

At the micro level, monitoring is performed by a manager to determine the day-
to-day progress of the project. One of the outputs of the cost estimation process
is a detailed WBS identifying the activities required to complete project
development and the effort, loading, and duration of each task. The size of
activities defined within the WBS is dependent on the level of detail of the
estimate and size of the project. Smaller projects would normally deal with work
activities of, at most, a few man-weeks. Large projects would deal with activities
of up to a few man-months.

All companies we talked to constructed a WBS during the early cost estimates.
However, early estimates (e.g., during bid preparation) would not necessarily
have the level of detail in their WBS that later estimates would have. For large
systems, the level of detail in the WBS regarding software may be minimal, with
a single WBS item called “software," with no further indication of the software
subsystems required or even what was included within the item “software” (e.g.,
did it include documentation, training, etc.)

Most organizations would use the WBS as an input to the cost estimation
process, to estimate the cost of each activity. The sum of the individual activity
costs gives the overall project cost. A couple of exceptions to the above were
noted, whereby an overall project cost would be determined, without
constructing a WBS (e.g., using parametric models or the costs of previous
projects). Given the overall cost, the different WBS items were then identified

Software Cost Estimation34

and the costs allocated to each WBS activity. If estimates were done in this
fashion, there tended to be a relatively standard formula for breaking the cost
down into WBS activities (e.g., requirements analysis - x%; coding - y%, etc.).

For management (or a procuring agency) to use cost estimates as a tool for
monitoring and controlling costs it is necessary to have a mechanism in place
monitoring a project and to be able to maintain profiles of “actual costs” versus
“estimated costs” for the project. Some general observations regarding how
organizations monitor costs and create profiles of estimated and actual costs
are

• Organizations that developed software on a contract basis almost
always knew the exact value of their development costs and how
much they made or lost on each contract.

• Commercial organizations were generally not as concerned with
overall cost. Customer demand and market forces required them to
deliver working software systems regardless of the cost. Although
they were interested in what the cost was and in minimizing it, they
were much more concerned with time-to-market than final
development cost.

• For software development work done internally, there was a split
between those groups who knew the precise cost of a development
project and those who did not have sufficient data to determine
software development costs.

At a more detailed level, it is necessary to determine during the course of a
project how the project is progressing relative to the original estimates. This
requires being able to track the progress relative to the original WBS, and to re-
estimate the cost-to-completion as required.

Tracking progress requires being able to determine the completion of the WBS
activities. We asked the participants in the study how they measured
“completion” and received a number of different answers. Most organizations
conceded that they have difficulty in measuring completion. Certain activities
can be easily measured, e.g., if a set of integration tests has been correctly
defined, then completion of integration can be measured by the number of tests
completed. Means used to measure completion include the following:

• Inspections and reviews. Each activity in the WBS should have a set
of well defined outputs. An activity can be said to be completed when
all the outputs of the activity have been inspected and approved by
the inspection team. For major milestones, there may also be a
review by the procuring agency (e.g., for the CDR).

Inspections and reviews are often not adequate in and of themselves
to determine activity completion. Often there is insufficient time to
perform complete inspections of every activity output. If the output is
extremely long or complex, there will inevitably be errors and
omissions regardless of how closely it is inspected. In such cases, to

Software Cost Estimation 3535

determine whether an activity has really completed when it said it
did, it is necessary to track all faults and problems that result from the
outputs of the activity being incorrect. Very few organizations perform
such fault analysis.

• Blind faith. Most organizations used the blind faith method for
determining when an activity was complete. Whenever the person(s)
performing the activity claimed it was complete, it was assumed to be
complete. Within these organizations, the later activities of the
development cycle seem to be severely underestimated.

• Recording problem reports filed on the output of each activity. In
order to measure whether a WBS activity has really been completed,
it is necessary to have a well-defined output for each activity and a
means of determining whether the output is complete and correct.
One means of measuring the completeness and correctness of the
output of an activity is to measure how many problem reports
generated during development can be traced back to a specific WBS
activity. If there are a significant number of problem reports related to
an activity, it can be assumed that the activity was not correctly
completed at the time it was declared completed. All the
organizations surveyed had some means of determining filing
problem reports during development. Only one organization,
however, actually traced each problem report back to its original
cause and thus had a measure of the error rate for each activity.

Software Cost Estimation36

Software Cost Estimation 3737

4 . Problems with the Cost Estimation Process

Is there a problem with generating accurate software cost estimates and, if so,
what is the cause of the problem?

All organizations agreed that there was a problem with software cost estimates,
although the degree and nature of the problem varied among the organizations.
Unfortunately, because of the nature of the data we managed to collect, it is not
possible to give statistics on the level of accuracy of estimates.

A few organizations claimed to consistently achieve estimates within a 10%
accuracy, although without hard data we cannot verify that the actual costs were
this accurate relative to the initial costs, nor can we verify that the system
produced satisfied all the requirements and met the customers' expectations.
Most organizations did not claim that they could estimate within a 10%
accuracy, particularly in projects outside of the application domains in which
they had extensive experience. Most of the organizations could identify at least
one significantly underestimated project in their past and a few organizations
had consistent problems in their estimation accuracies.

The situation may or may not be worse than in other fields of engineering. For
example, comparisons of hardware and software projects within the NRC IRAP
database indicated that software development projects are not the only ones
that encounter difficulties in cost estimation [Vigd-94]. All organizations however
felt that something better was necessary and possible.

What factors make software cost estimation difficult? There were situations
where we found a high level of accuracy in cost estimation; many of these
situations were identified by the following characteristics:

• The users are experienced in the system, know what they want, and
can express what they want.

• The requirements are clear, precise, correct, and complete.
• The project duration is short .
• The manpower loading is small.
• The people doing the estimation are experienced in the application

domain and have developed similar systems.
• The development environment and development process are familiar

to all people involved.
• Staff turnover is low both among the developers and the users.
• No unfamiliar software or hardware from outside suppliers is to be

integrated with the final product.

A project satisfying the above characteristics frequently resulted in accurate cost
estimates. However, most of the projects did not satisfy the above conditions
and therefore the estimates produced were not accurate. The characteristics
needed for accurate estimates can be reversed in order to enumerate problems
leading to inaccurate estimates:

• Problems with the requirements.

Software Cost Estimation38

• Issues in maintenance.
• Procurement process.
• System size.
• Software process and process maturity.
• Monitoring progress of the project.
• Lack of historical data.
• Lack of application domain expertise.
• Embedded software.

These issues are discussed in the following sections.

4 .1 Problems with Requirements

Almost universally and without exception, organizations blamed problems with
the requirements as a major reason why cost estimates were inaccurate. This
was true regardless of whether we talked to development or maintenance
organizations, large or small organizations, contractors or procurement
organizations, MIS or real time organizations. The problems cited were
numerous: incomplete, ambiguous, inconsistent, incorrect, incomprehensible.

Why is it so difficult to write correct, clear, and complete requirements? There is
no definitive answer to this problem. We are not the first to recognize this
problem, nor will we be the last. Through discussions with the various
organizations involved in software development, we have identified the
following as some of the reasons for a lack of adequate requirements.

Users do not understand their requirements during the early stages of the
project. Software projects are often undertaken when there is a recognition that
a problem exists but no clear idea of the real problem, or the solution to the
problem. Yet at this early stage of problem recognition, someone is expected to
be able to write a requirements specification at a sufficiently detailed level such
that an accurate cost estimate can be made. It is clearly not possible. Estimates
can be made at this stage, but it must be recognized that they are inherently
inaccurate.

