Software Size, Cost, and Schedule Estimation Process

Version 2.1

Software Size, Cost, and Schedule Estimation Process

Version 2.1

SOFTWARE

SIZE
[image: image1.wmf]
COST

[image: image2.wmf]
SCHEDULE

ESTIMATION PROCESS
VERSION 2.1

June 5, 1996

SOFTWARE ENGINEERING PROCESS OFFICE (SEPO), CODE D13

NAVAL COMMAND, CONTROL, AND OCEAN SURVEILLANCE CENTER (NCCOSC), RESEARCH, DEVELOPMENT, TEST AND EVALUATION DIVISION (RDTE DIV)

53560 HULL STREET, SAN DIEGO, CA 92152-5001

Approved for public release; distribution is unlimited
THIS PAGE INTENTIONALLY LEFT BLANK

SOFTWARE SIZE, COST, AND SCHEDULE

ESTIMATION PROCESS

JUNE 5, 1996

NAVAL COMMAND, CONTROL, AND OCEAN SURVEILLANCE CENTER,

RDT&E DIVISION

SOFTWARE ENGINEERING PROCESS OFFICE

CODE D13
Updated By

Brian Groarke, Code D13

THIS PAGE INTENTIONALLY LEFT BLANK

Administrative Information

This document supersedes Draft Version 1.0 as guidance for use of the Software Size, Cost, and Schedule Estimation Process at NCCOSC RDTE DIV hereinafter referred to as NRaD. SEPO assumes responsibility for this document and updates it as required to meet the needs of users within NRaD. SEPO welcomes and solicits feedback from users of this document so that future revisions of this document will reflect improvements, based on organizational experience and lessons learned. SEPO provides copies of this document to students attending SEPO training courses and workshops as well as copies upon request to others in accordance with this document's distribution statement.

I wish to acknowledge the efforts of Gordon Wright, the original author of the Software Cost, Size, and Schedule Estimation Process, and of Duston Hayward, Ann Hess, and Elizabeth Gramoy for their input to Version 2.0 of this document. I would like to than Alan Case of Ahntech Inc. for his updates to V2.1.

If you have any questions or comments regarding this document please feel free to communicate them via the Document Change Request (DCR) form located at the back of this document.

Approved for public release; distribution is unlimited.

Brian Groarke, SEPO, NCCOSC RDTE DIV, Code D13

Voice:(619)553-6248, Fax:(619)553-6249, Internet: groarke@nosc.mil

Executive Summary

One of the major goals of SEPO is to define the state of current NRaD software engineering practices and processes and then implement processes that improve NRaD’s software engineering capability as measured by the Software Engineering Institute's (SEI) software Capability Maturity Model (CMM). SEPO has developed formal processes for Project Tracking and Control, Configuration Management, Formal Inspections, as well as Software Cost, Size, and Schedule Estimation.

Version 1.0 of the Size, Cost, and Schedule Estimation Process was developed in 1991 by Gordon Wright of the SEPO office. Its purpose was to develop a generic process that could be used by all NRaD software projects in developing software estimates. Software estimation is one of the key activities that needs to be performed throughout the life of a project in order to ensure its success. Version 2.0 of this document updates and expands on Version 1.0.

These processes are available for use by NRaD projects and are continually reviewed and refined to accommodate changing technology and development scenarios.

The software estimation process contained herein describes the steps for establishing initial software life cycle cost (LCC) estimates and then tracking and refining those estimates throughout the life of the project. This process describes a generic method for software estimation that, with tailoring, can be applied to most NRaD software projects.

The process flow diagram in Figure I-1 depicts the estimation process.

Figure I-1.
Estimation Process Flow Diagram

RECORD OF CHANGES

*A - ADDED M - MODIFIED D - DELETED

CHANGE
NUMBER

DATE
NUMBER OF FIGURE, TABLE OR PARAGRAPH
A*
M
D

TITLE OR BRIEF DESCRIPTION
CHANGE
REQUEST
NUMBER

001
6/5/96
All
M
Reformatted entire document - contents unchanged, but page numbers have shifted and some figures and tables were renumbered for consistency.
n/a

Table of Contents

Section
Page

Title Page
i

Signature Page
iii

Administrative Information
v

Executive Summary
vi

RECORD OF CHANGES
viii

Table of Contents
ix

List of Figures
xi

List of Tables
xi

SECTION 1.
INTRODUCTION
1

1.1 Purpose
1

1.2 Background
1

1.3 Scope
1

1.4 Document Overview
1

1.5 Process Overview
2

SECTION 2.
PROCESS PHASES AND DESCRIPTIONS
4

2.1 Introduction
4

2.2 Process for Software Estimation Activities
4

2.2.1 Estimate Size
6

2.2.2 Estimate Cost and Effort
9

2.2.3 Estimate Schedule
13

2.2.4 Risk Assessment
15

2.2.5 Inspect/Approve
17

2.2.6 Track Estimates
19

2.2.7 Process Measurement and Improvement
21

SECTION 3.
SOFTWARE ESTIMATION PROCESSES
IN THE SOFTWARE LIFE CYCLE
25

3.1 Explanation of Estimation Process Activities by Phase
29

3.2 Additional Modes of Software Development
34

3.2.1 Prototyping
34

3.2.2 Evolutionary Acquisition (EA)
34

3.2.3 Incremental Development
35

3.2.4 Technology Insertion
35

3.2.5 Research and Development
35

SECTION 4.
IMPLEMENTATION OF THE SOFTWARE SIZE, COST, and SCHEDULE ESTIMATION PROCESS
37

4.1 SEPO's Role
37

4.2 The Project's Role
38

APPENDIX A
SAMPLE WORK BREAKDOWN STRUCTURE for SOFTWARE
A-1

APPENDIX B
DEFINITIONS
B-1

APPENDIX C
STANDARD METHODS OF ESTIMATING SIZE
C-1

C.1 Wideband Delphi Technique
C-2

C.2 Pert Sizing
C-3

C.3 Function Points
C-3

C.4 Sizing By Analogy
C-4

C.5 Automated Size Estimation Tools
C-4

C.6 Reused Code
C-5

APPENDIX D
STANDARD METHODS of ESTIMATING EFFORT and COST
D-1

D.1 Manual Method
D-2

D.2 Software Estimation Tools
D-2

APPENDIX E
SOFTWARE ESTIMATION MODELS AVAILABLE THROUGH SEPO
E-1

E.1 REVIC - REVised Intermediate COCOMO
E-2

E.1.1 OVERVIEW
E-2

E.1.2 OUTPUTS
E-3

E.1.3 REFERENCES
E-3

E.2 SoftCost-OO
E-3

E.2.1 OVERVIEW
E-3

E.2.1 OUTPUTS
E-3

E.2.3 REFERENCES
E-3

E.3 SASET - Software Architecture, Sizing, Estimating Tool
E-4

E.3.1 OVERVIEW
E-4

E.3.2 OUTPUTS
E-4

E.3.3 REFERENCES
E-4

APPENDIX F
SAMPLE SOFTWARE PROJECT ESTIMATE
F-1

F.1 Sample Project Description
F-2

F.2 Approach
F-2

F.2.1 Preliminary Definition of Software Functions
F-2

F.2.2 Basic Assumptions
F-2

F.2.3 Preliminary WBS
F-3

F.2.4 Develop Size Estimates
F-4

F.2.5 Develop Cost and Schedule Estimates
F-5

F.2.6 Risk Assessment
F-10

F.2.7 Review Software Functions vs. Budget.
F-10

APPENDIX G
SAMPLE PROJECT ESTIMATE HISTORY TRACKING FORM
G-1

APPENDIX H
ACRONYMS and ABBREVIATIONS
H-1

APPENDIX I
REFERENCES
I-1

List of Figures

Figure No.
Figure Title
Page

Figure I-1.
Estimation Process Flow Diagram
vii

Figure 2-1.
Estimation Process Flow
5

Figure 2-2.
Highlights of Estimate Size
7

Figure 2-3.
Sample Software Estimation File (SEF) Format
8

Figure 2-4.
Highlights of Estimate Cost and Effort
10

Figure 2-5.
Process for Cost and Effort Estimation
12

Figure 2-6.
Highlights of Estimate Schedule
14

Figure 2-7.
Highlights of Risk Assessment
16

Figure 2-8.
Highlights of Inspect/Approve Estimate
18

Figure 2-9.
Highlights of Track Estimates
20

Figure 2-10.
Highlights of Process Measurement and Improvement
22

Figure 3-1.
Software Estimation Activities by Phase
28

Figure C-1.
Sample Estimate Iteration Form
C-2

Figure F-1.
REVIC Factors Set for Likely Case Scenario
F-6

Figure F-2.
Phase Distribution for Likely Case
F-6

Figure F-3.
Activity Distribution for Likely Case
F-7

Figure F-4.
Standard Deviation for Likely Case
F-7

Figure F-5.
CDRL Page Estimates for Full 2167A/2168 Project
F-7

Figure F-6.
Project Estimate History Tracking Form
with Initial Estimates for Project Fusion
F-8

List of Tables

Table No.
Table Title
Page

Table 2-1.
Process Effectiveness Metrics
23

Table 3-1.
Estimation Inputs and Outputs by Phase
25

Table 3-2.
Software Estimation Process by Phase
26

Table 3-3.
R&D Phases and Activities
36

Table 4-1.
Implementation of Software Size, Cost, and Schedule Estimation Process
38

Table C-1.
Wideband Delphi Technique
C-2

Table E-1.
Overview of Software Estimation Models Available through SEPO
E-2

Table F-1.
Size Estimates for TM&C and OC&C CSCIs
F-4

Table F-2.
Summary of Adaptation Percentages for Existing CSCIs
F-5

Table F-3.
Preliminary Cost/Schedule Estimates
F-5

Table F-4.
Summary of Cost Sensitivity Analysis
F-10

THIS PAGE INTENTIONALLY LEFT BLANK

SECTION 1.
INTRODUCTION

1.1 Purpose

The purpose of this document is to describe the steps and procedures used in developing a software size, cost, and schedule estimate. This software estimation process is intended to be a generic product which can be applied to most any project anytime during its life cycle.

1.2 Background

This version of the Software Size, Cost, and Schedule Estimation Process is an update to Version 1.0 which was developed from September 1990 to July 1991. The process was developed in order to fulfill a need at NRaD for a generic software estimation process. In addition, having a documented software estimation process helps satisfy one of the requirements of the Software Engineering Institute's (SEI) Capability Maturity Model's (CMM) "Defined" (Level 2) Key Process Areas.

1.3 Scope

This process encompasses all of the necessary activities required to produce a software size, cost and schedule estimate for your software project throughout the life cycle of the project. It must be noted that the process described herein pertains only to the estimation of the costs associated with the software portion of your project (e.g. requirements analysis, system design, coding, testing, CM, SQA). There are many other costs associated with a project, such as hardware costs, overall project management costs, and travel costs that must also be considered when developing an overall project cost estimate.

1.4 Document Overview

This document describes the steps required to develop a size, cost, and schedule estimate for a software project throughout the life cycle of a project. This document is organized into the sections listed below.

a. Section 1 of the document provides an introduction to the process and a brief overview of the process activities.

b. Section 2 describes the process activities using the following format and definitions.

Purpose: the objective of the process activity.

Responsible Personnel: who is responsible for performing this activity.

Entrance Criteria: the elements and/or conditions necessary to begin a process activity. Reading lower level activities assumes that the entry criteria for all higher level activities have been satisfied.

Input: data or material with which a process activity is performed.

Activities: actions necessary in order to transform an input into an output.

Output: data or material produced by or resulting from a process activity.

Exit Criteria: elements and/or conditions necessary in order to complete a process activity.

Metrics: data collected which can be used to analyze and improve the process activity.

c. Section 3 describes the process activities that are performed during each phase of the life cycle of the project. Estimation activities may vary depending on the phase the project is in. However, regardless of the phase the project is in, the process depicted in the process flow diagram is still followed.

d. Section 4 describes the roles of the project and of SEPO in the implementation of this process.

e. Appendix A contains a sample work breakdown structure for a software project.

f. Appendix B contains a list of definitions.

g. Appendix C contains size estimation methods.

h. Appendix D contains methods for estimating effort and cost.

i. Appendix E contains estimation models available through SEPO.

j. Appendix F contains a sample software project estimate.

k. Appendix G contains a sample project estimate history tracking form.

l. Appendix H contains a list of acronyms and abbreviations.

m. Appendix I contains the document references.

1.5 Process Overview

The software size, cost, and schedule estimation process begins with the definition of the project's functional requirements. Without defining the requirements, it is impossible to determine the cost and schedule for the software project. Once the functional requirements are known, personnel can then be assigned to develop the estimate. When estimates are developed, two or more people should be involved. The reason for this is quite simple, "two heads are better than one." Estimates should not be developed in a vacuum. Never rely on any one person or method to develop your software estimates. The next step in the process is to develop the size estimate. The traditional definition of size is Source Lines of Code (SLOC). Other methods exist for calculating size, such as function or feature points. It is advisable to use more than one method to calculate size, so that you can compare your results. Once the size has been determined the next step is to calculate the effort, cost, and schedule of the project using the size estimate that was calculated previously. Effort is usually calculated in person months which then can be translated into cost by using the applicable labor rates. Software effort, cost and schedule are all interrelated and a change to one will affect the other two. For example, a compressed schedule usually results in a higher effort and cost. Effort, cost, and schedule can be calculated either manually or by using a cost model. Whichever is used, it is recommended that more than one method be used. You should not rely solely on one method or model.

After the size, cost, and schedule have been calculated, a risk assessment should be conducted. Risks associated with your project likely will cause your estimate to change. These risks should be documented, tracked, and updated over the life of the project. After the estimation risks have been identified and changes, if required, made to the previous estimate, the estimate then must be validated. The purpose of the validation is to ensure that assumptions made for the estimate are accurate, verify the methods used to develop the size, cost and schedule estimate, verify identified risks, ensure that the estimate is reasonable and accurate, and to confirm and record the official estimates for the project. Validation is usually performed by management personnel or a Quality Assurance organization.

Software estimation is a continual process during the life cycle of a project. Software estimates should be continually tracked and updated. A Software Estimation File (SEF) should be maintained that contains information such as, estimation methods used, date of estimate, size , cost , schedule, and risks for each estimate that is developed. Finally, data should be collected and analyzed from each of the above steps and should be used to improve the estimation process.

Software estimates should be recalculated monthly and after any major redirection of the project by the customer. Each time an estimate is updated, the assumptions and inputs shall also be updated to reflect the most current information.

This process is intended to be implemented throughout the life cycle of a project. It also can be implemented at any point in your project's life cycle. So whether you're in the development or in the maintenance phase this process will provide added value to your project.

SECTION 2.
PROCESS PHASES AND DESCRIPTIONS

2.1 Introduction

Projects should produce and document project plans, which include estimates of product size, resources, staffing levels, schedules, and key milestones. Historically, the costs and schedules for most software projects have been greatly underestimated. There are many reasons for this; costs and schedules are often pre-determined by an outside source, a real in-depth analysis of the software development process was not taken into consideration or in many cases not fully understood, and there is a general lack of acceptance of the concept that developing software is an expensive endeavor.