The problem of users not understanding the requirements existed for all types of
systems and all types of developments. For new development projects, users
would request systems (and quotes) before there was a complete
understanding of the problem or the solution. For maintenance organizations,
estimators were expected to cost out features to be added to the system before
the features had been fully defined. Both cases result in highly inaccurate
estimates.

Cost estimates can be made without a clear understanding of the requirements
of the system being built; it must be accepted that these estimates have a very
high likelihood of error.

Requirements creep. As projects progress and the knowledge of the problem
increases, it seems inevitable that users (and developers) request more and
more features and changes to be included in the product. Thus, over the
development of the project, new features work their way into the requirements,

Software Cost Estimation 3939

leading to “requirements creep” (or, as one participant described it,
“requirements gallop”). New feature requests come from many sources and for
many reasons, but the problem seems to be universal.

Correct and complete requirements for complex systems are impossible to
achieve. A fact that must be accepted is that a complete statement of the
requirements cannot be defined before development begins [Hump-89]. This
has nothing to do with the competence of the users or the developers but rather
is inherent in the nature of complex computer system applications. Unless the
system being developed is almost identical to a previously developed system,
the requirements will invariably be wrong and/or incomplete. As a project
evolves, users and developers gain a better understanding of the problem and
of the solutions. As people gain a better understanding of the problem being
solved the requirements evolve.

One frequent assumption is that the requirements will be firm before
development begins. Anyone working under this assumption will meet serious
problems when trying to estimate software costs accurately. Since the
requirements are probably wrong or incomplete, it is unlikely that the estimates
based on those requirements will be accurate.

If the requirements are included as part of the RFP put out by a procurement
agency and a contractor is expected to submit a firm bid based on those
requirements, a frequent result later in the development stages is confrontation
between the contractor and the agency as they argue over the meaning of each
requirement and the cost associated with the changing requirements.

Requirements written by people who do not know how to write requirements.
Both DND and some of the larger development organizations said that they ran
into problems with requirements because they did not know how to write
requirements.

Long development time, leading to requirements that are obsolete before the
system is delivered. The rate of change in technology is so fast that any
attempts to predict what the technology will be in a few years are doomed to
failure. As the technology changes, so do the range of solutions to problems,
and the users’ expectations of the solutions. Projects with a long time between
initiation and expected delivery suffer in that the solution is usually obsolete by
the time it is delivered. The customer is dissatisfied because the product does
not satisfy the new requirements.

Large staff turnover for end users, resulting in changing requirements as new
people arrive. Developing software systems requires a consistent users’ base
throughout the development cycle. If the users’ base changes too frequently,
requirements continually change, and it is difficult for developers to obtain
consistent answers and comments from the end users. This problem was
mentioned by a number of contractors, particularly those who are involved with
DND, where military rotation may require multiple turnover of personnel during
the course of a project.

Software Cost Estimation40

4 .2 Maintenance organizations

Little attention has been paid to software maintenance costs despite the fact
that, over the life of the product, maintenance costs may be significantly higher
than development costs. Despite the fact that maintenance is expensive, little or
no attention is paid to life cycle costing of software. In only a single organization
did we find that maintenance costs were considered during development, with
conscious trade offs made between development costs and maintenance costs.

There are factors that make cost estimation an easier task for maintenance
organizations, including:

• Maintenance organizations are concerned with software systems for
which the software architecture is well defined (though not
necessarily well understood) and does not change significantly.
Since design of the architecture and subsequent modifications to it
are not significant cost factors, a major unknown variable is fixed.
Assuming that this architecture is sufficiently well documented and
well understood by the maintenance team allows the resulting
estimates to be made much more accurately.

• Estimates are done on the basis of change requests. Because an
individual change request is small relative to the entire system, it is
easier to get an accurate estimate for an individual request. The cost
estimate for the release can then be computed as a function of the
cost of the individual change requests.

• Manpower resources and calendar release date are frequently fixed
constraints, reducing the number of variables to be considered
during the estimation process.

There are problems that a maintenance organization can inherit from the
development organization. One issue is whether the development organization
has designed the system to be maintainable. Issues affecting maintainability
include software design, documentation, coding standards, etc. Many of these
issues require a conscious decision by the development team and a cost in
implementing them. If pressure is on a development organization to satisfy cost
and/or release date constraints, there is a tendency to ignore issues relating to
maintainability.

Another development issue that affects maintenance organizations is the level
of completion of the software when the development team declares it to be
finished. If the pressure to satisfy cost and calendar constraints is intense, a
development organization may declare an incomplete piece of software as
“done” in order to claim that cost constraints have been satisfied, even though
the software contains major deficiencies. The maintenance organization then
inherits an incomplete piece of software, and their first “maintenance” task is to
finish the software.

Both of the above stated problems are amplified in the DND environment where
the development organization and its budget are completely separate from the

Software Cost Estimation 4141

maintenance organization and its budget. The project manager’s
responsibilities end when the completed system is delivered; he/she has no
stake in the maintenance effort. Thus, there is no incentive to guarantee that an
easily maintainable piece of software is delivered to the maintenance group.
Rather, the major incentive is to complete the project on time and under budget.

The major problem encountered by maintenance organizations when they try to
arrive at accurate software estimates is the issue of requirements creep.
Maintenance organizations are frequently calendar driven. Given a set of
change requests and a delivery date, the organization estimates which change
requests can be completed by the scheduled release date. However, during the
course of the maintenance work there is a great temptation to add new change
requests to the scheduled release without modifying the corresponding release
date. This causes a great deal of frustration as the users do not get the
promised changes, and developers are required to work to impossible
schedules trying to meet the scheduled release as originally planned while
including functionality not anticipated when the original schedule was created.

The second problem with maintenance estimating is the large amount of
overhead that is often associated with making a relatively small change.
Typically, each change request is allocated to a designer to perform an impact
analysis, which includes a cost estimate and a description of the impact on the
design of the system. For minor changes, the effort to actually perform the
estimate is most of the cost of designing and coding the change. If the designer
has opened the source code and determined how the change is to be
implemented in order to perform the estimate, most of the work of designing and
coding is complete before it has been determined if or when the change is to be
implemented.

4 .3 The Procurement Process

In an “ideal” software costing process, a set of system requirements is input to
the process and a cost estimate is output. In reality, this is far from what actually
occurs. In many cases, constraints other than system requirements drive the
cost estimation process and distort this process. Nowhere is this distortion more
evident than in the procurement process used by DND. The effects of the
procurement process are felt by both the procuring agency, and the contractor.

Within the DND, a project requires approval at different project status (D-capital,
C-capital, B-capital, A-capital). Once a project has attained A-capital status,
authority for spending money has been obtained [Prog500]. It is difficult to alter
the associated cost estimate for which spending authority has been received.
This has a number of implications for the procuring agency.

First, the estimates associated with A-capital status are generally established
before the complete requirements of the system are known and almost certainly
before any architectural design has been performed. This forces PDs to create
accurate cost estimates on a minimum amount of information. This results in
estimates that can be modified only with great difficulty, but that are based on
very preliminary information.