The software estimation process in the following sections describes the steps required for establishing initial software Life Cycle Cost (LCC) estimates and then tracking and refining those estimates throughout the life of the project. Establishment of this process early in the life cycle will result in greater accuracy and credibility of estimates and a clearer understanding of the factors that influence software development costs. This process also provides methods for project personnel to identify and monitor cost and schedule risk factors.

As a prerequisite to developing an estimate for a project's size, cost and schedule an understanding and familiarization with estimation methods and issues is required. Descriptions of some common estimation methods are included in Appendices C and D.

2.2 Process for Software Estimation Activities

Software estimation is a continual process that should be used throughout the life cycle of a project.

The software estimation process consists of the following procedures:

- Estimate Size

- Estimate Cost and Effort

- Estimate Schedule

- Risk Assessment

- Inspect/Approve

- Track Estimates

- Process Measurement and Improvement

The process activity for developing the cost estimate is shown before the schedule estimate in Figure 2-1 because this is the sequence often used by the cost models. However, a development schedule is often mandated before the scope of the effort is clearly understood. The early establishment of a work breakdown structure (WBS) helps to divide the effort into distinct work segments that can be scheduled and prioritized. A detailed software WBS is provided in Appendix A.

The following subsections provide an overview of the steps used to develop a thorough software project estimate. Detailed explanations of estimation requirements for each phase of a project are in subsequent sections. Detailed explanations of specific estimation methods and automated tools are contained in the appendices.

[image: image3.wmf](use 2 or more people to develop estimates)

Estimate

Schedule

Functional

Requirements

Estimate

Size

Estimate

Cost and Effort

Risk

Assessment

Inspect/

Approve

Track

Estimates

Process

Measurement and

 Improvement

(use 2 or

more

m

ethods)

(use 2 or

more methods)

(use 2 or

more methods)

(repeat

periodically)

Figure 2-1.
Estimation Process Flow

2.2.1 Estimate Size

The highlights of estimating size are illustrated in Figure 2-2, and the process is detailed in this section.
a. Purpose.

The purpose of developing the size estimate is to determine the magnitude of the effort. Size is a major input that cost models use to calculate the effort, cost and schedule of a software project. (Refer to Appendix B for definition of size).

b. Responsible Personnel.

Programmers, software engineers, and system analysts are responsible for determining the size of the software project.

c. Entrance Criteria.

Software functional requirements have been defined.

d. Input.

Software Requirements Specification (SRS).

Note: Defining requirements early on in a project can be a very difficult task. However, without knowing what the requirements are it is impossible to accurately estimate a project's cost and schedule. If you don't know what all of your requirements are, then just estimate based on the requirements you know and make sure everyone knows that your estimate is based on only those known requirements. If you are using an incremental or evolutionary development strategy, then base your estimate on the requirements that have been defined for that increment.

e. Activities.

Software product size is generally measured in Source Lines of Code (SLOC) or Thousands of Source Lines of Code (KSLOC). The software should be developed using all new code or from combining new code with existing code. The estimate for the adaptation of existing code is as important as the estimate for new code. Adaptation of existing code often requires as much effort as if the code had been developed new.

Size can also be measured by function points. Function point estimating is based on the functionality of a system and is most often applied during the Requirements Phase. Whichever method is used, care must be taken to consistently use standard definitions (see Appendix B).

Estimates of software product size should be based primarily on historical data, if available, and past experience. Two or more software engineers with experience similar to the application under development should develop a top-down/bottom-up size estimate as follows:

- Develop a high order architecture (top-down) diagram of the system based on the requirements that define each Computer Software Configuration Item (CSCI) to be developed.

- Develop a functional WBS based on the CSCIs and the major functions within each CSCI.

- Develop a manual estimate of SLOC or function points to the lowest level of detail possible (bottom-up) for each major function within each CSCI based on experience with a similar application and historical data. A size estimating tool may be used as a second input.

- Develop a nominal or expected size estimate plus a standard deviation, i.e., the lowest possible size and a highest possible size to reflect the uncertainty of the nominal estimate. The spread between the lowest and highest estimates may be as much as 30-50% in the early phases of a project, e.g., the Concept Phase. The range may be even wider if experience is scarce or there is high technical risk.

Figure 2-2.
Highlights of Estimate Size

- Software engineers with similar project experience should review and refine the estimate until a consensus is reached. The lowest possible size estimates should be given special scrutiny as experience has demonstrated that size estimates are almost always low.

Some standard methods and tools for estimating size are the Wideband Delphi Technique, Pert Sizing Technique, Function Point Method, Sizing by Analogy, and automated size estimation tools. These methods are further described in Appendix C. It is advisable to use at least two methods to develop the size estimate. Do not rely on any one method.

Note: Early on in a project size estimates can be very difficult to accurately determine. Instead of calculating a single size count, use a range of values (maximum, minimum, and most likely). As the project progresses, size can be more accurately determined. Once coding has been completed on a project automated SLOC counters can be used to calculate the size of the program.

f. Output.

Size of project in either Source Lines of Code (SLOC) or Function Points. Functional WBS.

g. Exit Criteria.

Functional WBS has been documented in the Software Development Plan (SDP) and the size estimate has been recorded in the Software Estimation File (SEF). The format for the SEF is described in Figure 2-3.

TABS
CONTENTS

Project Data
Description of Project

- Application

- Primary Language

- Sponsor

- Mode of Development

- Standards Used for Software Development

Summaries
Summaries of All Estimates to date

- Assumptions

- Critical Parameters

- Models Utilized

Tracking Summaries
Summaries of All Related Data for each estimate

- Date of estimate

- Initial/actual dates for major reviews, e.g., PDR, CDR, TRR

- Number of CSCIs

- Number of SUs

- Estimated size, new and reused code

- Estimated schedule for each major phase

- Estimated cost

- Estimated amount of documentation by page per document

Memos
Copies of Related Memos

- Basis for Size Estimates

- Schedule Alterations

- Project Redirection

Figure 2-3.
Sample Software Estimation File (SEF) Format

h. Metrics.

SLOC or Function Point count. Time and resources spent calculating size estimate.

2.2.2 Estimate Cost and Effort

The process used to estimate cost and effort is highlighted in Figure 2-4, and is detailed in this section.

a. Purpose.

Determine the cost and effort required to complete the software portion of the project.

b. Responsible Personnel.

Project manager, software engineers, two or more software estimators.

c. Entrance Criteria.

Size estimate and Functional WBS have been completed.

d. Input.

Size estimate for the project using either SLOC or Function Points and the Functional WBS.

e. Activities.

Choose estimation method (see Note 1 and Appendix D). If a parametric cost model (see Appendix E) is being used, then the environmental parameters for the project must be determined and entered into the model. Examples of parameters are program complexity, programming language, requirements volatility, analyst capability, and execution time constraint.

Run estimation calculations using 2 or more estimation methods.

Note 1: The estimate should include all labor activities charged directly to the task. These activities normally include:

- Engineering labor charges for System/Software Requirements Analysis, Design, Code, Test, and Integration.

- Documentation effort

- Configuration Management

- Software Quality Assurance

- Management effort charged directly to the task

A number of methods, some good and some bad, exist to estimate software cost. Some of the standard and acceptable methods for estimating cost and effort shown below are described further in Appendix D.

1. Algorithmic Models - Consists of one or more algorithms that produce an effort estimate as a function of a number of variables or cost drivers. This is the most prevalent method utilized by software estimation models.

2. Expert Judgment - Relies on one or more people who are considered experts in some endeavor related to the problem at hand, e.g., the software application or effort estimation. This is the most widely used method of manual estimation.

3. Analogy - Comparison of the proposed project to completed projects of a similar nature whose costs are known. This method emphasizes the need for software costs historical data bases. The more data that is available the more accurate the estimates will be.

4. Top-Down - An overall cost estimate for the project is derived from global properties of the software product. This estimate will usually be based on previous projects and will include the costs of all functions in a project, e.g., integration, documentation, software quality assurance and configuration management.

Figure 2-4.
Highlights of Estimate Cost and Effort

5. Bottom-Up - Each component of the software product is separately estimated and the results aggregated to produce an estimate for the overall job. These estimates often overlook many of the system level costs such as integration, software quality assurance and configuration management.

6. Automated Estimation Models - A number of computerized models are available which estimate cost and schedule from user inputs of size and environmental cost factors. Most of these are algorithmic models that use lines of code as the measure of size. A description of automated software estimation tools available through SEPO are described in Appendix E.

An example of developing a software estimate with standard methods and tools is provided in Appendix F. Additional common, but unacceptable, methods for software estimation include:

Parkinson - The effort estimate is equal to the amount of known resources or budget. This is not really an estimate but merely an agreement to sign up to do a job in order to get the job. The resultant project almost always misses delivery dates, is over budget, and doesn't meet requirements.

Price to Win - The cost estimate is based on the price necessary to win the project. As in the Parkinson method, the estimate is rarely a true estimate of how much the project will really cost. Often, thorough estimates are generated only to be reduced by management in order to win the job. Projects utilizing this type of estimate usually have the same outcome as with the Parkinson method.

Note 2: An estimate of cost should be generated early in a project's life cycle, as soon as the general software requirements are defined. Cost is usually estimated in effort or person months which can then be translated into cost based on labor rates.

Estimates should always be developed by using at least two methods. Use of two methods provides a means of cross-checking individual estimates and increases the credibility of the overall estimate. Also, estimates should be accomplished by at least two people. For very large projects, three or more people should be involved in the estimation process. Early on in the project a manual estimate should be done. Manual estimates should be accomplished to give the estimators an understanding of the process and parameters that the automated tools utilize. After a manual estimate is completed a second estimate should be developed using an automated tool. The manual estimate should be done first so that the automated tool will not influence your manual estimate.

The results of the two estimates should be compared, and reasons for any large variances should be resolved. How large a variance is acceptable depends upon where a project is in the life cycle. Early in the project, estimates within 20% are reasonable. As a project matures the estimates should converge (see Figure 2-5). All assumptions and inputs should be documented in the Software Estimation File (SEF).

Note 3: When using an automated estimation tool, results improve when the model is calibrated to better reflect historical cost data from your project domain, if available.

f. Output.

Effort and cost estimates for the software project.

g. Exit Criteria.

Effort and cost have been determined and documented in the Software Estimation File, WBS, and the Software Development Plan (SDP). If more than one method was used, then any discrepancies between the estimates have been resolved.

Figure 2-5.
Process for Cost and Effort Estimation

h. Metrics.

Cost and effort estimations. Time and resources expended developing estimate.

2.2.3 Estimate Schedule

The process used to estimate schedule is illustrated in Figure 2-6, and is discussed in this section.

a. Purpose.

Determine length of time needed to complete the project and determine when major milestones and reviews will occur.

b. Responsible Personnel.

Project Manager, software engineers, and software estimators.

c. Entrance Criteria.

Functional WBS, size, cost and effort estimates have been completed.

d. Input.

Size estimate for the project using either SLOC or Function Points. Cost and effort estimates. Functional WBS.

e. Activities.

Schedule Estimates can be derived by using either automated estimation models or manually. A combination of both manual and automated methods is recommended. Manual methods should be based primarily on past experience. One or more software engineers with experience with the specific application under development should use the size estimate and experience with similar projects to develop a schedule estimate as follows:

- the WBS should be expanded to delineate the order in which functional elements will be developed. The order of development will define which functions can be developed in parallel as well as dependencies which drive the schedule.

- A development schedule should be derived for each set of functions that can be developed independently, i.e., a schedule for each build of an incremental development.

- The schedule for each set of independent functions should be derived as the aggregate of the estimated time required for each major phase of the development:
analysis, design, code & unit test, integration and test.

- The total project schedule should reflect the aggregate of the product development, including documentation and formal review requirements.

The steps outlined above are typical of manual estimates. Automated tools provide a schedule estimate along with the cost and effort estimate. Automated tools allow the user to tailor the schedule in order to observe the impact on cost. However, most automated tools allow only a small amount of flexibility in shortening schedules. REVIC (REVised Intermediate COCOMO), for instance, allows the user to shorten the schedule by 25% from the nominally derived schedule. See Appendix E for more information on the dependencies between cost and schedule assumed by automated cost tools.

f. Output.

Schedule estimates for the software project. Including major milestones and reviews.

[image: image4.wmf]Purpose:

D

etermine the length of time needed to complete the project

and determine when major milestones and reviews will occur

Responsible Personnel:

Project manager, software engineers, and 2 or more software estimators

Metrics:

1)Schedule in calendar months

2)Hours and resources expended in developing schedule estimate

ESTIMATE

SCHEDULE

Entrance Criteria:

Exit Criteria:

S

ize, cost and effort

estimates, and functional

WBS have been completed

S

chedule has been determined and

documented in the SEF, WBS, and SDP.

Any discrepancies between the estimates

have been resolved

Input:

Output:

S

chedule estimate for

the software project

1)Size estimate in SLOC or

function points, cost and effort estimate

2) Functional WBS

Activities:

1)Choose estimation methods (use 2 or more methods)

2)Choose environmental parameters if parametric model being used

3)Run estimates. If manual method being used, use previous application

experience and the functional WBS to derive the schedule estimate.

Figure 2-6.
Highlights of Estimate Schedule

g. Exit Criteria.

Schedule has been determined and entered into the WBS, the Software Estimation File (SEF), and the Software Development Plan (SDP). If more than one method was used, then any discrepancies between the estimates have been resolved.

h. Metrics.

Project schedule estimate. Time and resources spent developing schedule estimate.

2.2.4 Risk Assessment
The process used to assess risk is discussed in this section and is illustrated in Figure 2-7.

a. Purpose.

Determine what the project risks are and determine what their effect is on the software size, cost, and schedule estimates.

b. Responsible Personnel.

Project manager, software engineers, and software estimators.

c. Entrance Criteria.

Size, cost, and schedule estimates and functional WBS have been completed.

d Input.

Size, cost and schedule estimates and WBS.

e. Activities.

Determine project risk factors and develop several estimates based on the known risks. For example, if requirements volatility is a risk, then provide one estimate assuming low requirements volatility and one assuming high requirements volatility. In this way the sponsor will know the project risks and the effects of those risks on the cost and schedule of the project.

Software cost estimates should define and enumerate the potential areas of size, cost and schedule risk and uncertainty. Once the potential risks are identified, metrics should be defined and tracked in order to identify when and how the project may be overrunning size, cost or schedule. Risk factors should be recorded and tracked in the Software Development Folder (SDF) or the Software Estimation File (SEF), the WBS, as well as in the Software Development Plan (SDP).

There are many areas of potential size, cost and schedule risk. As a minimum, the project manager must define those size, cost and schedule factors that present the greatest degree of risk. The best known source of estimation risk is the size estimate. There can be a high degree of uncertainty about the size of a software product early in a project. The degree of uncertainty should be identified and documented.