Software Cost Estimation42

Second, the Program Managers (PM) are given these estimates as “the law”
and are under great pressure to deliver the product within the estimated time
and under the estimated budget. Because the PM is under such budgetary
pressure, and because his responsibilities end upon product delivery, there is
no incentive for the PM to worry about maintenance costs. Since maintenance
costs of major systems can be much greater than the original procurement
costs, it can be very cost effective to increase the cost of the original
development cycle if this results in more efficient maintenance. The current
DND procurement process provides no incentives for PMs to make such trade
offs. It is interesting to note that, of all the surveyed organizations, only one
made a conscious budgetary decision as to whether development costs should
be traded off for reduced maintenance costs.

From the perspective of the contractor, the procurement process forces the
contractor to make cost estimates that are not necessarily computed as a
function of the requirements of the system to be developed. The procuring
agency has a budget for the procurement; if a contractor wishes to win a
contract the bid must be within this budget. Although the budgets are not
normally published as part of the RFP, contractors to whom we talked
considered it very important to have a good idea of what those budgets are.
This information is generally determined through informal contacts between the
procuring agency and the contractor. Once the budget of the procuring agency
is known (or guessed), the contractor can then construct an estimate within this
budget.

Most contractors had a two-stage estimation process: the pre- and post-contract
estimates. The pre-contract estimate was used as a basis for the formal bid for
the contract. The strategy used by most companies was generally a “bid to win”
approach. Based on the Statement of Work (SOW), the system requirements,
and the budget of the procuring agency, a company would use some method to
arrive at a price for the work. Such bids were often prepared in a rather hurried
manner (due to the limited time to prepare the bid) from requirements which
were often vague, contradictory, or wrong, with little or no time to prepare a
proper architectural design. To win the bid, the company is forced to come in as
low as possible. This frequently involves management putting pressure on the
engineering department to lower level of effort estimates for the various
activities.1

Once a company is awarded the contract, it frequently performs another more
detailed estimate. This is the “real” estimate in that the post-contract estimate is
what the company believes it is really going to cost to build the system. If the
“real” estimate is higher than the “bid to win” estimate, the problem for the
company can be addressed in a number of ways:

1Of all the companies we talked to, only one claimed that the bidding team must accept the effort
estimates of the engineering department “as is” when preparing the bid. All other companies
stated that pressure was put on engineering to reduce estimates of effort.

Software Cost Estimation 4343

• Negotiate for more money from the procuring agency. This is usually
done later by trying to suggest enhancements or finding problems
with the requirements. Contractors realize that procuring agencies
generally have about a 10% “contingency fund” and will often try to
increase the actual price by at least this amount for any contract.

• Reduce the functionality of the system. Requirements issued as part
of the RFP often have enough vagueness and inconsistencies to
allow the contractor to modify the final deliverable while still
satisfying the SOW.

• Accept a loss on the job. This is a last resort for the company; a
company cannot accept a loss on many jobs.

4 .4 System Size

A number of the projects we investigated were large-scale systems, involving
more than four years duration and more than 100 person-years of effort. Without
exception, the costs of all of these projects were seriously underestimated.
There were numerous reasons why large projects were consistently found to be
exceptionally high risk.

First, there is the sheer complexity of large-scale systems. As reflected in most
of the parametric cost models, complexity does not increase linearly with lines
of code, but rather exponentially [Boeh-81, Broo-87]. There is no way to
eliminate this complexity and it must be accepted as one of the risks of
developing large-scale systems.

The larger a system and the further into the future its delivery, the more difficult it
is to correctly and completely specify all the requirements. As discussed in
Section 4.insufficient requirements is a major reason for cost overruns in all
systems. These cost overruns seem to be amplified for large systems. As one
would expect, the more complex the system, the more complex the
requirements, the more likely that the requirements cannot be stated correctly
up front. Another reason for the changing requirements is the length of time until
delivery. The longer the duration between initial requirements and delivery, the
more likely that there will be changes to the initial requirements. This can occur
due to changing user expectations, changes to the environment in which the
system is to be installed, or new personnel with different views on what the
requirements should be, becoming involved.

A long project duration also means that technology advances may outstrip the
initial requirements. We encountered more than one large project in which
expensive hardware upgrades were required to modernize the system before
the system had even been delivered.

4 .5 The Software Process and Process Maturity

An organization cannot hope to achieve accurate cost estimates if it has no
clear idea of what it is doing and how it is doing it. A small, knowledgeable,

Software Cost Estimation44

experienced, and stable development team with competent management has
undoubtedly developed a working software process and, even if it is not
formalized, written down, and monitored, this process will be followed by the
team.

For most of the larger development organizations we interviewed, the state of
the software process was bleak. It is clear that a major “software engineering
awareness program” is needed. Some of the companies are already embarking
on the improvement process, likely driven not by the recognition of the problem
but by the fear that certification will soon be demanded by customers.
Regardless of the cause for this movement it should in fact be encouraged and
helped along. Software development organizations should be made aware of
the value of collecting historical data, formalizing the development process, and
trying to assess that process periodically.

All of the organizations with whom we talked (with one exception) were aware
of SEI and the maturity model. Many had gone through some type of
assessment. Almost all could be categorized as “level 1” organizations.

Why are so many of the organizations stuck with an ineffective software
process? One of the major reasons is simply the difficulty in putting in place an
effective software process. It is relatively easy to write down an effective
software process. It is much more difficult to achieve the level of commitment
and experience within management and staff that translates a plan into an
effective working process.

For DND and large DND contractors, the lack of process maturity was very
noticeable. Within DND, there are two problems with trying to implement an
effective software process. First, any individual branch of DND only rarely
makes major acquisitions. The result is that within DND the knowledge and
experience acquired in the previous acquisition has often vanished by the time
the branch is due for its next acquisition. There does not appear to be an
effective mechanism for translating knowledge and experience between major
projects, particularly when those projects are controlled by different branches of
DND.

A second reason DND has problems maintaining experience for major projects
is the policy of military rotation. The military personnel involved in multiyear
projects may go through a number of rotations, resulting in three or four people
being rotated through each position within the Project Management Office
(PMO). Each time a person is rotated out, the experience of that person is lost.
As the experience is lost, so too is the possibility of implementing a mature
software process.

From the perspective of the contractor, we also found little collective experience
and maturity in dealing with very large, complex systems. Few companies have
built up the extensive expertise required to implement a mature and effective
software process.

Another problem related to software process that impacts cost estimation is the
use of CASE tools. CASE tools can be effectively used within a software

Software Cost Estimation 4545

process, and their effect on development costs can be factored into the
estimate. The problem we observed was with the introduction of new CASE
tools into an organization. Estimators included training and application of the
tool when generating an estimate. The problems were caused by

• The training required by the developers is underestimated.

• The effectiveness of the tool in increasing productivity is not as great
as expected.

• The tool does not work as expected.

These factors combine to make the cost of introducing the tool into the
organization much higher than expected.

4.6 Monitoring Progress of the Project

Software costs cannot be controlled unless the software costs and the
development process are monitored and progress is measured. There are at
least two different perspectives to monitoring a project. From a project
manager’s perspective, there is a need to monitor the day-to-day progress and
costs of a project. From a procurement agency’s perspective, there is a need to
monitor progress in order to have confidence that the delivered system will be
on time and satisfy requirements.

From a project manager’s perspective, there was a notable lack of techniques
for objectively measuring the level of completeness of a project. Testing a
particular software item against a well-defined test suite can be done
objectively. Most of the tasks of software development are not quite so concrete.
Most organizations would declare a task complete when the person responsible
for the task declared it to be complete. Some would augment this by having
selected reviews of material to try to verify that the item really was complete
when it was declared to be. However, most managers agreed that this was not
sufficient and that it was extremely difficult to determine the actual status of a
project.

Milestone reviews and technical and progress reviews are the typical
techniques used by procurement agencies to gain visibility into and control
over the development process. These agencies often complained that
milestone reviews are necessary, but are not by themselves sufficient to monitor
progress on a project. The complaints included:

• The contractor changed items without the proper controls because of
a lack of configuration management; there were frequent changes
required to items that had previously been reviewed but were later
found to be inadequate.

• Documents to be reviewed were too large and complex to allow real
confidence that the reviewer could identify all problems.

Software Cost Estimation46

• Items reviewed and signed off required frequent changes due to
changing requirements.

There are a number of open issues regarding effective monitoring of contractors
by procurement agencies:

• Data access. What are the contractor data to which the procuring
agency should have access? The data available to the agency
should have the maximum amount of relevance to the procuring
agency, while imposing the minimum cost and inconvenience to the
contractor.

• Tool use by contractor. Does tool use by the contractor help or hinder
the procuring agency in monitoring the contractor? For example, if a
contractor uses a particular CASE tool, does the procuring agency
require access to and training with the tool in order to effectively
monitor the project? If a reviewer is using the same tools as the
contractor, will the same mistakes be made?

• Tool use by reviewer. What tools can be used by different reviewers
(e.g., procurement agency, IV&V) to make their reviews easier and
more effective.

4 .7 Lack of Historical Data

An organization needs information about previous projects to estimate
accurately what will happen in its next development project. For small
organizations working with stable work forces and smaller projects, this may be
achievable by relying on the knowledge and expertise of key people in the
organization, although there is an inherent danger to this approach if these key
people became unavailable. For larger organizations where the projects are
more complex, the knowledge distributed among larger numbers of people, and
the data may be years old and voluminous, relying on people’s memories is not
sufficient.

Most of the organizations we talked to had a serious lack of data about past
projects. Many organizations could not easily put their hands on such basic
data as the initial cost estimates or the actual costs, or in some cases, even the
cost of the current project. If an organization does not know its initial cost
estimates or its actual costs it is difficult to imagine that it can ever improve its
cost estimation accuracy. Even being able to perform a systematic analysis by
analogy cannot be done without a detailed record of past projects.

4 . 8 Lack of Application Domain Expertise

There was a very direct correlation between the application domain knowledge
of an organization and its ability to accurately estimate software development
costs. It was obvious from our study that organizations that developed similar
systems over and over were generally able to arrive at accurate cost estimates.
The farther a system was from the application domain knowledge of the

Software Cost Estimation 4747

organization, the less accurate the estimates tended to be. Many of the
contractors gave anecdotal evidence of a contract undertaken in a new
application domain area on which they severely underestimated the work
required.

4 . 9 Software Within a Larger System

A number of the projects were not simply software projects, but rather were
larger systems in which a significant software element was embedded. A
number of problems were noted in trying to estimate the cost of the software for
these systems.

At the point at which the estimates were being made, there was frequently little
or no architectural or system design Thus, it was not clear even how much
software was to be included within the delivered system. Estimates were
performed for the system as a whole with only minimal information as to the
estimated cost of the software. Frequently, it was only after development was
well underway (and budgets had been fixed) that all of the software items were
identified and detailed cost estimates created for each of these items.

If software was identified as an item within the original estimate, it was not
always clear what was included within this item. Often, software modules were
not properly identified during the initial estimates, and it was not clear whether
the line item “software” included training, documentation, etc.

Software Cost Estimation48

Software Cost Estimation 4949

5 . Conclusions and Recommendations

There is no silver bullet. It is not possible to detail a cookbook solution to
accurate software cost estimation. Estimation accuracy can be improved for the
organizations that consistently or occasionally generate bad estimates; but the
methods are not simple.

This chapter is divided into three sections. Section 5.briefly lists the conclusions
of the study. Section5.2 contains recommendations for all organizations. Since
organizations are so diverse, these recommendations are general in nature; it is
not possible to provide specific recommendations that apply to all
organizations. Section5.3gives more specific recommendations, which are
applicable to DND procurement and maintenance of software.

5 .1 Conclusions

Experience and informal analogy are the primary cost estimation
methods. The vast majority of organizations relied on individuals’ expertise
and experience to arrive at cost estimates. Managers received little or no
training in estimation. Estimators were expected to arrive at accurate estimates
by relying on their knowledge of the software process used within the
organization and recollections of their previous projects

Few organizations have sufficient historical data to be used
meaningfully for cost estimation. With a few notable exceptions,
organizations did not have information regarding past projects recorded in a
manner that was useful and accessible to estimators. However, a number of
organizations had recently implemented programs to gather and store these
data, but it will be a few years before the impact of the data gathering on
estimation accuracy can be determined.

Estimation cannot be improved without a well-defined and well-
controlled software process. Organizations without a defined and
controlled software process cannot achieve consistency in their software
development. Without consistency in software development, consistently
accurate estimates are not possible. Using the SEI CMM as a measure or
software process consistency, a clear majority of the surveyed organizations
were level 1 maturity.

Requirements creep is a major reason for cost overruns. It can be
minimized, but cannot be eliminated. Changing requirements was the
reason most often cited for cost overruns. Two conclusions are drawn. First, if
cost estimates are to be accurate, the initial software requirements must be as
complete and correct as possible. Second, for complex systems, it is impossible
to generate requirements that are 100% complete and correct. Thus, one must
accept the fact that complete accuracy for estimates of complex systems is not
possible.

The impact of modifications to the software process are
underestimated. If an organization modifies its software process in any way,

Software Cost Estimation50

the cost of software development, at least in the short term, will increase. The
amount of the increase is severely underestimated. The changes to software
process we observed were the introduction of new tools into the development
process and the use of 2167a to an organization that had not applied it
previously.

The DND procurement process forces DND project managers and
contractors into a situation where accurate cost estimates are
difficult. A contractor who wishes to win a contract is often forced into the
situation of submitting a bid lower than the initial estimated cost of building the
system. During development, the contractor then looks for ways to extract more
money from DND or to cut corners in areas of functionality, testing, reliability,
etc. From a DND Project Manager’s perspective, when budget costs start
escalating, the pressure to deliver a system under budget is an incentive to
accept an inferior product and to let the maintenance group worry about fixing it.

Parametric cost estimation models are rarely used as the primary
cost estimation technique. With one exception, parametric models were not
used as a primary means of cost estimation. A few organizations used
parametric models as “sanity checks” on estimates. DND also used parametric
models to arrive at gross estimates of manpower requirements for new
maintenance centers.

Life cycle costing is ineffective in DND. A significant percentage of the
cost of any major project is the maintenance of the system after delivery. DND
does not appear to have any means of reliably estimating these costs or of
trading off maintenance and development costs.

5 .2 General Recommendations

The solution to improving estimation accuracy is not a high technology issue.
No existing fancy tools, models, or methodologies can be brought to bear on
the problem that by themselves, will have a significant impact. Rather, the
problem is one of applying simple technologies, an effective software
development process, and proper management and control to achieve a
consistency in development, which allows more accurate cost estimation.
Solutions to the cost estimation problem must address the issues in all of these
areas or they will not be effective.