The Wideband Delphi Technique and Pert Sizing method described in Appendix C are two well‑known methods of determining the uncertainty of the software product size. The cost estimate should reflect this uncertainty and be documented and updated on a regular basis. As previously mentioned in the size estimation section, early on in a project it is a good idea to develop a range of size estimates rather than a static number.

Figure 2-7.
Highlights of Risk Assessment

Estimates for the amount of code that can be reused is also a source of error and risk in estimating software cost. Estimators tend to be overly optimistic about the effort that will be necessary to adapt the existing code. They often assume only a 10% change to a program's design and code will be necessary when in fact the changes are often more than 50%. Other common factors that commonly contribute to size, cost and schedule risk are optimistic assessments of the software development environment and staff, and misunderstood or constantly changing requirements. The risk assessment should be redone each time the project estimate is updated, i.e., monthly and after any major redirection of the project by the customer. The risk assessment update should not concentrate only on the risk areas identified originally. For instance, an off-the-shelf-software package may not be performing as originally assumed. If such an occurrence may cause a problem, such as a slip in schedule, it should be noted. Each time an estimate is done, the assumptions and inputs should be updated to reflect the most current information.

f. Output.

Project risks. Revised software estimates based on project risk factors.

g. Exit Criteria.

Project risks have been documented in the Software Development Plan (SDP), the Software Estimation File (SEF) or Software Development Folder (SDF), and the WBS. Software estimates have been revised to reflect the incorporation of project risk factors and have been documented in the SEF.

h. Metrics.

Number and classification of risks. Time and effort expended on risk analysis and in developing alternative size, cost and schedule estimates.

2.2.5 Inspect/Approve
The process used to inspect/approve is discussed in this section and is illustrated in Figure 2-8.

a. Purpose.

Improve the quality of the estimate and get upper management commitment. The objectives of the inspection and approval of the estimate are:

- Confirm the software architecture and functional WBS.

- Verify the methods used for deriving the size, schedule and cost estimates.

- Ensure that the assumptions and input data used to develop the estimates are correct.

- Ensure that the estimate is reasonable and accurate given the input data.

- Formally confirm and record the official estimates for the project.

b. Responsible Personnel.

Quality Assurance, upper management, project manager, software estimators, and software engineers.

c. Entrance Criteria.

Completed software estimate.

Figure 2-8.
Highlights of Inspect/Approve Estimate

d. Input.

Software estimates, including input parameters, project risks, project constraints, and any assumptions associated with the estimate.

e. Activities.

Inspection and approval should be accomplished by a process similar to the Formal Inspection Process (see NRaD Formal Inspection Process). The inspection meeting should be attended by the personnel that developed the estimate, at least one other software engineer from the same project, a software engineer with experience on a similar project, and a management representative, Division level or higher or a person from an independent SQA organization.

Software estimators, the project manager, and quality assurance or upper management will sign the estimate after the inspection is complete and all defects have been resolved.

Note: Inspection and approval activities can be as formal or informal as you want them to be. What is important is that the estimates are reviewed independently.

Most project managers do not inspect and approve their estimates. This invariably leads to poor and inaccurate estimates. Also, upper management is often times unaware of the estimates that project managers are submitting. We can improve estimates simply by having the appropriate personnel participate in the validation process.

f. Output.

Signatures of the software estimators, project manager, and upper management and/or QA on the software estimate.

g. Exit Criteria.

Software estimates have been reviewed and approved by the software estimators, project manager, and quality assurance group and/or upper management.

h. Metrics.

Number of defects found in estimate. Effort and resources expended inspecting and approving the estimates.

2.2.6 Track Estimates

The process used to do track estimates is discussed in this section and is illustrated in Figure 2-9.

a. Purpose.

Check the accuracy of the estimate over time, and to develop a historical file of your estimates.

b. Responsible Personnel.

Software estimators, project manager, and software engineers.

c. Entrance Criteria.

Completed and approved estimate.

d. Input.

Approved software estimate, SEF, SDP, and WBS.

Figure 2-9.
Highlights of Track Estimates

e. Activities.

Compare current estimate to previous estimates. Resolve any discrepancies with previous estimates. Document tracking data in the SDP or the SEF. Estimates should be tracked over time. Comparing planned versus actual estimates over time allows the estimators to see how well they are estimating and also to see how their project is changing over time. If you never track your estimates, how do you know if you are doing a good job of estimating? The development of the SEF allows the estimator to develop a historical data base of estimates. This historical data base can be used by the estimator to either calibrate cost models or can be used for purposes of comparison when performing estimates for future projects.

The SEF should contain summaries of all estimates, tracking summaries, copies of memos, etc. that relate to the estimation process, and copies of detailed estimate data, i.e., assumptions, inputs and results.

The SEF should contain the following: (A sample format for collecting the cost history summary data is shown in Appendix G.)

- Method of estimation

- Dates of estimates

- Proposed dates for major reviews, e.g., PDR, CDR, TRR

- Number of CSCIs

- Number of SUs

- Number of Objects (if Object Oriented Analysis/Design methods used)

- Estimated size for new and reused code

- Estimated schedule for each major phase

- Estimated cost

- Estimated amount of documentation by page per document

- Project risks

Note: Estimation information does not have to be put in a stand-alone Software Estimation File (SEF). It can be included in the Software Development Plan (SDP) or even the Software Development Folder (SDF).

f. Output.

Updated tracking data documented in the Software Estimation File (SEF) or SDP. Evaluation of comparisons between current and past estimates documented in the SEF or SDP.

g. Exit Criteria.

Estimates have been tracked and any discrepancies between present and past estimates have been accounted for.

h. Metrics.

Variation of estimates over time. Effort and resources expended in tracking estimates.

2.2.7 Process Measurement and Improvement
The process used for Process Measurement and Improvement is discussed in this section and is illustrated in Figure 2-10.

a. Purpose.

Use the metrics collected during each step of the software estimation process to improve the process.

Figure 2-10.
Highlights of Process Measurement and Improvement

b. Responsible Personnel.

Software estimators, project manager, software engineers.

c. Entrance Criteria.

Estimations have been completed and approved and metrics have been collected during each step of the estimation process.

d. Input.

Metrics from each of the steps of the software estimation process, previous estimates.

e. Activities.

Two forms of measurement will be accomplished. The first, called process effectiveness metrics, is used to track the effects of the process on the project. The second set of metrics, called process cost metrics, is used to provide management with insight into the cost of implementing and performing this process. The long term benefit of collecting these metrics is to determine a correlation between the overall accuracy of the estimates and the cost of developing the estimates. This information is another input to the resource requirements of a project and should be identified as such.

The collection of these metrics will begin as soon as the process is implemented and will continue throughout the development cycle. Collection of the metrics will continue through the final phases of development even though estimation activity declines in those phases. These metrics are described below.

1. Process Effectiveness Metrics
The purpose of the Process Effectiveness Metrics is to identify the elements of the estimation process that enhance the estimation process and those elements that are of little or no value to the planning and tracking processes of a project. Process elements or activities that enhance the process are those that provide the greatest accuracy regarding the actual cost and schedule as well as cost and schedule to completion of a project. Conversely, those elements or activities that do not enhance the accuracy of the estimates need to be isolated and eliminated.

The Process Effectiveness Metrics consist of the variances between most recent estimates and the baseline estimates. A format for recording the data items for which the variances are recorded are shown in Table 2-1 below.

Table 2-1.
Process Effectiveness Metrics

Baseline
Update
Variance

Size Estimate: New Code

Size Estimate: Reused Code

Cost Estimate

Schedule Estimate

Number of CSCIs

Number of SUs

Documentation page count

2. Process Cost Metrics
The purpose of the Process Cost Metrics is to quantify the cost of the process and identify ways to increase the cost-effectiveness of the process. Elements or activities that cost-effectively enhance the project planning and tracking process will remain intact while those that are of little or no value to the planning and tracking processes of a project will be eliminated. Process elements or activities that are cost-effective are those that provide meaningful input to the planning and tracking process with a minimum amount of work effort. Conversely, those elements or activities that require effort but do not return meaningful data need to be isolated and eliminated.

The elements and definitions of the Process Cost Metrics are divided into two categories: effort to perform the estimates; and the cost of tools. The effort metrics include the person hours for

- Size Estimate

- Cost/Schedule Estimate

The cost of the tools is a summation of the following:

- Purchase Price

- Training Cost

- License Renewal

- Special Hardware

- Consulting Fees

These metrics should be collected for each estimate developed.

NOTE: Collecting and analyzing metrics are key to process improvement efforts. Use metrics to evaluate every step of the process. Change process steps as needed and don't be afraid to delete steps if they are found to have no added value.

f. Output.

Process improvement activities have been planned and documented.

g. Exit Criteria.

Metrics have been analyzed and process improvement activities have been planned.

h. Metrics.

Effort expended analyzing metrics and planning and implementing process improvement activities.

SECTION 3.
SOFTWARE ESTIMATION PROCESSES IN THE SOFTWARE LIFE CYCLE
The estimation process is described for each phase of a typical software development project. As the project progresses through the phases, the estimation process graduates from a process of project planning to a process of project management and tracking. Thus, descriptions of the estimation process for each phase cover up to the Software Unit (SU) Integration and Test Phase.

Software estimation inputs and outputs are included for each of the major phases addressed here. The entry criteria required for estimates consists primarily of a set of minimum input data necessary to satisfy the data requirements of a size, cost, and schedule estimate for that phase. The exit criteria is generally a set of products that must be complete before the estimation activity is considered complete for that phase.

The inputs and outputs included for these phases addresses the general needs for a standard full scale development project. Inputs and outputs by phase for a full scale development project are summarized in Table 3-1.

The software estimation process described is summarized in Table 3-2 and Figure 3-1. These exhibits highlight the steps necessary to establish a formal project estimate and for revising and tracking the estimate throughout the life of the project. The table also provides potential products that may result from each step of the process as well as potential problems that may result if a step is not accomplished. A more detailed explanation of the estimation process activities by phase is given in section 3.1

Table 3-1.
Estimation Inputs and Outputs by Phase

Phase
Input
Output

Concept
Prelim Reqmnts
Proj. level cost/sched ests.

Prioritized list of functions

Prelim cost/sched risk anlys

Plan for future estimates

Prelim top-level WBS

Acquisition
Prelim Reqmnts
Draft SDP

Proj. level cost/sched ests.

Prioritized list of functions

Prelim cost/sched risk anlys

Top-level WBS

SW Estimation File

Requirements
SDP
Estimates to CSCI detail

Cost/Sched ests. by phase

Detailed cost/sched risk anlys

WBS to CSCI level

Updated SW Estimation File

Design
Updated SDP
Detailed cost-to-compl ests.

 SW specifications
Detailed phase estimates

Detailed cost/risk anlys

WBS to SU level

CUT / Integration /
Updated SDP
Detailed Cost-to-compl ests.

 Acceptance & Transition
Updated size ests.
Detailed phase estimates

Detailed cost/risk anlys

Detailed WBS to SU level

Table 3-2.
Software Estimation Process by Phase
I. CONCEPT PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Define preliminary system functional requirements
Prioritized list of potential functions
Future requirements traceability problems

2. Establish method to estimate resources
Plan of action
No specific course of action on how project resources will be estimated

3. Identify similar functions from completed projects
List of functions w/historical data
Lack of understanding of complexity & scope of project

4. Develop size estimates for the functions with historical data
Size estimates for familiar functions
Increased uncertainty in scope and cost of project

5. Develop size estimates for new functions
Preliminary size estimate for total software product
Lack of basic parameter for cost/schedule estimate

6. Develop low, nominal, and high cost/schedule estimates
Preliminary budget & schedule requirements
Lack of control in forecasting and justifying budget requirements

7. Identify potential cost, size, schedule risk areas
Definition of areas of uncertainty
Unrealistic expectations

8. Review/Refine with project personnel and repeat steps 2-6 as necessary
Estimations with increasing credibility
Preliminary estimate will continue

II. ACQUISITION PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Clearly and concisely define software requirements
Understandable software requirements
Future Requirements traceability problems

2. Establish software estimate file
Preliminary format to document all future estimates
Lack of traceability for budget justifications

3. Develop preliminary WBS
Top level functional WBS
Lack of method to track progress

4. Develop baseline software estimates
Independent cost estimate
No foundation to verify other estimates

5. Develop risk profile
Definition of risk factors, monitoring & contingency procedures
Higher probability of future cost/schedule overruns due to unforeseen problems

6. Conduct formal review or inspection of estimate
Estimate agreed to and validated by the project team
Unconfirmed or inconsistent process

7. Refine and record estimates on a periodic basis
Establishment of cost metrics
Lack of management indicators for monitoring cost, size, schedule trends

III. REQUIREMENTS PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Develop detailed WBS
WBS that breaks work down by major function
Lack of definition of finite units of work

2. Develop baseline estimates by phase
Baseline estimate for basis of project cost/schedule tracking
Incomplete project plan

3. Update/Revise risk assessment
Comprehensive plan to monitor and neutralize potential risks
Unrealistic optimism and lack of visibility

4. Conduct formal review or inspection
Validated estimate agreed to by management
Unconfirmed estimate

5. Refine and record software estimates
Final format of method to track cost and schedule
Lack of a formal vehicle to monitor project cost/schedule

IV. DESIGN PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Refine WBS as necessary
Detailed WBS that accurately reflects the project tasks
Possible misconceptions regarding task breakdown and progress

2. Develop cost-to-complete estimates
Increased accuracy of software product size, schedule, and costs
Lack of validated estimates derived from most recent information

3. Update/Revise risk assessment
Improved insight into potential problems
Reliance on outdated information

4. Conduct formal review or inspection
Validated estimate agreed to by management
Lack of formal vehicle to track cost/schedule

5. Refine and record estimates
Timely and accurate cost status
Inability to recognize potential overruns

V. CODE & UNIT TEST PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Review/Refine detailed WBS
More accurate task breakdown for final phases of the project
Possible misconceptions regarding task breakdown and progress

2. Update/Revise cost-to-complete estimates
Realistic estimate of cost-to-complete
Lack of visibility into potential cost & schedule problems

3. Update/Revise risk assessment
Risk profile that reflects current stage of project
Reliance on outdated information

4. Develop preliminary estimate for software O&M
Preliminary inputs to CRLCMP
Visibility necessary for turnover to Operations

VI. INTEGRATION PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Review/Refine detailed WBS
Increased awareness of O&M issues
Lack of visibility into current & future issues

2. Update/Revise cost-to-complete estimates
Realistic estimate of cost-to-complete
Lack of ability to perform cost/schedule trend analysis

3. Update/Revise risk assessments
Risk plan that addresses current issues
Increased probability of unexpected problems & lack of contingency plans

4. Update/Revise estimates for software O&M
Revised CRLCMP
Non-comprehensive understanding of O&M issues and needs

VII. ACCEPTANCE TRANSITION TO OPERATION PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Close out development metrics: Final cost, schedule, WBS, etc.
Final report for project
No history to pass on to future projects

2. Update O&M estimates/WBS
Baseline estimates/WBS for O&M
Reliance on outdated information

VIII. POST DEPLOYMENT/ SSA PHASE

ACTION
PRODUCT
IF NO ACTION TAKEN

1. Review/Refine estimates/WBS
Updated baselines
Reliance on outdated information

2. Institute O&M metrics collection program and data base
Process to continually enhance estimate of future O&M resource requirements
Lack of O&M data for cost trend analysis

Figure 3-1.
Software Estimation Activities by Phase

3.1 Explanation of Estimation Process Activities by Phase

The explanations of the estimation activities pertinent to the phases of the software development life cycle are described below. Entry and exit criteria is also included for each of the major phases. The sections are numbered to correspond to Table 3-2 to allow easier cross referencing from the summary provided in the table to the more detailed explanations below.

I. CONCEPT PHASE

It is during this phase that the functional description of the system is loosely defined. There is often a great degree of uncertainty about the probable requirements of the project and thus much uncertainty of the final product's size. Usually during this period, several options are analyzed and then evaluated for technical and cost advantages and disadvantages.

Entry Criteria - The only entry criteria for this early phase is that the preliminary functional requirements be available. A preliminary, top-level estimate can be derived without a detailed understanding of the final product. The estimate cannot be expected to be extremely accurate but can provide a range of costs suitable for long term budget and cost estimating.

I.1 Define Preliminary System Requirements - An initial set of requirements should be documented. These preliminary requirements are usually ambitious and should be treated as a wish list of functionality. The requirements should be prioritized in separate categories that denote those functions that are absolutely necessary from those that are nice-to-have. The functions should be defined in such a manner as to reflect similar existing functions as much as possible.

I.2 Establish Method of Estimation - Early in the life of the project, methods of developing software estimates should be explored and experimented with. Once a method is adopted, it should be used in a consistent manner until estimates are replaced by actual data or until the method is found to be deficient or can be improved. Section 4.0 describes the implementation of the estimation process.

I.3 Identify Similar Functions - Software systems that perform functions similar to the desired functions should be identified. Functions that do not resemble some existing function should be broken down to as low a level as possible to separate out all of the new functionality. Reducing the number of unknowns in a new system will decrease the uncertainty of the estimated cost of the project.

I.4 Develop Size Estimates from Historical Data - A most likely size estimate should be developed for each major CSCI. An upper and lower size estimate should also be defined which reflects the degree of confidence in the most likely estimate. Software size estimates can be derived manually or with the help of software sizing tools. Historical data should be used as much as possible. Size information that can be gleaned from existing systems will be the most accurate.

I.5 Develop Size Estimates for New Functions - For functions that do not have a similar existing function, size estimating by analogy can be utilized, i.e., identify functions that have some similarity. Functions which have the greatest range of uncertainty in size should be decomposed into smaller units that reflect an increased confidence in the size estimate. An additional reference point can be derived with a software size estimation tool.

I.6 Develop Preliminary Estimates - Cost, size and schedule estimates should be developed for the total proposed functionality. Estimates should be developed manually from the estimates of product size and complexity derived in I.4 and I.5. The total estimate should be developed in a bottom-up approach, i.e., cost and schedule estimates should be developed for each of the major functions defined in I.1. Once a manually derived estimate is complete, a second estimate should be developed with an automated estimation model. This second estimate will serve as a sanity check of the manual estimate. Commercially available models offer the benefit of varying input parameters to quickly observe the effect on a project's cost and schedule.

I.7 Define Areas of Risk - Risks can be separated into several categories. Three categories most often addressed are: technical, personnel, and requirements. All three of these categories will impact the cost and schedule of a project. Defining and addressing specific potential impacts to cost and schedule early will highlight issues that need to be addressed and tracked throughout the project.

When an overall baseline estimate is complete, the impacts on the estimate as a result of the risk areas identified should be applied. A best case scenario will demonstrate the lowest cost and shortest schedule if all elements of the project proceed without perturbation. A worst case scenario will demonstrate the potentially high cost and long schedule that will result if numerous problems occur and risks are not abated.

I.8 Review & Refine Estimate - The development of the requirements and the cost estimate to complete the project is an iterative process. The implementation of the requirements is dependent upon many factors including cost and schedule. Thus, the impact on cost and schedule should be closely tracked as alternative requirement sets are considered.

Each set of requirements should result in a revised project cost and schedule estimate. Estimates should be developed that reflect alternative requirement scenarios, i.e., reduced estimates to show effect of eliminating low priority functions.

Exit Criteria - The software estimation activity for this phase is complete when a top-level size, cost, and schedule estimate for the total software project has been completed. The exit criteria also includes a prioritized list of the potential software functions, definition and analysis of potential high risk cost and schedule factors, and a plan for developing all future estimates for the project. The plan will describe estimation methods and tools to be utilized by the project as well as the method of tracking to be used.

This information should be included in the Software Estimation File (SEF) or the Software Development Plan (SDP). The SDP should also include a top-level WBS, i.e., the major activities associated with software development: design, code, test, configuration management, SQA, etc. The estimate should be approved and signed off by the software estimators, project manager, upper management and/or a Quality Assurance representative.

II. ACQUISITION PHASE

It is during this phase that the system specification or requirements specification of the system is defined. There is often a great degree of uncertainty about the probable size of the final product. Usually during this period, several options are defined and then evaluated for technical and cost advantages and disadvantages.

Entry Criteria - Preliminary estimates based on the preliminary requirements from the preceding phase should be available. The preliminary estimates should address the total size, cost and schedule of the software product. The functional description and requirements should now be complete and concise enough to refine the previous estimates to a range of +20% of the expected values.

II.1. Define the Software Requirements - This is not necessarily a formal step in developing an estimate, rather it is something that must be generated for any project. The requirements must be clearly understood before even the most cursory estimate can be accomplished.

II.2 Establish Software Estimation File - Project estimates and all supporting data should be formally documented and maintained. These initial estimates can be informally documented at this time, i.e., the format can be refined at the beginning of the Requirements Phase. This can be accomplished in the form of a separate Software Estimation File (SEF) or as a distinct part of the Software Development Folder (SDF).

Whichever method is used, the documentation should include a description of all input data, clear and concise definitions of data items, acronyms relative to the project, assumptions and constants, the estimation method used, and computer outputs if an automated estimation tool was used.

II.3 Develop Preliminary WBS - A Work Breakdown Structure (WBS) (see Appendix A) should be developed that shows the activities related to the development of each major software function. At this early stage in the project, it is sufficient to show the activities and products identified in the MIL-STD-498 software development model.

The WBS along with the method used to track the cost and schedule status of each WBS line item should also be documented in the SEF or SDF. If a project management tool is used, hard copies of the baseline plan plus each major revision should also be retained in the SEF.

II.4 Develop Baseline Software Estimates - Estimates should be developed and documented that reflect the baselined project software requirements. The methods used during the Concept Phase should be reviewed to determine their adequacy. The methods that are going to be utilized throughout the remainder of the project should be agreed to at this time. Copies of all estimates, manual or otherwise, should be retained in the SEF.

II.5 Develop Risk Profile - A risk assessment profile shall also be developed that shows a range of cost and schedule estimates in order to assess the impact on the project for variations of unknowns in the project. Typical variables that should be considered in developing a risk profile include code size growth, complexity, requirements volatility, data security requirements and number of organizations involved.

II.6 Conduct Formal Review - A formal review, such as the NRaD Formal Inspection Process can be followed to review the estimation methods. The estimates will be reviewed for reasonableness of assumptions and input data. Risk profiles and assessments will also be reviewed.

II.7 Refine and Record Estimates - Estimates should be refined and recorded as often as any changes in requirements occur or whenever any change in direction or scope of the project occurs. All estimates and revised schedule milestone dates should be recorded. A sample format for recording estimates is shown in Appendix G.

Exit Criteria - The software estimation activity for this phase is considered complete when size, cost, and schedule estimates have been completed and a top-level WBS has been defined. These estimates and the WBS can be included in the Software Development Plan (SDP). A separate Software Estimation File (SEF) can also be established and should contain the estimates and all information and assumptions used to develop the estimates. If a separate SEF is not established, then all of the estimation information should be recorded in the SDP or the SDF. The exit criteria also includes a prioritized list of the potential software functions, a risk analysis of cost and schedule risks.

The estimate should be approved and signed off by the software estimators, project manager, upper management and/or a Quality Assurance representative.

III. REQUIREMENTS PHASE

During this phase, detailed software requirements activity begins. It is important to ensure that all functional software requirements are traceable to the next higher level specification. It is during this phase that a good functional breakdown of the software product is developed. Functions should be prioritized in order to develop a thorough and realistic cost estimate for the project. A concise and clear set of prioritized set of requirements will also enhance the completeness of a risk assessment. A complete estimate of size, cost, and schedule should be developed for all development and acquisition options. Such estimates should be developed immediately prior to any formal requirements reviews.

Entry Criteria - The SDP should be available and include an estimate for the total software product, a WBS, and a preliminary cost and schedule risk analysis. The functional description for the product should be clear enough to develop preliminary estimates for the size, cost and schedule of the CSCIs.

III.1 Develop WBS - Early in the Requirements Phase a WBS should be generated that reflects adequate detail to generate an estimate down to at least the software CSCI level. The initial WBS should address the cost and schedule associated with each major function or CSCI.

III.2 Develop and Record Baseline Requirements Phase Estimate - New estimates should be generated and recorded. Each new estimate should be compared with the last estimate and with the Baseline estimate from the previous phase. New estimates should be based on the revised WBS and requirements.

III.3 Update/Revise Risk Assessment - The cost estimate should be reviewed as often as the risk assessments are refined. The high risk variables that should be constantly reviewed include code size, complexity, requirements volatility, data security requirements, state-of-the-art, and number of organizations or agencies involved.

III.4 Conduct Formal Review - A formal review, such as the NRaD Formal Inspection Process can be followed to review the estimation methods. The estimates will be reviewed for reasonableness of assumptions and input data. Risk profiles and assessments will also be reviewed.

III.5 Refine and Record Estimates - Estimates should be refined and recorded as often as any changes in requirements occur or whenever any change in direction or scope of the project occurs. All estimates and revised schedule milestone dates should be recorded in the SEF, SDF, or SDP.

Exit Criteria - The software estimation activity for this phase is considered complete when a detailed cost, size and schedule has been completed for each CSCI. The CSCI estimates should be calculated for each phase of the project. The CSCI estimates should be rolled up into an estimate for the total software product. The previously developed prioritized list of the potential software functions and analysis of cost and schedule risks shall also have been updated to reflect the most recent information.

The WBS should be refined to include detailed planning information down to the CSCI level. The SDP and SEF shall be updated. The estimate should be approved and signed off by the software estimators, project manager, upper management and/or a Quality Assurance representative.

IV. DESIGN PHASE

The Design Phase begins after the software requirements have been defined, reviewed, and documented in the Software Requirements Specification. There are two major reviews that occur during the Design Phase, the Preliminary Design Review (PDR) and the Critical Design Review (CDR).

In addition to these two major reviews, medium to large projects require periodic technical progress reviews. These reviews often result in refined requirements, better understanding of the original requirements or sometimes a redirection.

Size, schedule, and cost estimates should be revised prior to the PDR and CDR. Estimates should also be reviewed and revised if necessary prior to any technical review.

Entry Criteria - The minimum entry criteria for this phase are the Software Development Plan and the Software Requirement Specifications which should be available at the completion of the Requirements Phase. Detailed cost, size and schedule estimates by phase to the CSCI level and the WBS to the CSCI level should also be available from the previous phase.

IV.1 Develop Detailed WBS - Early in the Design Phase the top level WBS should be expanded to reflect the software design down to the SU level. The WBS should contain adequate detail to generate an estimate down to at least the SU level. The detailed WBS should address the cost and schedule associated with each major function, CSCI and SU. The format of the WBS should be such that the aggregate costs of SUs can be rolled up to produce the total cost of each CSCI.

IV.2 Develop and Record Baseline Design Phase Estimate - New estimates should be generated and recorded. This will often be a revision of the last estimate from the Requirements Phase. The revised estimate should be compared with the Baseline estimate from the previous phase. Any new estimates should be based on the revised WBS and a better understanding of the requirements.

IV.3 Update/Revise Risk Assessment - The risk assessment profile should be reviewed as often as the software estimates are refined. The high risk variables that should be constantly reviewed include code size, complexity, requirements volatility, data security requirements, state-of-the-art, and number of organizations or agencies involved.

IV.4 Conduct Formal Review - A formal review, such as the NRaD Formal Inspection Process can be followed to review the estimation methods. The estimates will be reviewed for reasonableness of assumptions and input data. Risk profiles and assessments will also be reviewed.

IV.5 Refine and Record Estimates - Estimates should be refined and recorded as often as any changes in requirements occur or whenever any change in direction or scope of the project occurs. All estimates and revised schedule milestone dates should be recorded in the SEF, SDF, or SDP.

Exit Criteria - The software estimation activity for this phase is considered complete when a detailed cost-to-complete cost, size, and schedule estimate has been completed for each CSCI. The cost-to-complete estimates should be calculated for the remaining phases of the project. The CSCI cost-to-complete estimates shall be rolled up into an estimate for the total software product. The estimates and WBS should include information to the SU level of detail. The previously developed prioritized list of the potential software functions and analysis of cost and schedule risks should also have been updated to reflect the most recent information.

The Software Development Plan, Software Estimation File and Software Development Folder should be updated as appropriate. The estimate should be approved and signed off by the software estimators, project manager, upper management and/or a Quality Assurance representative.

V. CODE & UNIT TEST PHASE,
VI. INTEGRATION PHASE, and
VII. ACCEPTANCE/TRANSITION TO OPERATION PHASE

The processes for these subsequent phases are accomplished in the same manner as described for the design phase. By the time the project reaches these phases estimates should be giving way to actuals and the processes should be instantiated to the degree that minimal effort is involved in updating the cost-to-complete estimates.

VIII. POST DEPLOYMENT PHASE

There are various methods for estimating the cost of software maintenance. The most often used method is to calculate maintenance cost as a percentage of the software development cost. This can be accomplished by estimating the Annual Change Traffic (ACT), i.e., an estimate of the amount of code that will be changed each year. This method is acceptable during the early phases of the project's life cycle. As the project's development nears completion however, more precise methods should be employed.

Maintenance costs may be broken down into three categories: corrective, perfective, and adaptive. Corrective maintenance involves fixing errors. In adaptive maintenance, changes are made to accommodate different data or processing environments. Perfective maintenance includes changes that improve the program.

The total cost of software maintenance is the sum of these costs. As in software development estimates, the maintenance cost estimates should be derived based on past experience. The cost of corrective maintenance will depend on the quality of the software. Software that is fielded with a great number of defects will result in a great number of software trouble reports which in turn could potentially result in high maintenance costs. However, maintenance activities typically do not get funded adequately to eliminate all errors as they are reported. The highest priority defects are repaired first followed by the lower priority defects.