The major recommendations of this report are intended to provide mechanisms
and techniques for a better understanding and control of software costs.
Primarily they are intended to point out how software systems can be installed
without any major surprises as to the final cost, although an overall reduction in
software costs will also be a likely result.

The cost estimation problem varies considerably among organizations that do
their estimation under very different constraints. The recommendations are
general in nature and must be tailored to the individual organizations needs,
depending on whether they are maintenance groups, procurement
organizations, commercial developers, etc.

Software Cost Estimation 5151

The following recommendations are based on two assumptions:

• There is significant room for improvement in the accuracy of cost
estimates for software intensive systems.

• Although there is room to improve the level of accuracy of software
cost estimates, there will continue to be a large margin of error;
organizations must adapt to accept this fact.

5.2.1 Software Process Improvements

Improving software cost estimation accuracy must begin with a solid and
effective software development process. An effective software process can be
used to increase accuracy in cost estimation in a number of ways.

•Formalizing when and how cost estimates and re-estimates are performed. A
critical aspect to estimation accuracy is to have a well-defined process that
defines when and how cost estimates are performed. This fact is well
recognized by process improvement organizations such as SEI, which require
an organization to have a formal technique for cost estimation in place before
moving beyond maturity level 1 [Paul-93]. The software process should define

• When cost estimates and re-estimates are performed.

• The process used to perform the estimates, including who performs
the estimate and who has sign off authority on the estimate.

• What specifically is estimated, e.g., effort, loading, software size, etc.

•Permit effective monitoring and control of software costs. No cost estimate will
be accurate without effective monitoring and control of software costs. If there is
no effective technique for monitoring and controlling the project, there is an
increased risk of the costs of the project escalating without management being
able to recognize or identify the problem at a time when action can be taken to
minimize the effect. Monitoring and control of a project must satisfy the following
criteria.

• Measured to a proper level of granularity. Managers must be able to
monitor a project at a sufficiently detailed level so that a complete
understanding of the process and the product can be attained. This
could involve for example, measuring each activity of a Work
Breakdown Structure or measuring the process associated with
every Software Change Request. Care must be taken, however, that
data gathered is not so detailed that the expense of gathering the
data impacts accuracy and the ability to analyze the data.

• Objective measure of completeness. Each WBS work item should
have clearly identified output items and an objective means of
determining the completeness of these items.

•Analyzing problems reported during the development process. Every reported
problem with either a product or a process should be traced back to its cause.

Software Cost Estimation52

This requires determining which Work Breakdown Structure activity, and which
work item of that activity, was the cause of the problem. This is a prerequisite to
determining whether a particular activity within the organization is a cause of
the problem.

•Control and minimize the effects of requirements creep. As stated in Section
4.3 requirements creep was the single most often cited cause of inaccurate cost
estimates. Any attempt to improve cost estimation must address this problem.
Two approaches can be taken to the problem: make sure that the requirements
are correct and immutable before development begins; change the
development process to accept the fact that the initial requirements are wrong.

Much has been written over the years about the need for a thorough and
complete requirements analysis and specification. This has been well
documented and well argued, and we agree with it. What is perhaps less well
understood is that regardless of the dedication and competence of the people
involved, the initial requirements analysis inevitably produces a requirements
definition that is incomplete and ambiguous and will be changed significantly
throughout development. It is in fact not usually possible to get the requirements
correct the first time. This has a number of implications upon how cost
estimation is performed and interpreted as part of the software process.

• The development process must be something other than waterfall in
order to allow for significant modification of the requirements during
development.

• Management must recognize that cost estimates based on the initial
requirements are wrong because the requirements are wrong. This
means there must be a provision within the software process to re-
estimate costs as requirements are changed. The re-estimation
depends on the constraints under which the system is being
developed. For example, if money is the main constraint, then the
estimate of the functionality of the system must be modified to satisfy
the cost constraints; if functionality must be maintained, then cost
must be altered in order to satisfy the functionality. The worst solution
(and one sometimes adopted) is to assume that both functionality
and cost requirements are fixed; this results in irrational decisions
being taken, such as reducing testing time when a project is over
budget and trying to rationalize that this will have no effect on the
product reliability.

5.2.2 Maintaining a Historical Database

Consistently accurate software cost estimates require that an organization have
an accurate and objective record of previous development projects. For many
organizations, only a minimal record keeping is undertaken, and often the data
recorded is not in a form or of a type useful to software cost estimators. In the
majority of cases, the only useful history maintained on projects is that which
individuals can remember. For large projects and large organizations, relying
on individuals’ memories as a historical database is insufficient.

Software Cost Estimation 5353

Organizations should maintain a database, which can be used as a basis for
estimating costs of future projects. The database should include both project
metrics (which describe the features of the system built) and process metrics,
which describe features of the process used to build the system.

It is impossible to identify specific metrics that should be recorded and used by
every organization; each organization and each situation are unique. However,
metrics recorded for the purpose of improving cost estimation should be able to
satisfy the following:

• Basic characteristics of the development process. To understand the
context of the data gathered and to know whether they are applicable
to other projects, the basic characteristics of the process must be
recorded. This includes, for example, number of people involved in
development, the development methodology used, and
organizational structure.

• Actual cost of the system development. Unless the actual cost of the
system development is known, it is impossible to determine the
accuracy of the estimates.

• All estimates and re-estimates are recorded. To determine the
accuracy of estimates, and the rate of convergence of the estimates
to the actual cost, a complete record of all estimates must be
maintained.

• The characteristics of the completed product. This includes the size
measured in some suitable units (e.g., Source Lines of Code,
Function Points), a description of the functionality of the system,
classification of type of software, and any other information that
characterizes the system. This information is required if any rigorous
estimation by analogy is to be performed or if any costing models are
to be developed.

Almost all organizations recorded some types of information about a project;
many, however, were not able to apply this recorded information to cost
estimation of future projects. To apply the information is a useful way, the
following conditions must be met:

• The information must be stored so that it is readily available to an
estimator. Information stored in raw paper files or not properly
indexed will not be helpful.

• The information must be recorded at a level of detail useful to the
estimator. Actual costs recorded for the project as a whole are of
minimal use to an estimator who is performing cost estimates based
on WBS activities or on the basis of software modules. The
information recorded should be broken down in whichever of the
following ways is most useful: WBS activity, module, or feature.
Recording the cost data at the level of the WBS activity and module is
critical, since this is how many of the cost estimates are performed.

Software Cost Estimation54

For maintenance organizations, where estimation is performed on
the basis of individual features, the data must be recorded on an
individual feature basis.

5.2.3 Project Management

If an organization has not instituted a proper project management discipline,
cost estimates, regardless of how carefully they have been constructed, may
have little validity. Project managers must be aware at all times of the current
costs of a project, cost overruns incurred, problems that have arisen as soon as
they are identifiable, estimated cost to completion, and level of completion of the
project. Without detailed and objective means of making all these project
characteristics visible to the project manager, it is unlikely that accurate
estimates can ever be made.

The key factors that a manager must be able to monitor are the following:

• Percentage completion. A manager requires an objective measure of
the level of completion of a project. Subjective measure, such as
“90% of the coding is done for module X”, are useless. Rather, there
must be a clear and objective method for determining when a
particular activity has completed. This could be, for example, a
successful inspection by an inspection team or a successful test
completed.