3.2 Additional Modes of Software Development

The process described above is tailored to the standard waterfall, full scale development method that is most commonly used when discussing project planning and management concepts. However, other types of development that are common at NRaD include prototyping, evolutionary acquisition, technology insertion, incremental development, and R&D. The detailed nuances of how development proceeds under each of these modes of development is beyond the scope of this document. However, some general considerations that should be made for the estimation process under each of these modes is discussed below.

3.2.1 Prototyping

Prototyping as a method to evaluate the feasibility of technical ideas and theories has become increasingly popular and is a widely used development mode at NRaD as well as at other R&D centers. Developing a prototype is usually a distinct portion of the life cycle and thus sound software engineering practices should be followed including the development of a well-thought-out estimate. Just as the prototype will provide insight into the design and implementation issues, the estimate and cost of producing the prototype will provide insight into the cost of the overall project.

Developing a cost estimate for a Prototyping project should be accomplished in the same manner as for a full scale development project. The primary cost savings resulting from prototyping is the lack of formal reviews and documentation required. Also, there is a minimum of Systems Engineering and formal testing involved.

3.2.2 Evolutionary Acquisition (EA)

Evolutionary Acquisition (EA) is becoming the rule more than the exception in large scale development efforts. The thesis of "build a little, test a little" is seen as a way to develop systems that better satisfy user requirements and more easily take advantage of technical advances. The underlying factor in EA is to field a well-defined core capability quickly in response to a validated requirement, while using a phased upgrade program to eventually enhance the system to provide the overall system capability.

The process for estimating an EA project can be accomplished in the same manner as for a standard waterfall project. An EA project requires the same formality as any other method of development. Estimates should be developed for each phase or development cycle of an EA project just as they would be for a large Full Scale Development (FSD) project. During each phase of an EA project, two separate estimates shall be required, an estimate for the current phase and an estimate for the total project as it is understood and defined at that time.

3.2.3 Incremental Development

The incremental development approach is a top down implementation of distinct functional elements of the product. The development of each increment is accomplished as a separate waterfall type of development. This strategy allows visibility into potential design, interface problems, etc., early in the development cycle. It also provides the opportunity to incorporate user experience into the final product. The incremental development methodology differs from the evolutionary approach in that under the incremental strategy the end product is well-defined.

Estimates should be developed for the total project as well as for each of the increments. Each increment should be identified and sized. The estimates for each increment should be accomplished as for an individual waterfall development project. The estimate for the total project will have to show the overlapping of the increments. How the individual increments overlap may differ from project to project.

The establishment of size, cost, and schedule estimates for each increment will provide an overall estimate of the total project. As the first increments are completed, then the assumptions and estimates for the subsequent increments as well as for the total product can be revised to reflect a more accurate assessment.

3.2.4 Technology Insertion

Technology Insertion is the enhancement of an existing system through the introduction of new technology. The new technology to software systems is often the result of improved hardware. The new hardware is usually characterized by higher throughput, increased memory size, and will often have an improved operating system.

New hardware often provides the opportunity to also introduce a new version of the application software. The new version is usually characterized by improved functionality. The new software version is typically comprised of a significant amount of new code and modified existing code.

Technology Insertion projects are usually conducted the same as new development projects and thus will follow the generic estimation process contained herein. The primary difference however is the amount of existing software that is planned for reuse. The software developers are often optimistic regarding how much existing code can be used. The estimators should be conservative in their reused code estimates.

The developers may state that the target code to be reused will only need a 10-20% modification when in reality some of it may require a complete rewrite. One of the most common reasons for this development of new code is to take advantage of operating system and hardware enhancements. Another reason is that new programmers in the project may recode in accordance with more modern software engineering practices.

The uncertainty in the amount of effort for the reused code should be reflected in the cost/schedule risk analysis. A range of estimates should be generated that reflects the optimistic viewpoint and the conservative viewpoint. A detailed analysis of the existing code should be performed as early in the project as possible to ascertain the degree of rework actually required. An accurate estimate of the reuse effort will not be possible until the existing code is actually inspected by the programmer/analysts.

3.2.5 Research and Development

The Research and Development (R&D) project typifies projects that progress through the standard phases of the DoD acquisition process. These R&D phases and their typical activities are summarized in Table 3-3.

Software estimation activities follow the same basic process throughout the process, i.e., develop cost and schedule estimates based on estimates of product size. The differences lie in the level of certainty that can be expected during each of the phases. The estimates derived during mission area analysis are used to develop capability vs. cost tradeoffs. These early estimates are based on gross assumptions of size which are usually based on similar systems that are operational or under development.

The methods discussed herein for the full scale development mode also apply to the R&D mode. However, during the early phases of an R&D project, the emphasis is more on concept andtechnology tradeoffs vs. estimating the cost of a specific design.

Table 3-3.
R&D Phases and Activities

PHASE
ACTIVITIES

Mission Area Analysis
Mission analysis

Justification for new system

Program Objectives Memorandum

Concept Exploration
Concept studies

Preliminary System Specification

Proposed Statement of Work

System Requirements Review

Test & Evaluation Master Plan

Life Cycle Cost Review

Concept Demonstration
System definition

System Design Review

Decision Coordinating Paper

Test & Evaluation Master Plan update

Life Cycle Cost Review update

Full Scale Development
Reviews & products in accordance with
development standards such as MIL-STD-498:
Detail Design & Specification Reviews and Preliminary/Critical Design Reviews

Production & Deployment
Full scale production

SECTION 4.
IMPLEMENTATION OF THE SOFTWARE SIZE, COST, and SCHEDULE ESTIMATION PROCESS

Implementation of this process in a project is successful when the process is an automatic, integrated part of the project's planning and tracking process. SEPO has the responsibility of defining and providing training through individual or group tutorial sessions requested through SEPO and SEPO sponsored on-site courses (i. e. Software Project Management Course).

Project personnel have the responsibility of establishing the process as an integral part of their project and tailoring the process to their particular needs and circumstances. The following sections provide an overview of these roles.

4.1 SEPO's Role

SEPO's primary responsibility in implementing the Software Size, Cost, and Schedule Estimation Process at NRaD is to define, develop, and refine the estimation process. SEPO will provide training on the process and in estimation methods and the use of specific automated tools. Training will consist of individual or group tutorials. SEPO also sponsors on-site vendor supplied training.

The steps outlined below and in Table 4-1 provide a general method by which NRaD personnel obtain an understanding of estimation methods and how to implement the estimation process into their projects. The method of implementation outlined is a general process and needs to be tailored to satisfy the specific requirements of individuals and projects. The desired outcome of the implementation process is that project personnel will learn the foundation of a formal process by which to develop and track estimates for their projects. Through this process personnel will gain an understanding of the issues that affect software project costs and schedules.

Step 1 - Establish Initial Meeting
The first step of establishing the process in a project is for a project to contact SEPO to schedule an orientation meeting. Ideally, this initial meeting will be scheduled early in the project, i.e., during Concept Phase. However, this process may be implemented at any time during a project's life cycle. The meeting will include one member of SEPO and one to three members of the project team. A minimum of one hour should be reserved for this initial meeting to ensure that enough time to discuss basic issues of estimating and to get through a demonstration of at least one estimation model.

Step 2 - Typical Agenda for First Meeting
The main topics of the first meeting will include the software estimation process, estimation models in general, a demonstration of the REVIC (REVised Intermediate COCOMO) model, and if time allows, a demonstration of a more comprehensive model. Project personnel should be prepared to discuss their current assessments of the estimated cost and schedule of their project.

The discussion of estimation methods will include topics such as manual estimation methods, software cost drivers, software WBS, cost and schedule overruns experienced in the past by software projects and methods of recording, refining and tracking estimates, i.e., the Software Estimation File (SEF). Cost models in general, their advantages, pitfalls and shortcomings, will also be discussed. Also addressed will be similarities of cost models, e.g., reused code assumptions, various parameters, and assumptions related to schedules.

SEPO has established a repository of estimation models (see Appendix E) and an estimation capability that is available to all NRaD personnel. While it is not necessary that NRaD personnel utilize any of the cost models available in SEPO, personnel are highly encouraged to use a model. Models are very helpful in helping to understand the many variables involved in software development.

A demonstration of REVIC will be given utilizing actual project data if available. The purpose of the demonstration will be to highlight how models can be used to quickly develop an estimate and then observe the impact on the cost and schedule of changing parameter values and the cost implications of different modes of development. Parameters of special interest that are always discussed include personnel attributes and requirements volatility.

After the REVIC is demonstrated, if time permits, a more comprehensive commercially available model is demonstrated. The differences and similarities of the models are discussed and the estimates generated by the two models are compared and evaluated.

Step 3 - Project Develops Independent Estimate
Project personnel develop an estimate on their own using manual methods and an automated model such as REVIC. Manual methods should be done first, so that the estimation model does not influence the manual estimate. This may be an iterative process that sees the estimate get more and more refined as more information becomes available.

Step 4 - Validation of Estimate
When an estimate is considered complete, it is validated by conducting a formal review or inspection of the estimate. The purpose of the validation is to determine if the estimate is reasonable, that the input data and assumptions are valid, and to discuss areas of potential cost and schedule risk. After the validation is complete and an estimate has been approved, it should be documented along with pertinent input data and related information in the SEF.

Table 4-1.
Implementation of Software Size, Cost, and Schedule Estimation Process

STEP
ACTION
OUTCOME

1
Project personnel contact SEPO to arrange a one hour meeting to discuss the estimation process, estimation methods and tools
Meeting set

2
Meet with SEPO. Typical agenda is:

- Discussion of estimation process
Checklist & Estimate Worksheets

- Discuss application of estimation models
Appreciation of benefits and limitations of models

- Demonstration of REVIC model using project inputs
Sample REVIC estimate and a copy of REVIC

- Brief demonstration of a more comprehensive model
Estimate from a 2nd model

3
Project personnel develop independent estimates, first manually, then with REVIC and establish an SEF
Initial est. and first hand experience with a cost model

4
Validate the estimates
Refine estimates

5
Call SEPO for assistance as needed
Project receives additional model if desired

4.2 The Project's Role

The responsibility for producing reasonable estimates will always rest with the project itself. It is the responsibility of the project manager to incorporate the process into the project. Project personnel will assure that the most accurate and complete information available is utilized to develop the initial and all subsequent estimates. The project manager will ensure that the estimates are included in the project plan and that estimates are developed by at least two people and reviewed and updated on a continual basis – monthly and prior to major project reviews.

APPENDIX A

SAMPLE WORK BREAKDOWN STRUCTURE for SOFTWARE

The following Work Breakdown Structure is from the SEPO Project Control and Tracking Process and is oriented to the development of a MIL-STD-498 or DoD-STD-2167A software product. It is very detailed and is meant to be tailored to each project's specific tracking needs and requirements. The WBS contains adequate detail to enable tracking tasks with a duration as small as two to three weeks.

PROJECT MANAGEMENT

Project Management Plan

Define task execution plans

Define project schedule/milestones

Define prelim SW functional reqts

Develop project WBS

Define SW mgmt metrics process

Define/allocate project functions

Hardware engineering

Software engineering

Configuration Management

Software Quality Assurance

IV&V

Project support

Software metrics

Determine staffing

Determine SWE tool requirements

Determine training requirements

Plan activities/reviews

Management Reporting

SOFTWARE ESTIMATION

Preliminary project estimate

Establish resource est. method

ID similar functions/old projects

Find hist. component sizes

Develop new function sizes

Identify potential risk areas

Develop cost/schedule est. variance

Review/refine with project personnel

System Requirements Phase Estimate

Establish software estimate file

Develop top-level SW reqts WBS

Develop baseline software estimates

Formal inspection of estimate

Refine/record estimates

Software Requirements Phase Estimate Update

Develop top-level design WBS

Develop baseline reqts phase estimates

Conduct formal inspection of estimate

Refine/record estimates periodically

Design Phase Estimate Update

Develop detailed CUT WBS

Develop baseline CUT estimates

Formal inspection of estimate

Refine/record estimates periodically

Code and Unit Test Phase Estimate Update

Update detailed WBS

Update/revise estimates

Update/revise risk assessment

Develop preliminary O&M estimate

Formal inspection of estimate

Integration Phase Estimate Update

Update detailed WBS

Update/revise estimates

Update/revise risk assessment

Update/revise O&M estimate

Formal inspection of estimate

Post-Deployment Phase Estimate

Close out/report final cost/schedule/size

RISK MANAGEMENT

Preliminary Risk Management Plan

Identify potential risk areas

Analyze risk areas

Prioritize risks

Identify risk tracking metrics

Write Plan

Risk Management Plan review/inspection

Update Risk Management Plan

Baseline Risk Management Plan

Update/revise risk assessment

SOFTWARE METRICS

Software Metrics plan

Tailor basic metrics process

Define risk metrics process

Update/revise Metrics Plan

Track/analyze cost/schedule variance

Track/analyze progress

Track/analyze code size

Track/analyze documentation size

Track/analyze requirements testability

Track/analyze requirements traceability

Track/analyze ECP/SCNs

Track/analyze build/release content

Track/analyze staffing

Track/analyze computer resource util.

Track/analyze defects

Formal reports

Report final project analysis

SYSTEM ENGINEERING

Analyze operational reqts

Hardware/software trade-off studies

Sizing/timing studies

Define computer resource constraints

Memory

Throughput

I/O channel utilization

I/O throughput

Storage

Database overhead

Identify risks

Preliminary SSS

Define system states

Define modes of operation

Define system capability

Define external inter. reqts

Write external interf. descripts

Define physical characteristics

Define system quality reqts

Reliability

Maintainability

Availability

Environmental conditions

Transportability

Flexibility and expansion

Specify design/construct reqts

Define system workmanship reqts

Define system interchange reqts

Define system safety reqts

Define system security reqts

Determine GFE

Define comp resource reserve capacity

Define system logistics

Specify personnel reqts

Define training reqts

Determine for each System/Segment

Purpose

Description

Identify capabilities

Identify reqts precedence

V&V reqts

QA provisions

Inspection responsibility

Special Tests and exams

Requirements cross reference

Preliminary IRS

Identify HWCIs/CSCIs interfaces

Draw interface diagram(s)

Identify for each interface

Timing

Protocol

Priority

Unit of measure

Limits/ranges

Data elements

Precision

SSS/IRS inspection(s)/review(s)

System Requirements Review

Update SSS

Baseline SSS

Update Preliminary IRS

CONFIGURATION MANAGEMENT

Preliminary CM Plan

CM Plan review/inspection

Update CM Plan

Baseline CM Plan

Set Up CCB

Conduct/maintain CS accounting

Prepare CSR

Conduct FCA

Conduct PCA

Process ECPs

Process SCNs

Generate inputs to the SVD

Prepare Version Control Reports

SOFTWARE QUALITY ASSURANCE

Preliminary SQA Plan

Plan SW quality metrics process

SQA Plan inspection(s)/review(s)

Update SQA Plan

Baseline SQA Plan

SOFTWARE DEVELOPMENT PLAN

Preliminary SDP

Define formal review procedures/criteria

Define Software Development Library procedures

Define corrective action process

Define Problem/Change Report Format

Define design standards

Define coding standards

Define testing approach

Define requirements traceability process

SDP inspection(s)/review(s)

Update SDP

Baseline SDP

INTERFACE REQUIREMENTS

Analyze Preliminary IRS

Interface Design Document

Interface 1 - N define

Data elements

Message descriptions

Priority

Communications protocol

Interface inspection(s)/walkthrough(s)

Interface rework

Interface Design Document inspection(s)

IDD rework

Participate in PDR

Update Interface Design Document

Baseline Interface Design Document

DATABASE REQUIREMENTS

Preliminary Database Design Document

Analyze database requirements

Identify data requirements

Perform database studies

Database Design Document inspection(s)

Participate in PDR

Update Database Design Document

Baseline Database Design Document

DEVELOPMENTAL SOFTWARE

Analyze system requirements

Identify software requirements

Determine derived software requirements

Identify candidate COTS software

Identify candidate reusable software

Perform feasibility studies
* 1 days

Select computer language(s)

Allocate functions/identify CSCIs

Determine software requirement testability

CSCI 1 - N

FUNCTIONAL REQUIREMENTS

Analyze CSCI requirements

Preliminary Software Requirements Specification

Identify internal interfaces

Identify functional/derived requirements

engineering

data elements

safety

security

human engineering

Identify software quality factors

Identify design constraints

Identify qualification methods

Trace requirements to SSS

SRS inspection(s)/review(s)

Software Specification Review

Update SRS

Baseline SRS

PRELIMINARY DESIGN

Preliminary Design analysis

Identify SUs

Identify internal interfaces

Identify external interfaces

Preliminary SDDs

Overview

Architecture

Memory/processing time allocation

CSCI design description

SU 1 - N

Identify allocated requirements

Identify SUs

Identify relationships between SUs

Data flow and execution control

Identify derived requirements

Trace requirements to SRS

SU inspection(s)/walkthrough(s)

SU design rework

Preliminary SDD inspection(s)/review(s)

Preliminary Design Review

Update Preliminary SDD

DETAILED DESIGN

Detailed SDD

SU 1 - N

Describe constraints

Describe input/output data elements

Describe local data elements

Describe interrupts and signals

Describe algorithms

Describe data structures

Describe local datafiles/database

Describe limitations

Trace requirements to Preliminary SDD

SU inspection(s)/walkthrough(s)

SU design rework

SDD inspection(s)/review(s)

SDD rework

Critical Design Review

Update SDD

Baseline SDD

CODE and UNIT TEST

SU 1 - N

Design/document unit test

Code and compile

Write comments/header

Code inspection(s)/walkthrough(s)

Rework

Testing and analysis

Rework

Maintain SDF

Turn over accepted SU to CM

TEST READINESS REVIEW

SU INTEGRATION and TESTING

Analyze Software Test Report

Perform necessary rework

Perform SU regression testing

Update SDFs

TEST READINESS REVIEW

CSCI INTEGRATION and TESTING

Analyze Software Test Report

Perform necessary rework

Perform SU regression testing

Update SDFs

SOFTWARE INTEGRATION & TESTING

Software Test Plan

Determine general test reqts

Determine test classes

stress

timing

erroneous input

maximum capacity

Determine test levels

CSCI

CSCI to CSCI integration

CSCI to HWCI integration

system

Determine test definitions

Test 1 - N

determine objective

determine special reqts

identify test type/class

determine qualification method

cross reference to SRS reqts

determine type of data to record

identify assumptions/constraints

determine test schedule

identify data analysis techniques

Perform Integration & Testing

System

Integrate CSCIs

Write System Test Description

Conduct Test Readiness Review

Perform testing and analysis

Write System Test Report

Rework

Regression testing

CSCI

Integrate SUs

Write Software Test Description

Conduct Test Readiness Review

Perform testing and analysis

Write Software Test Report

Rework

Regression testing

SU

Integrate SUs

Write Software Test Description

Conduct Test Readiness Review

Perform testing and analysis

Write Software Test Report

Testing and analysis

Rework

Regression testing

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX B

DEFINITIONS

Annual Change Traffic (ACT) - The anticipated percentage of change to the total delivered source instructions during an average year due to maintenance and modification of the CSCI.

Computer Software Configuration Item (CSCI) - An aggregation of computer software that satisfies an end-use function and is designated for configuration management. A CSCI may be broken down into SUs.

Delivered Source Instructions (DSI) - The number of SLOC as used in the REVIC and other derivatives of the COCOMO model.

Effort - Number of PersonMonths a project takes to accomplish.

Function Points - Function Points are those pieces of code that perform some specific activity related to inputs, inquiries, outputs, master files, and external system interfaces.

Hours/Person Month - The average number of work hours per person per month.

Inspection - Careful investigation, critical examination, official examination or review.

New Line of Code - A source line of code that will be developed completely. i.e., designed, coded and tested.

Reused Code - Reused code is existing code that can be modified to satisfy a functional requirement in the target system.

Source Lines of Code (SLOC) - All executable source code statements including deliverable Job Control Language (JCL) Statements, Data declarations, Data Typing statements, Equivalence statements, and Input/Output format statements. SLOC does not include any statement that upon its removal, the program will still compile, e.g., comments, blank lines, and non-delivered programmer debug statements. Ada source lines are counted as non-comment non-embedded semi-colons, counting generics only once.

Software Unit (SU) - The lowest level of breakdown of a software product.

Work Breakdown Structure (WBS) - The WBS subdivides the project into a hierarchical structure of tasks that are each defined, estimated, and tracked.

APPENDIX C

STANDARD METHODS OF ESTIMATING SIZE

C.1 Wideband Delphi Technique

There are various forms of Delphi technique just as there are various forms of Expert Judgment techniques. The Wideband Delphi Technique is one in which the participants are encouraged to discuss the problem with each other. This technique, summarized in Table C-1, requires participation from a group of participants with a diversity of software related experience.

Table C-1.
Wideband Delphi Technique

STEP
ACTION

1.
Coordinator presents each expert with the project's specification and an estimation form.

2.
Coordinator calls a group meeting in which the experts discuss product issues related to size.

3.
Each expert fills out the form anonymously.

4.
The coordinator prepares a summary of the estimates on an Iteration Form and returns them to the experts.

5.
The coordinator calls a group meeting, primarily to discuss the most widely varied estimates.

6.
The experts review the summary and submit another anonymous estimate on the Iteration Form.

7.
Steps 4 through 6 are repeated until a consensus of the lowest and highest possible estimates are reached.

The summary of the estimates can be recorded on an Iteration Form as shown in Figure C-1.

DELPHI SIZE ESTIMATE ITERATION FORM

 PROJECT Fusion - TM&C CSCI

DATE 7/22/91

 ESTIMATOR J. Smith

ROUND #
2

 | | (x1) | (x2) |

0
5
10
15
20
25
30
35
40
45
50

Size Estimate in KSLOC

X - Estimates, X(1) - Your Estimate, X(2) - Median Expert

Please enter your estimate for the next round 10K SLOC

Please explain any rationale for your estimate.

experience with a similar project

Figure C-1.
Sample Estimate Iteration Form

C.2 Pert Sizing

This method involves deriving three estimates: an expected size of the product, a lowest possible estimate, and a highest possible estimate. These three estimates are used to arrive at a Pert statistical estimate for the expected size of the product and a standard deviation.

For example, for a new communications routine:

a = The lowest possible size, e.g., 10 KSLOC

b = The expected size, e.g., 12 KSLOC

c = The highest possible size, e.g., 15 KSLOC

The Pert equations estimate the expected size, E, and standard deviation, SD, as:

a + 4b + c

c - a

E =

,
 SD =

.

6

6

or:

10 + 4(12) + 15

E =

 =
12.167 KSLOC

6

and:

 15 - 10

SD =

 =
.833

 6

This means that about 68% of the time, the size will fall between 11.334 (12.167-.833) and 13 (12.167 +.833). This approach assumes that the estimates are unbiased while in fact experience shows that estimates tend to cluster more toward the low limit than toward the upper limit.

C.3 Function Points

"Function point metrics" is a method of estimating size during the requirements phase based on the functionality to be built into the system. Initial application requirements statements are examined to determine the number and complexity of the various inputs, outputs, calculations and databases required. Points based on established values are assigned to each of these countsand then added to arrive at an overall function point rating for the product. The general approach is:

1. Count the number of inputs, outputs, inquiries, master files, and interfaces required.

2. Multiply these counts by the following factors:

 - Inputs
4

 - Outputs
5

 - Inquiries
4

 - Master Files
10

 - Interfaces
10

3. Adjust the total of these products +25 percent, 0, or -25 percent, depending on the estimator's judgment of the program's complexity.

Function points have been found to be helpful in estimating size very early in a software product's development. However, after more is known about the product, function points can be converted to SLOCs which is the software size metric more widely used.

C.4 Sizing By Analogy

This approach involves relating the proposed project to previously completed projects of similar application, environment and complexity. The basic steps are:

1. Develop a list of functions and the number of lines of code to implement each function.

2. Identify similarities and differences between previously developed data base items and those data base items to be developed.

3. From the data developed in Steps 1 and 2 select those items which are applicable to serve as a basis for the estimate.

4. Generate a size estimate.

The accuracy of the derived estimate will obviously depend on the completeness and the accuracy of the data used from the previous projects.

C.5 Automated Size Estimation Tools

Computerized models are commercially available that help develop size estimates. Some of the basic methods that tools utilize are the Sizing by Analogy, Function Point Analysis, Linguistic Approach, Size-In-Size-Out, Pert, and Comparison of Project Attributes. The following is a brief description of these methods accompanied by a list of commercially available tools that utilize these methods.

Sizing By Analogy

- ESD (Electronic Systems Division) Software Sizing Package, 1987

- QSM (Quantitative Software Management, Inc.) Size Planner, 1987

Function Point Analysis

- SPQR (Software Productivity, Quality, and Reliability) Sizer/FP (Function Points), 1987

- BYL (Before You Leap), 1986

- ASSET-R (Analytical Software Size Estimation Technique - Real Time), 1987

- QSM (Quantitative Software Management, Inc.) Size Planner, 1987

Linguistic Approach

- ASSET-R (Analytical Software Size Estimation Technique - Real Time), 1987

Size-In-Size-Out

- SSER-SSM (Software Sizing Model), 1981

PERT

- REVIC (Revised Intermediate COCOMO), 1995

Comparison of Project Attributes

- CEIS (CEI Sizer), 1987

- QSM (Quantitative Software Management, Inc.) Size Planner, 1987

C.6 Reused Code

The only way to estimate the amount of code to be reused is for the programmer/analysts to examine the existing code in detail. The examination should derive estimates for three factors to help estimate the effort. The three factors are the percentage of code that will be redesigned, percentage to be recoded or modified, and percentage to be retested. These estimated percentages are used by cost models to arrive at an equivalent line of code estimate (see example in Appendix F).

The equivalent lines of code estimate represents the amount of new code that could be developed for the same effort it would take to modify the existing code. Some models allow the user to enter these three percentages while models assume a standard percentage of effort to develop equivalent lines of new code. The REVIC and SEER models allow the user to enter the three factors. SASET uses a default of 73%, i.e., it assumes any reused code will consume 73% of the effort that it would take to develop equivalent new code.

When the three percentages are used, the equivalent new lines of code is calculated as follows:

([%Redesign + %Recode + %Retest]/3) x Existing Code = Equiv LOCs

For example, equivalent LOCs for a program that had 10,000 LOCs and was assumed to require 40% redesign, 50% recode, and 60% retest would be calculated as:

([40% + 50% + 60%]/3) x 10,000 = 5,000 Equiv. LOCs

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX D

STANDARD METHODS of ESTIMATING EFFORT and COST

D.1 Manual Method

The manual estimate of software effort should be based on a combination of the Top-Down and Bottom-Up approach and should be based primarily on the size estimates and schedule requirements. Two or more software engineers with experience with the specific application under development should develop a top down/bottom up estimate based on the size and schedule estimates as follows:

Top-Down - A derivation of an estimate of the total effort based on the estimated size of each major function. This can be accomplished manually or with an automated estimation tool. As in estimating size, the effort estimate should also be based on experience with a similar application.

- Each estimate should consist of a nominal or most probable estimate plus lowest and highest possible estimates to reflect the uncertainty of the size estimates. The spread between the low and high estimates may be as much as 30-50% in the early phases of a project, e.g., the Concept Phase. Functions for which experience is scarce or for which there is high technical risk should be given an even wider range.

Bottom-Up - Derive an estimate for the project by summing up the effort associated with each low level task. This is best accomplished by developing a work breakdown structure (WBS) which includes not only the details of the software architecture hierarchy but details on the software development organization.

- The WBS should include activities such as integration, documentation, software quality assurance and configuration management. While all of these costs may not be known early in the project, at least the identification of these activities will ensure that they are considered.

- Estimate the effort related to the amount of time to prepare for and attend formal project reviews. The cost of reviews is often significantly higher than anticipated.

- The estimates should be reviewed by software engineers who have worked on similar applications.

D.2 Software Estimation Tools

A number of automated software estimation tools are available (see Appendix E) that allow a user to quickly derive effort and schedule estimates based on size estimates and cost driver attributes. There may be 15 to 50 cost driver attributes that reflect the development environment depending on the model used. Common cost driver attributes include programmer and analyst experience and capability, data base size, use of modern programming methods, use of automated tools, memory and timing constraints. Some tools have unique attributes, e.g., requirements volatility, and number of organizations involved.

Generally, a tool should be used after an estimate has been manually derived. Automated tools provide a good method to cross-check manually derived estimates.

Manual estimates are usually low because of several reasons. The most prevalent reason is optimism on the part of the software engineer who has forgotten all of the effort that went into design, test, documentation, configuration management, and quality assurance. People do not remember all of the time spent debugging, preparing for project reviews, or how often the requirements were modified. Another common reason for underestimating is unclear or misunderstood requirements.

The use of an automated tool requires the user to consider all of the above plus project attributes such as personnel experience, security complications, requirements volatility, number of sites, hardware constraints, and schedule requirements. However, caution must be exercised when using tools. Because of their ease of use, these tools can give a wide range of estimates by varying just a few parameters. Furthermore, most of the tools currently available are calibrated to Air Force applications and data. Thus, users of these tools should not rely solely on a tool to develop a credible estimate.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

SOFTWARE ESTIMATION MODELS AVAILABLE THROUGH SEPO

SEPO currently has three software cost/size/schedule estimation models that are available to NRaD personnel. A summary of these models is shown in Table E-1. SEPO does not currently endorse any specific model and is not adverse to projects utilizing models not shown below.