• Productivity. Productivity refers to the rate of progress of the project.
There are many ways of measuring progress, e.g., rates of SLOC
produced, rate of completion of tests, etc. No single method is
sufficient.

• Problem recognition. To control costs, managers must recognize as
early as possible during development when a problem is occurring.
Various techniques can be applied. For example, analyzing problem
reports and tracing the cause back to individual modules or WBS
activities will help identify which processes or modules are causing
problems to the project.

5 .3 DND Recommendations

DND is involved in two roles: as a software procurer and as a software
maintainer.

5.3.1 Cost Estimates from a Procurement Agency’s Perspective

The concerns of a procurement agency are somewhat different than the
concerns of a development organization when it comes to software cost
estimation. However, as described in Section 4.3 the procurement process itself
often introduces problems into the software cost estimation process. The
government and military procurement process forces contractors and procurers
to try to agree on the requirements and cost of the system very early in the
software development life cycle. As has been emphasized already, arriving at

Software Cost Estimation 5555

firm requirements and cost estimates early in a project is not always possible.
Just as the software process must be altered to recognize this fact, so must the
procurement process. Possible approaches to this problem include

• Different procurement processes for standard versus innovative
systems. With innovative systems, requirements are generally not
known and costs cannot be accurately estimated. Different solutions,
such as greater use of prototypes, phased development, and
executable specifications, must be explored.

• More emphasis put on correct and detailed requirements. Although
correct requirements cannot be produced until the end of a project
(and sometimes not even then), every attempt must be made to arrive
at a set of requirements as early as possible. The procurement
process must then have provision for modifying these requirements
and the corresponding cost estimate.

• Investigate and experiment with “Common Purpose Procurement”.

Cost estimates will never be accurate without a successful relationship between
the procuring agency and the contractor. The most wonderful project plans
submitted in a proposal are meaningless when the project breaks down into
shouting matches between the contractor and the agency. A necessary
condition is that the procuring agency have confidence in the capability and
confidence of the contractor.

Procuring agencies can monitor a project in one of two ways: they can inspect
and sign off on specific project milestones, such as the Preliminary Design
Review and Critical Design Review; and they can monitor the contractors
process to verify that the contractor is developing the system according to well
accepted and reliable development techniques. Monitoring the project is what is
currently done; for example, it is the philosophy of the 2167a standard.
However, since milestone reviews by procuring agencies are not always
effective (Section 4.6 , [Hump-89]), procuring agencies should explore further
how they conduct these reviews and what specifically they are reviewing.
Assuming that the contractor is technically competent (otherwise the project is
doomed regardless of the reviewing process), the procuring agency reviews
should focus on the following rather than on technical content:

• Functionality. Will the system meet the requirements of the procuring
agency?

• Process. Has the contractor developed the system according to well-
accepted software development process standards?

5.3.2 Life-Cycle Costing

Large software systems have a long life span. During the life span of a system, it
is continually upgraded. The cost of developing these upgrades is often much
greater than the initial development costs. Studies within the Department of

Software Cost Estimation56

Defence in the U.S.A. indicate that maintenance costs can be three or four times
the initial costs of the system.

Given the high percentage of development costs devoted to maintenance, in
many cases it would be cost effective to increase development costs if there
was a resulting benefit in reduced maintenance costs. Unfortunately, few
organizations have the ability to perform such tradeoffs.

Managers are judged within an organization based on whether they keep their
costs within their allocated budgets. If a technique can be applied during
development to reduce long-term costs at the expense of increased
development costs, it may be in the long-term interest of the organization to do
so, but it may not be in the long-term interests of the manager; he will be given
credit for minimizing development costs now, but will not necessarily be given
credit for reducing maintenance costs 5 or 10 years into the future.

To understand better the implications of long-term software support, a number
of issues should be further investigated by DND:

• What is the current ratio of maintenance costs to development costs?
We are not aware of any studies done by DND to determine the cost
of software maintenance for large-scale weapons systems.

• Full life-cycle costing to permit tradeoff of development cost for
reduced maintenance costs.

• Research into re-engineering and reverse engineering. Many
systems are delivered without adequate documentation. Without a
clear idea of what is being maintained, it is difficult to arrive at
accurate cost estimates. Reverse engineering and re-engineering
systems will give maintenance units a better understanding of the
architecture with which they are working, and as a result they will be
able to arrive at more accurate cost estimates.

5.3.3 Maintaining Software Expertise Within DND

One observation that was made is that there is a difficulty within DND in building
up a core knowledge of software expertise. As discussed in Section 4, the
factors that lead to this problem are the following:

• Military rotation, which guarantees a large turnover of personnel for
long-term projects.

• The infrequency with which large weapons systems are acquired.

• A lack of communication between different units within DND.

These three characteristics of DND make it difficult to build up and retain
software expertise.

To build up the software expertise required and to transfer this expertise to the
appropriate units within DND, it is recommended that DND investigate the

Software Cost Estimation 5757

development of a group with the mandate of researching, developing, retaining,
and disseminating software expertise throughout DND. Among the roles the
group could perform would be the following:

• Assist project managers. The software expertise group would act as
consultants to project managers and maintenance personnel to
assist them in arriving at accurate cost estimates, improving
development processes, evaluating bids, recommend appropriate
data gathering and monitoring methods, and provide techniques and
tools for analyzing data.

• Data collection. DND does a significant amount of software
procurement, maintenance, and development. In each of these areas
it is important to be able to study the process used in order to
improve it and to determine which techniques are successful. The
software expertise group should have the power and the mandate to
collect information on the software development, procurement, and
maintenance throughout DND.

• Monitor and evaluate contractors. The software group would be able
to evaluate the capability of contractors. This could be done both
through an accurate historical record of the performance of different
contractors and knowledge on how to monitor the ongoing progress
and process of a contractor during development.

• Research on the development and procurement processes. The
software expertise group should be able to perform research,
particularly relating to new development processes and new
procurement processes.

• Definition of development and procurement standards. The software
expertise group should be involved (along with other units) in the
definition of development and procurement standards for software.

• Promote transfer of knowledge between groups. One observation we
have made is the lack of interaction between groups within DND who
perform similar functions. This was most striking with the weapons
maintenance units, which were all performing similar functions in
different ways but seemed to lack a means of transferring “lessons
learned” between the units. The software expertise group should
provide a mechanism for exchanging knowledge between these
units.

To be effective, such a software expertise group must have a stable work force
and not be subject to military rotation every few years.

To initiate the formation of such a group within DND, it is recommended that a
pilot project be undertaken. The purpose of the pilot project would be to focus
initially on data collection and transfer of knowledge between groups. The other
roles listed above cannot be fully satisfied until the data are collected. Since
DND is involved primarily with maintenance and procurement, it is suggested

Software Cost Estimation58

that the pilot project include a small number of maintenance units and a small
number of organizations initiating a procurement. The data to be collected
during this pilot project would include:

• Cost estimates during the course of the project and actual costs.

• High-level architecture of the system being developed/maintained.

• Characteristics of the system, such as functionality and size.

• Changes or clarifications to functionality during the course of
development.

• Costs associated with different development phases.

The pilot project would help determine what data to collect and how to collect
the data.

5.3.4 Software within a System

There is ample anecdotal evidence that for major weapons systems, software is
a significant percentage of the development cost, development problems, and
maintenance costs. Despite this fact, there are generally few attempts made up
front to identify all software components within a system and to create a strategy
for developing and maintaining the software part of these systems.