Table E-1.
Overview of Software Estimation Models Available through SEPO

MODEL
DEVELOPER
PLATFORM
STATUS OF NRaD LICENSE

REVIC
Major Ray Kile, Air Force Reserves
PC
Public Domain,
REVIC Users' Group

SoftCost OO
Resource Calculations Inc.
PC
SEPO Single User License

SASET
Martin Marietta Aerospace Corporation
PC
Navy Cost Analysis Center

The REVIC model listed above is a derivative of the popular Constructive Cost Model (COCOMO). There are several versions of the COCOMO in existence, commercial and public domain. REVIC is used extensively throughout the DoD community and has been adopted by the Air Force as an official Air Force cost model. The following is a brief description of three of the cost/size/schedule estimation models used by and available through SEPO.

E.1 REVIC - REVised Intermediate COCOMO

E.1.1 OVERVIEW

The REVIC (REVised Intermediate COCOMO) model is a public domain automated version of COCOMO that predicts the development life cycle costs for software development from the requirements analysis phase through completion of the acceptance testing phase. In addition REVIC uses the development costs to project the life cycle maintenance costs for fifteen years. REVIC also generates an output report that shows the estimated number of pages generated to meet full DoD-STD-2167A software documentation requirements.

REVIC is easy to use, menu driven, and has built-in field level help for the Intermediate COCOMO cost drivers. Many parameters are modifiable by the user to more closely simulate the development environment.

Intermediate Constructive Cost Model (COCOMO) was developed and documented by Dr. Barry Boehm. Intermediate COCOMO uses a set of 15 factors, or cost driver attributes, grouped into four categories: software product attributes, computer attributes, personnel attributes, and project attributes. Each of these cost driver attributes determines the multiplying factor which estimates the effect of the attribute on the software development effort. Adapted, or reuse, software is estimated calculating the equivalent delivered source instructions and applying the cost driver attributes. REVIC has some key differences from the Intermediate COCOMO model developed by Dr. Boehm. Following are some of the significant differences:

1. REVIC includes the costs for the "System Engineering" phase. It predicts effort and schedule in the System Engineering phase by taking a percentage of the development phases. REVIC provides a default value based on average programs, but allows the user to change the percentage.

2. REVIC includes the Development Test and Evaluation (DT&E) phase to ensure the S/W to H/W and S/W to S/W integration and testing. This phase is subsequent to the Formal Qualification Test for the software CSCIs. Again, REVIC provides a default value based on average programs and allows for user modification.

3. REVIC has updated the intermediate COCOMO coefficients used in the equations. Additionally, REVIC includes an algorithm for Ada development. REVIC uses the outputs from an Air Force study to calibrate the coefficients from DoD projects. As a result REVIC will produce higher predictions than Intermediate COCOMO.

4. REVIC has been enhanced by using statistical methods for determining the lines of code to be developed.

Low, high, and most probable line of code estimates for each computer software component are used to calculate the effective lines of code.

E.1.2 OUTPUTS

REVIC calculates the estimate and provides a number of output reports. The basic estimate is produced which includes the cost, person months to complete, people required, and schedule months to complete.

Estimates are produced for each developmental phase and an overall total for the project. The report will also produce high and low estimates (+ or - 3 sigma) to produce high, low, and most probable estimates. A maintenance estimate is produced covering a 15 year maintenance cycle.

E.1.3 REFERENCES

1) Boehm, Barry W. - Software Engineering Economics, Prentice-Hall, 1981.

2) REVIC Users Manual
E.2 SoftCost-OO

E.2.1 OVERVIEW

SoftCost-OO, originally developed by Reifer Consultants Inc., is a commercially available software estimation tool developed specifically for object oriented applications. This tool is a PC-based parametric cost model consisting of a screen editor, estimation model, and outputs. Phases covered include software requirements through software testing, including hardware and software integration testing. There are three data bases, Ada, C++, and Object-Oriented.

SoftCost-OO contains five submodels, sizing, estimating, risk, allocation (effort/labor categories), and life cycle (maintenance). The sizing submodel calculates equivalent source lines of code for projects developed in Ada, C++, or a mix of languages. Function points can also be used. The estimating submodel develops an effort and schedule estimate for a project using parametric and size information provided by the user. The risk submodel allows the user to play "what-if" gaming scenarios by varying effort, schedule, and size. The allocation submodel takes the effort and schedule from the risk submodel and allocates it to the tasks that comprise the Work Breakdown Structure (WBS) for the project. This submodel also allocates effort by labor category across life cycle phases. The life cycle submodel calculates maintenance effort and cost for the system based on the effort selected in the risk submodel. This submodel contains a unique load-balancing feature that allows a user to assess the impact of fixed workforce on maintenance.

E.2.1 OUTPUTS

Besides the typical array of estimation reports this model also includes Gantt and PERT charts that allow the user to schedule resources via a pre-defined DoD-STD-2167A Work Breakdown Structure. Both of these reports allocate staff using a distribution that front-loads the life cycle (which is usually the case with Ada projects).

E.2.3 REFERENCES

SoftCost-OO User's Manual, Resource Calculations Inc.

E.3 SASET - Software Architecture, Sizing, Estimating Tool

E.3.1 OVERVIEW

SASET was developed for the Navy Center for Cost Analysis by Martin Marietta Corporation. The model is cost free to Navy users and copies can be obtained from the SEPO. The tool is for "NRaD only" use and cannot be released to non-NRaD employees.

SASET is a data driven model in that it utilizes a historical data base to produce estimates. It uses a structured knowledge data base of normalized parameters to derive software size estimates by functionality. When available, estimated source lines of code inputs may be used in lieu of the function parameters. Based on the inputs the model computes the "equivalent High-order Language source lines of code". The line of code inputs may include new development, and modified or adapted code. The model also accepts a variety of hardware and software complexity factors that have been determined to impact the software development costs.

The model has on-line field level help and a tutorial as well as the Users Manual. Although the model is menu driven, it requires some training and understanding to be used effectively. The model is most accurate when historical data is used to calibrate the model.

E.3.2 OUTPUTS

Outputs can be displayed using tables and bar, line, and pie charts. Size outputs can be viewed at a summary level or decomposed into segments to view and validate each phase of the developmental cycle or type of software being developed. Due to the variety of output views, SASET allows the user to examine the effects of changes in the inputs on the software development project. The size estimates can display size estimates by High Order Language (HOL) conditions, software type (Systems, Applications, Support), lines of code by language by software type, and man months by software type. Size information may be viewed as bar charts, pie charts, and tables.

SASET development schedules are produced in calendar months for the user schedule and the derived schedule. The derived schedule is the "optimal" schedule computed by the model. The user schedule is computed using user defined schedule constraints. When user defined constraints vary from the optimal schedule, the model computes a penalty and adjusts the cost estimate to reflect the penalty. Schedule estimates can be displayed by formal project reviews and development phase with parallel comparison's between the user defined schedule and the optimal schedule. Schedule reports may be viewed as tables or bar charts.

SASET provides resource estimates for the project. The model has an option to estimate software developed in Ada. Staffing estimates are produced by phase, development organization, software type, and total project. Resource (staffing) outputs can be viewed using tables, line charts, and pie charts.

SASET projects Effort in person months summaries of software development effort by review and development phase. Effort is displayed in person months for each development organization (Systems, Software, Test, and Quality) and an overall total. SASET will also project the Maintenance staffing for in scope maintenance. Person month projections may also be viewed as cumulative efforts. Effort in person months outputs can be displayed as tables, line charts, bar charts, and pie charts.

E.3.3 REFERENCES

1) SASET Software User's Manual
APPENDIX F

SAMPLE SOFTWARE PROJECT ESTIMATE
NRaD usually has many different software development projects in progress at any one time. Thus any example to illustrate a process will not cover all of the issues and contingencies for all projects. This sample project of a typical NRaD R&D project is meant to illustrate the basic steps of developing a software estimate. It is not intended to serve as a source for answers to all questions that may arise regarding software estimation. The process illustrated here can be used to develop an estimate for most projects. The example shown here utilizes the REVIC model which is a public domain model and is easily obtainable.

F.1 Sample Project Description

NRaD has been asked to demonstrate the feasibility of combining data from four different shipboard detection systems into a single data base, and then displaying data in various formats depending on the type and classification of the data. The requirements for this project, Fusion Project, are very fuzzy at this point. Also, any new code developed will be in Ada in accordance with the latest DoD Ada mandate.

F.2 Approach

Develop an initial estimate consisting of the following eight steps:

1. Develop a preliminary definition of the software functions.

2. Define basic assumptions.

3. Develop a preliminary WBS.

4. Develop size estimates using two methods.

5. Develop cost and schedule estimates using two methods.

6. Perform a Risk assessment.

7. Review estimates vs. budget.

F.2.1 Preliminary Definition of Software Functions

Project personnel have determined preliminary top level software requirements that will be necessary to satisfy the technology demonstration. System Data Flow Diagrams have been utilized and four potential CSCIs have been identified:

- Test Monitor & Control (TM&C)

- Operations Control & Coordination (OC&C)

- Communications

- Administration

In evaluating the requirements against software capability that currently exists, it was determined that two CSCIs, TM&C and OC&C, will have to be developed entirely with new code. The other two CSCIs, Communications and Administration, currently exist and will require minimum modification.

F.2.2 Basic Assumptions

Further analysis results in the following basic assumptions regarding the development environment:

- Systems engineering is complete

- Minimum DT&E will be required

- The contractor has Ada experience

- Minimum SQA/Configuration Management will be required

- Higher than normal requirements volatility can be expected

F.2.3 Preliminary WBS

A preliminary project WBS showing the top level tasks has been developed utilizing the WBS outline in Appendix A. Because this is a technology demonstration, only WBS items pertinent to the Concept phase are included and the duration of each WBS task has not yet been defined.

PRELIMINARY WORK BREAKDOWN STRUCTURE

FUSION PROJECT

PROJECT MANAGEMENT

Project Management Plan

Define project schedule and milestones

Develop project WBS

Define software management metrics process

Define/allocate project functions

Hardware engineering

Software engineering

Project support

Software metrics

Determine staffing

Determine SW engineering tool requirements

Determine training requirements

Management Reporting

Project progress

Project funding status

Management Reviews

SOFTWARE ESTIMATION

Concept Phase

Define preliminary software functional requirements

Establish method to estimate resources

Identify similar functions from completed projects

Develop sizes of each historical functional component

Develop sizes for new functions

Identify potential risk areas

Develop low, nominal, high cost/schedule estimates

Review/refine with project personnel

Establish software estimate file

RISK MANAGEMENT

Analyze/identify risks

Prioritize risks

Identify metrics data to track risk areas

SOFTWARE METRICS

System Requirements Phase

Define metrics to track identified risks

Track/report at specified intervals

SYSTEM ENGINEERING

Analyze operational requirements

Hardware/software trade-off analysis

Sizing/timing studies

Define computer resource constraints

Identify risks

Preliminary SSS

FORMAL INSPECTIONS

Define Products to be inspected

SOFTWARE INTEGRATION & TESTING

Software Technology Demonstration Plan

Determine demonstration requirements

Determine demonstration levels

Perform Integration & Testing

System

Integrate CSCIs

Perform testing and analysis

Write System Test Report

CSCI

Integrate SUs

F.2.4 Develop Size Estimates

Two methods are used to develop an estimate of the size of the two new CSCIs. The first method is two software engineers familiar with these applications independently developed low, likely and high estimates by a modified Wideband Delphi Technique, i.e., analogy based on their previous experience. To arrive at a second set of size estimates, the same two engineers used the SSM (Software Sizing Model). The two sets of size estimates are summarized in Table F-1.

Table F-1.
Size Estimates for TM&C and OC&C CSCIs

CSCI SIZE (KSLOC)

Size Estimate Method
TM&C
OC&C
TOTAL

Delphi Low
5
15
20

Delphi Likely
10
20
30

Delphi High
15
28
43

SSM Low
7
17
24

SSM Likely
10
22
32

SSM High
13
27
40

Consensus Low
7
17
24

Consensus Likely
10
21
31

Consensus High
14
28
42

The amount of code that exists for the two existing CSCIs along with the estimated amount of redesign, recode and retest necessary to integrate them into the demonstration project are shown in Table F-2. The Delphi Technique was used to estimate the percentages for redesign, recode, and retest to develop an equivalent new lines of code estimate.

Table F-2.
Summary of Adaptation Percentages for Existing CSCIs

CSCI/EXISTING CODE

Method Used
Communications/4 KLOC
Administration/10 KLOC

Redesign
20%
20%

Recode
20%
20%

Retest
50%
20%

Equiv. New LOCs
1,200(1)
2,000(2)

(1) Comm Equiv LOCs = ((20% + 20% + 50%)/3) x 4,000 = 1,200

(2) Admin = ((20% + 20% + 20%)/3) x 10,000 = 2,000

F.2.5 Develop Cost and Schedule Estimates

Two methods are utilized to estimate the cost and schedule. The two engineers who did the size estimate utilize Expert Judgment to arrive at a preliminary manually derived estimate. As in the size estimate process, they work independently in order to not influence each other's analysis.

They both use the final agreed upon size estimates but each uses his own productivity rate experiences. The productivity rates along with the assumed estimates are shown in Table F-3.

Table F-3.
Preliminary Cost/Schedule Estimates

CSCI/(LOCs)

TM&C/(10K)
OC&C(21K)
COMM(1.2K)
ADMIN(2K)
Total

Engineer 1

 Production Rate (LOC/PM)
200
150
200
200

 Cost Estimate (PM)
50
140
6
10
206 PM

 Schedule Estimate (Mo.)
6
14
1
2
23 Mo

Engineer 2

 Production Rate (LOC/PM)
100
100
150
150

 Cost Estimate (PM)
100
210
8
13
331 PM

 Schedule Estimate (Mo)
6
12
1
2
21 Mo

The second method is for the two engineers to use the REVIC software estimation model. Again, they use the agreed upon size estimates as input. In this example, they work in unison with the model. They could also have run the REVIC independently and then compared the resultant estimates and input factors. Figure F-1 displays the REVIC parameters (see the REVIC Users' Guide for a detailed explanation of the parameters) set for the worst-case option of having average personnel (Nominal) and a higher degree of changes to requirements than normally experienced. The Product Reliability factor is set to VL (Very Low) to reflect the minimum documentation requirements for a technology demonstration project. Also, since this is a demonstration project, the DT&E Phase is eliminated. All other factors are left at the Nominal setting. The resultant REVIC outputs are shown in Figures F-2 through F-5. The initial estimates are recorded on a Project Estimate History Tracking Form as shown in Figure F-6.

Environmental Factors for **Sample Project w/Nom pers and Hi Req Vol

ENVIRONMNTL FACTOR
RATING
VALUE
ENVIRONMNTL FACTOR
RATING
VALUE

Analyst Capability
NM
1.00
Product Reliability
VL
0.75

Programmer Capability
NM
1.00
Data Base Size
NM
1.00

Applications Experience
NM
1.00
Product Complexity
NM
1.00

Virtual Machine Exper.
NM
1.00
Required Reuse
NM
1.00

Prog. Language Exper.
NM
1.00
Modern Progrmg Prctc
NM
1.00

Execution Time Constrnt
NM
1.00
Use Of S/W Tools
NM
1.00

Main Storage Constraint
NM
1.00
Required Security
UN
1.00

Virt. Machine Volatility
NM
1.00
Mgmt Reserve For Risk
VL
1.00

Computer Turnaround Time
NM
1.00
Required Schedule
NM
1.00

Requirements Volatility
HI
1.19
Software Dev. Mode
ADA
1.00

The environmental modifier is 0.893

Figure F-1.
REVIC Factors Set for Likely Case Scenario

The page counts shown in Figure F-4 are approximate for each document for a full scale development project. Very little of this documentation would be required for a prototype project such as this example. See DoD-STD-2167A and 2168 for an explanation of the acronyms and a description of their content. After the REVIC estimates have been completed the estimates from the two methods are compared and any major differences are reconciled. The final low, most likely, and high estimates are recorded on a Project Estimate History Tracking Form as shown in Figure F-6.