One of the recommendations is to identify as early as possible all software items
within the system and to identify clearly the cost and development process for
these items. The software items should be a clearly identified item within the
budget of a project. The budget item “software” should also clearly define the
full extent of the software items and what is being included as software.

A development process and a WBS structure should also break out each major
software item as a separate entity, identifying clearly the process to be used to
develop the software.

Software Cost Estimation - Questionnaire 59

Appendix A

Introduction

The Institute for Information Technology (IIT) within the National Research
Council (NRC) Canada is currently conducting a study to investigate the
process used to estimate the cost of developing and maintaining systems
involving significant amounts of software. This study is commissioned by the
Chief Research and Development (CRAD) within the Department of National
Defence (DND). The objectives of this study are to determine the current state of
the art in software cost estimation techniques in order to help identify methods
and research directions for improving software cost estimation and control. As
part of the study we wish to look at and compare software development in both
commercial and military applications.

Our approach is to identify a set of development and maintenance projects
which have been completed (or are close to completion), determine when and
how the software costs were estimated, and then look at how the estimated
costs relate to the actual costs. We are not limiting ourselves to a specific kind of
system; we are interested in all systems which contain software. Nor are we
limiting ourselves to a particular development group or organization. We will be
looking at military and commercial systems, maintenance and development
projects, embedded and information systems.

This document contains a set of questions and topics for discussion. It is
intended as a starting point for discussion to allow us to gather the information
about the projects from the appropriate people. If you have the time to provide
us with any responses to these topics beforehand, it will allow us to be better
prepared for the discussion.

Please note that we are gathering this information as NRC employees for a
research project within the IIT, and the specific company information will not be
available outside the Institute. Any reports resulting from this project will not
contain specific references to companies or organizations within the body of the
report other than a list of the organizations with whom we have discussed the
issues.

This document, which originated out of a series of interviews with commercial
software developers, DND personnel, and DND contractors, is continuously
evolving as we learn more about the software cost estimation process currently
in use. If you have any suggestions as to how to modify this document, and the
questions and issues which it raises, your input will be greatly appreciated.

Forward any comments or questions to:

Mark Vigder
Institute for Information Technology
National Research Council Canada
Ottawa, Canada
K1A 0R6
Phone - (613)991-6972
Fax - (613)952-7151
email - vigder@iit.nrc.ca

Anatol Kark
Institute for Information Technology
National Research Council Canada
Ottawa, Canada
K1A 0R6
Phone - (613)991-6973
Fax - (613)952-7151
email - kark@iit.nrc.ca

or

60 Software Cost Estimation - Questionnaire

Topics for Discussion

These topics and questions are intended to gather information about a specific
project which has been undertaken by your organization. During our
discussion, we will also be interested in determining how similar (or different)
the development process of this project is in relation to other projects in which
you or your organization have been involved.

The questions cover a wide range of topics and not all questions will be
applicable to all projects nor to all situations. If a question does not apply to your
situation, please note that the question is “not applicable”.

We also recognize that in many cases the information which we are requesting
will not be available, either because it is too difficult to gather the information, or
because it is information which you do not wish to release to us. Answer such
questions as “not available” or “cannot be released”.

This study is interested primarily in cost estimates relating to effort and duration :

• Effort. The manpower required, measured in some unit such as
“person-years” or “person-months”.

• Duration. The length of the project, measured in units such as
months or years.

Where possible, discuss the cost estimates in terms of the estimated effort and
estimated duration of the project.

1. Project Properties

These questions are intended to determine the type of project which is being
investigated.

1-1. Was the project developed:

a) Primarily within your organization.

b) Primarily contracted out.

1-2. Describe the project, e.g., what was being built, what was expected to be
delivered at the completion of the project, etc.

1-3. What type of system was developed, e.g., embedded system, information
system, etc.?

1-4. Was the project:

a) Primarily software

b) System (involving significant combined hardware and software
development).

1-5. Was the project:

Software Cost Estimation - Questionnaire 61

a) A new system.

b) A major upgrade. A currently existing system was upgraded,
requiring extensive amounts of new software to be developed.

c) A minor upgrade. A currently existing system was upgraded. The
upgrade was done primarily by modifying existing software.

2. For Contracted Projects.

For projects which were primarily contracted to other developers:

2-1. What was the contracted price?

2-2. If you were the organization managing the acquisition, how close was the
contracted price to the expected bids?

2-3. What was the final cost paid to the contractor?

2-4. If the price paid was different from the contracted price, what is the
reason for the discrepancy:

a) New requirements determined by contracting organization.

b) Initial requirements were vague.

c) Contractor underestimated work required.

d) Technical problems.

e) Contractor suggested enhancements.

f) Other (Please explain).

2-5. If you were the contractor, what were the non-contractual costs incurred
which were absorbed by the company?

3. The Cost Estimates

These questions are intended to determine what type of estimates were being
performed, and what the goals of the estimates were.

3-1. During the course of the project, identify when formal cost estimates
occurred. For each estimate, identify:

a) At what stage of the project lifecycle it occurred.

b) What was being estimated (e.g., total effort, duration, manpower
buildup, etc.)

c) For what purpose was the estimate being done, e.g., obtain
budgetary approval, determine manpower requirements, etc.

3-2. Were re-estimates of costs performed during development?

62 Software Cost Estimation - Questionnaire

3-3. If the answer to question 3-2 is yes, then identify when the re-estimating
procedures were invoked (see list below). If possible, indicate when (in the
development life cycle) the re-estimates occurred, and the result of the re-
estimates

a) Informal re-estimates performed during development.

b) Formal re-estimates performed at pre-defined milestones.

c) An amendment changed the system being built and a re-estimate
was required.

d) Other (please explain).

3-4. How accurate were the cost estimates? In your opinion, what were the
reasons for the discrepancy between the actual cost and the estimates.

3-5. The estimation problem can be classified into three main categories:

a) New Project Development. A new project (or major upgrade) is being
developed. The estimation requirement is to determine the cost of the
development.

b) Ongoing maintenance requirements. A new system is being
implemented and it is necessary set up an ongoing maintenance and
support unit. An estimate is being made of the ongoing resources
required to maintain the software.

c) System upgrade. A set of System Change Requests (SCR) have
been assembled, and the requirements for a new version are being
defined. A fixed set of resources are available for implementing the
upgrade. The problem is to estimate which SCRs can be included in
the new version of the software, given the constraints of the fixed
resources.

Is the estimation problem you were faced with one of:

a) New product development.

b) Ongoing maintenance requirements.

c) System upgrade.

d) Other (please explain).

3-6. What items were included in each of the estimates, e.g.,

a) Software

b) Hardware

c) Number of delivered units

d) Testing

Software Cost Estimation - Questionnaire 63

e) Documentation

f) Training

g) Other (please explain)

3-7. Life cycle costing is an approach to cost estimation which looks not only
at the cost of developing and delivering a system, but also the cost of
maintenance during the life of the system. Do you consider life-cycle costing
preferable to the costing of development and maintenance as separate items
and estimated at separate times? Why (or why not)?

3-8. Should software be included as a special line item within an overall
system project budget? Why? When should the estimates be done?

4. People involved in estimation.

Cost estimation for larger projects generally involve a number of people. These
questions are to determine who was involved in the estimation, and the role
which they played.

4-1. How many and what was the positions of the people involved in the cost
estimation process?

4-2. How were the individuals involved in the cost estimation included as part
of the process:

a) Informal consultation, e.g., person in charge of estimation walked into
a managers office to solicit an opinion.

b) Formal consultation with project staff, e.g., a meeting was organized
for the purpose of performing the cost estimate.

c) Sign off authority.

d) Other (explain).

4-3. Did the people involved in the estimation process have any previous
experience in software cost estimation before they were called upon to estimate
for this project? If yes, was their experience useful in arriving at accurate
estimates?

4-4. Was any training in project management provided? Is such training
required? Did the training include cost estimation?

4-5. Do you think the training did (or would) improve your ability to arrive at
accurate cost estimates?

4-6. Would an outside group trained in cost estimation have been a useful
resource to you?

64 Software Cost Estimation - Questionnaire

5. Estimation process

The cost estimation process is the set of steps which are performed in order to
arrive at a cost estimate.

5-1. For each of the cost estimates which were performed during the project,
describe the process your organization went through in order to arrive at the
estimate.

5-2. What were the inputs which were used for each of the estimates:

a) An incomplete set of requirements.

b) A detailed set of requirements.

c) Details of the user interface, including for example, prototype
screens.

d) Architectural design.

e) System engineering.

f) Other.

5-3. What was the level of accuracy which the estimator was trying to achieve
for each of the estimates?

5-4. How would you classify the software estimation process which was used
for each of the estimates? If more than one method was used, list all methods in
order of significance.

a) Ad hoc. Cannot be categorized.

b) Informal analogy and rules-of-thumb. Based on experience, the
estimator arrives at an estimate by informally comparing this project
with previous projects, and applies a number of rules-of-thumb to
arrive at an estimate.

c) Formal analogy. A database is maintained of previous projects. New
projects are estimated by comparing new projects with previous
projects in a formal and rigorous way, identifying differences and
similarities and basing the cost estimate on the similarities and
differences with previous projects.

d) Formal model. A formal model (such as COCOMO) is used to provide
a cost estimation model for the project.

e) Other (explain).

5-5. Was there a formal procedure used during estimation which tried to
identify and assess the risks which could jeopardize the successful completion
of the project?

5-6. How were the cost estimates done for each estimate performed:

Software Cost Estimation - Questionnaire 65

a) Estimate was done at the system level, for the complete development
process.

b) The development process was broken down into tasks at the system
level (e.g., requirements analysis, design, coding, testing, etc.). An
estimate was done for each task, and these estimates were
combined into an overall system estimate.

c) An architectural design was performed decomposing the system into
subsystems and components. The cost of each subsystem was
estimated and these were combined into an overall system estimate.

d) For upgrades, the cost of the changes required were estimated
relative to the current system architecture.

e) Other.

5-7. Often estimators are constrained to produce estimates based on
available resources, e.g., limited dollars, limited manpower, limited duration.
Were there constraints put on the estimation process? If yes what were the
constraints? How restrictive were the constraints (e.g., minor, major, cast in
stone)?

5-8. What effect did the constraints have on the functionality of the system and
the reality of the estimates? For example, was a fixed amount of resources
available and was the functionality of the system defined by what could be built
with these resources?

5-9. In your opinion, how could the software cost estimation process be
improved in a practical way?

6. Tracking costs

Improving estimates and controlling costs requires that initial estimates are
made of the development process, and that the actual values gathered during
the development process are compared to the original estimates.

6-1. Were profiles maintained of actual versus estimated cost over time?

6-2. Were staffing profiles maintained of actual versus planned staffing?

6-3. Were profiles maintained of actual versus planned software units
designed, tested and integrated over time?

6-4. What are the mechanisms in place for tracking the development
process? Are any of these mechanisms automated?

7. Metrics

Metrics are measures which quantify properties of a system. Product metrics
measure properties of the delivered system (e.g., number of lines of code,
number of configuration items, etc.). Process metrics measure properties of the
process which is used to build the system (e.g., number of faults found at each
phase of the development, development effort, etc.). Metrics provide a means of

66 Software Cost Estimation - Questionnaire

capturing historical data about a project. This historical data can be used to
assist in cost estimation and control for future projects.

7-1. Is any information regarding past projects recorded and maintained in a
formal way to be kept in a historical database by your department or
organization?

7-2. If a historical database is maintained, what information is recorded and
what is the intended use of the database?

7-3. Were any process or product metrics maintained during development?
Examples of metrics include (but are not limited to) the following:

• Process metrics

a) Project development effort (per phase).

b) Project development time (per phase).

c) Number of changes (classified by fault correction, requirements
change, etc.).

d) Slippage. Difference between estimated and actual values, e.g.,
effort, duration, etc.

e) Staffing profiles (e.g., experience and knowledge of staff --
subjective).

• Product metrics

f) System Size.

g) Number of Document Pages (per phase)

h) Source code size.

i) Structure metric, e.g., complexity of data structures, number of
modules, etc.

j) Project type (defines external constraints, i.e., required reliability,
system complexity, interconnections with other existing systems,
embedded software, commercial software products, etc.)

7-4. Did the process of gathering the metrics tend to distract from the
development process?

7-5. If a historical database of projects is to be maintained with the goal of
better estimating and controlling development costs, what information should be
recorded as part of the database?

Software Cost Estimation - Questionnaire 67

8. Cost drivers

There exist a number of cost drivers for projects involving significant amounts of
software development. Estimating and controlling costs can be improved by
better understanding these cost drivers.

8-1. Which of the following do you consider to be significant cost drivers for
software development:

a) Manpower turnover.

b) Requirements changes.

c) External system variations (e.g., OS keeps changing).

d) New technologies raise user expectations.

e) System complexity.

f) Configuration management.

g) Testing.

h) System size

i) Distribution of software to users.

j) Other

68 Software Cost Estimation - Questionnaire

Software Cost Estimation 6969

Bibliography

[Albr-83] A.J. Albrecht and J.E. Gaffney Jr., “Software Function, Source
Lines of Code, and Development Effort Prediction” in IEEE
Transactions on Software Engineering, SE-9, 6, 639-648

[Boeh-81] Barry Boehm, Software Engineering Economics, Englewood Cliffs
N.J., Prentice-Hall Inc. 1981

[Broo-87] F. Brooks, “No Silver Bullet: Essence and Accidents of Software
Engineering”, in IEEE Computer, 20(4) pp 10-19

[Cowd-89] A.J.C. Cowderoy and J.O. Jenkins, “New Trends in Cost-
Estimation” in Measurement for Software Control and Assurance,
Elsevier Applied Science, New York, 1989

[DeMa-82] R. DeMarco, Controlling Software Projects: Management,
Measurement, and Estimation, Yourdon Press, Englewood Cliffs,
NJ., 1982

[Hump-89] W.S. Humphrey, Managing the Software Process, Addison-
Wesley, Don Mills Ont., 1989

[Putn-92] L.H. Putnam and W. Myers, Measures for Excellence, Reliable
Software on Time, Within Budget, Yourdon Press, Englewood
Cliffs N.J., 1992

[Paul-93] M.C. Paulk, B. Curtis, M.B. Chrissis, C.V. Weber, Capability
Maturity Model for Software, Version 1.1, Software Engineering
Institute, CMU/SEI-93-TR-24, February, 1993.

[Vigd-94] M.R. Vigder, A.W. Kark, A Comparison of Project Management for
Hardware and Software System Development, NRC Report
Number NRC37117