REVIC MODEL PHASE DISTRIBUTION FOR: **Sample Project w/Nom pers & Hi Req Vol

LOC to be developed is 34.8 KDSI (152 HRS/MM, $ 70.00 /HR)

PHASE & END REVIEW

EFFORT
SCHEDULE
FSP
COSTS

(mm)
(months)
(people)

S/W RQMTS ENG
(SRR)
20.6
6.8
3.0
218,866

PRELIM. DESIGN
(PDR)*
39.4
8.9
4.5
419,494

CRITICAL DESIGN
(CDR)*
49.7
5.7
8.8
528,927

CODE & DEBUG
(TRR)*
37.7
3.4
11.1
401,255

INTEGRATE & TEST
(FQT)*
44.6
4.8
9.4
474,211

DEV TEST & INT
(DT&E)
0.0
0.0
0.0
0

TOTALS

192.0
29.5

$2,042,753

* - Items are included in Total Productivity calculation

Total Productivity = 203.2 (311.3 programmers only) LOC/mm

Environmental Modifier = 0.893 with a NM schedule

Total Direct Labor Hours = 29,182

Ada Software Development Mode

Figure F-2.
Phase Distribution for Likely Case

REVIC MODEL ACTIVITY DISTRIBUTION FOR: **Sample Project w/Nom pers & Hi Req Vol

ACTIVITY
S/W RQMTS ENG
PRELIM DSGN
PROGR.
I & T

(SRR)
(PDR)
(CDR & TRR)
(FQT)

RQMTS ANALYSIS
9.46
3.94
2.62
0.89

PRODUCT DESIGN
2.88
16.56
5.25
1.78

PROGRAMMING
1.23
4.73
48.08
17.83

TEST PLANNING
0.82
2.37
5.25
1.78

VERIFY & VALIDATE
1.65
3.15
8.74
11.14

PROJECT OFFICE
2.47
4.34
6.12
3.57

CM/QA
0.82
1.18
6.12
4.01

MANUALS
1.23
3.15
5.25
3.57

 NOTES: 1.0 MM = 152 HOURS

The Programming Phase Includes Both Critical Design and Software Code & Debug.

Figure F-3.
Activity Distribution for Likely Case

REVIC MODEL RESULTS FOR: **Sample Project w/Nom pers & Hi Req Vol

-3 SIGMA
NOMINAL
+3 SIGMA

DSI
28.2
34.8
41.5

MANMONTHS
160.9
192.0
222.7

SCHEDULE
24.7
29.5
34.2

TOTAL HOURS
24,461
29,182
33,850

TOTAL COSTS
$1,712,296
$2,042,753
$2,369,476

STANDARD DEVIATION = 2.222 KDSI

Figure F-4.
Standard Deviation for Likely Case

REVIC MODEL RESULTS FOR: **Sample Project w/Nom pers & Hi Req Vol

CDRL INITIAL PAGE ESTIMATES FOR DoD-STD-2167A/2168

CDRL
PAGES
CDRL
PAGES

CRISD
48
SPS
53

CSOM
97
SRS
242

FSM
37
SRS
469

IDD
474
SSDD
469

SDD (preliminary)
1160
STD
469

SDD (final, without listings)
3482
STP
97

SDP
137
STR
469

SPM
53
SUM
48

VDD PAGES: APPROXIMATELY 10 PER FORMAL MEDIA RELEASE.

S/W DEVELOPMENT FOLDER PAGES NOT INCLUDED HERE.

Figure F-5.
CDRL Page Estimates for Full 2167A/2168 Project

PROJECT ESTIMATE HISTORY

TRACKING FORM

NAME OF PROJECT

Fusion

CODE 492 SPONSOR

SPAWAR PD-90

TYPE OF DEVELOPMENT:
Waterfall Prototype X Incremental

Evolutionary Other

CRITICAL PARAMETER(S)

Size, Requirements Volatility

SIZE ESTIMATE
LANGUAGE:

Ada

AUTOMATED TOOLS:

SSM

MANUAL: Wideband Delphi __X___ PERT ______ Other

Date

 7/22/91

#CSCIs

2

#SUs

Function Pts

New SLOC

31K

Reused SLOC

14K

of Objects

COST/SCHEDULE ESTIMATE
AUTOMATED TOOLS:

REVIC

MANUAL: Top-Down ______ Bottom-Up ______ Other

Date

7/22/91

Cost/Effort

199 PM(1)

Schedule

30 mo.

PDR

16 mo.

CDR

5 mo.

TRR

4 mo.

FQT

5 mo.

Figure F-6.
Project Estimate History Tracking Form with Initial Estimates for Project Fusion

MILESTONE DATES

PDR

12/1/92

CDR

 5/1/93

TRR

 9/11/93

FQT

 2/6/94

Initials/Date:

Estimator

JS 7/22/91

SQA or MGMT
QA 7/24/91

DOCUMENTATION ESTIMATE
DOCUMENT
 # of Pgs
 # of Pgs
 # of Pgs
 # of Pgs
 # of Pgs

SDP

90

SSDD

250

SRS

150

STP

60

PROCESS METRICS

Tot Hrs to Est Size

6

People Involved

2

Tot Hrs to Est Cost

10

People Involved

2

Tot Hrs to Est Sched

5

People Involved

2

NOTES - Enter comments regarding changes in project direction, such as: funding delays, major change in requirements, organizational or technical interface problems, personnel changes, and hardware problems.
(1) 199 PM is the average of the manual estimate and the REVIC estimate
(2)

(3)

(4)

(5)

Figure F-6. (cont.)
Project Estimate History Tracking Form with Initial Estimates for Project Fusion

F.2.6 Risk Assessment

Risk analysis can become an end in itself as uncertainties can be identified in many different factors of a software project. Typically however, there are a few factors that stand out as giving project managers the greatest amount of consternation. Two factors usually having a high degree of uncertainty are requirements volatility and size. The REVIC model was utilized to arrive at estimates using Low (30.8 KLOC), Nominal (34.8 KLOC) and High (38.8 KLOC) size estimates with the REVIC parameter Requirements Volatility set to values for nominal, high and very high. A summary of the REVIC outputs is shown in Table F-4.

Table F-4.
Summary of Cost Sensitivity Analysis

Scenario

Size
Reqs Vol
Total Effort
Calendar Months

30.8 KLOC
Nominal
143.7 PM
26.9 Mo

Hi
171.0 PM
28.4 Mo

Vhi
198.3 PM
29.8 Mo

34.8 KLOC
Nominal
161.3 PM
27.9 Mo

Hi (Baseline)
192.0 PM
29.5 Mo

Vhi
222.6 PM
30.9 Mo

38.8 KLOC
Nominal
178.6 PM
28.8 Mo

Hi
212.5 PM
30.5 Mo

Vhi
246.5 PM
32.0 Mo

Table F-4 highlights the impact on a project's effort that may result from changing only two parameters. The baseline case of high Requirements Volatility and the expected size shows the effort would be 192.0 person months. The worst case, increased size and very high Requirements Volatility, increases the estimate to 246.5 person months, an effort increase of over 28%. A more detailed risk analysis would evaluate the amount of effort to adapt the existing code. The effort to adapt existing code is often underestimated and should be examined in detail as well as the overall size of the project.

F.2.7 Review Software Functions vs. Budget.

After a thorough cost/schedule estimate is complete, a comparison of the potential cost to the sponsor's proposed budget should be made. If the estimates are substantially greater than the sponsor's budget, then the desired functionality should be divided into enough detail to be able to prioritize the subfunctions of each CSCI.

As subfunctions are identified that are not absolutely necessary, subsequent estimates reflecting the reduced size of the product can demonstrate the potential reduction in cost and schedule. The process of matching affordable functionality to the budget should be an iterative process with participation by both the developer and the sponsor. The risk analysis must be presented to the sponsor early in order to establish credibility by the development team.

The recommended list of functions should be accompanied by functions that fall below the affordability line. As the project progresses, it may be possible to include some functions that were originally thought to be unaffordable. The risk analysis should always be presented with alternative scenarios of what may be accomplished. If the integration of the adapted code is found to be easier than the original estimate, than other standby tasks can be accomplished.

APPENDIX G

SAMPLE PROJECT ESTIMATE HISTORY TRACKING FORM

PROJECT ESTIMATE HISTORY TRACKING FORM

NAME OF PROJECT

CODE SPONSOR

TYPE OF DEVELOPMENT:
Waterfall Prototype Incremental

Evolutionary Other

CRITICAL PARAMETER(S)

SIZE ESTIMATE
LANGUAGE:

AUTOMATED TOOLS:

MANUAL: Wideband Delphi ______ PERT ______ Other

Date

#CSCIs

#SUs

Function Pts

New SLOC

Reused SLOC

of Objects

COST/SCHEDULE ESTIMATE
AUTOMATED TOOLS:

MANUAL: Top-Down ______ Bottom-Up ______ Other

Date

Cost/Effort

Schedule

PDR

CDR

TRR

FQT

MILESTONE DATES

PDR

CDR

TRR

FQT

Initials/Date:

Estimator

SQA or MGMT

DOCUMENTATION ESTIMATE
DOCUMENT
 # of Pgs
 # of Pgs
 # of Pgs
 # of Pgs
 # of Pgs

PROCESS METRICS

Tot Hrs to Est Size

People Involved

Tot Hrs to Est Cost

People Involved

Tot Hrs to Est Sched

People Involved

NOTES - Enter comments regarding changes in project direction, such as: funding delays, major change in requirements, organizational or technical interface problems, personnel changes, and hardware problems.
(1)
(2)

(3)

(4)

(5)

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX H

ACRONYMS and ABBREVIATIONS

CASE

Computer Aided Software Engineering

CDR

Critical Design Review

CM

Configuration Management

CMM

Capability Maturity Model

COCOMO
Constructive Cost Model

CSCI

Computer Software Configuration Item

DoD

Department of Defense

EA

Evolutionary Acquisition

FQT

Formal Qualification Test

FSD

Full Scale Development

HOL

High Order Language

KSLOC

Thousands of Source Lines of Code

LCC

Life Cycle Cost

LOC

Line of Code

NCCOSC
Naval Command, Control, and Ocean Surveillance Center

NRaD

NCCOSC RDTE Division

PDR

Preliminary Design Review

REVIC

REVised Intermediate COCOMO

R&D

Research and Development

SDF

Software Development Folder

SDP

Software Development Plan

SEF

Software Estimation File

SEI

Software Engineering Institute

SEPO

Software Engineering Process Office

SRR

Software Requirements Review

SRS

Software Requirements Specification

SLOC

Source Line of Code

SQA

Software Quality Assurance

SSA

Software Support Activity

SU

Software Unit

SVD

Software Version Description

TRR

Test Readiness Review

VDD

Version Description Document

WBS

Work Breakdown Structure

APPENDIX I

REFERENCES

NRaD

NRaD Formal Inspections Process, May 1995, Version 2.0

NOSC Project Control and Tracking Process, July 1991

GOVERNMENT

MIL-STD-498 Software Development and Documentation, 5 Dec 94

MIL-STD-973 Configuration Management, 17 April 92

DoD-STD-2167A Defense System Software Development, 29 Feb 88

AFSCP 800-14 Air Force Systems Command Software Quality Indicators, 20 January 1987

AFSCP 800-43 Air Force Systems Command Software Management Indicators, 31 January 1986

Joint Logistics Commanders, Evolutionary Acquisition, March 1987

MIL-HDBK-347 Mission-Critical Computer Resources Software Support, 22 May 90

MIL-HDBK-WBS.SW (DRAFT) Work Breakdown for Software, 6 February 1991

Schultz, Herman P., ESD-TR-88-001 Software Management Metrics, The MITRE Corporation, May 1988

COMMERCIAL

Arthur, Lowell Jay - Measuring Programmer Productivity and Software Quality, John Wiley & Sons, 1985.

Basili, Victor and H. Dieter Rombach, The Tame Project: Towards Improvement-Oriented Software Environments, IEEE Transactions on Software Engineering , Vol. 14, No. 6, June 1988, pp 758-773

Boehm, Barry W. - Software Engineering Economics, Prentice-Hall, 1981.

Brooks, Jr., Frederick P. - The Mythical Man-Month, Addison-Wesley Publishing, 1975.

Conte, Dunsmore, Shen, Software Engineering Metrics and Models, Benjamin/Cummings Publishing, Inc. , 1986

de Marco, Tom - Controlling Software Projects: Management, Measurement and Estimation, Yourdon Press, 1982.

Grady, Robert B., Deborah L. Caswell, Software Metrics: Establishing a Company-Wide Program, Prentice Hall, Inc. 1987

Humphrey, Watts S. - Managing the Software Process, Addison-Wesley Publishing Company, 1989.

IEEE Standard for Software Productivity Metrics, August 28, 1990

Jones, Capers - Programming Productivity, McGraw-Hill Book Company, 1986.

Kile, Raymond L., REVIC Software Cost Estimating Model User's Manual, Version 9.0, 9 February 1991.

Musa, John D., Anthony Iannino, and Kazuhira Okumoto, Software Reliability: Measurement, Prediction, and Application, McGraw-Hill, Inc., 1987

Reifer, Donald J. - Tutorial: Software Management, IEEE Catalog No. EHO243-6, IEEE Computer Society Press, 1986.

Thayer, Richard H. - Tutorial: Software Engineering Project Management, IEEE Catalog No. EHO263-4, IEEE Computer Society Press, 1988.

STUDIES/PAPERS

Boehm, B.W. & Wolverton, R.W., Software Cost Modeling: Some Lessons Learned, TRW Software Series, July 1979

Boehm, B.W. Software Life Cycle Factors, TRW Software Series, January 1981

Data & Analysis Center for Software (DACS), A Descriptive Evaluation of Software Sizing Models, RADC/IIT Research Institute, September 1987

Funch, Paul G., MITRE Corporation, Software Cost Data Base, October 1987

Gaffney, John E., Durek, Thomas A., Software Productivity Consortium, Software Reuse - Key to Enhanced Productivity; Some Quantitative Models, SPC-TR-88-015, Apr 1988

Gaffney, John E., Software Productivity Consortium, An Economic Foundation for Software Reuse, July 1989 Harrison, Warren and Cook, Curtis, Insights on Improving the Maintenance Process Through Software Measurement, Department of Computer Science, Portland State University, March 1990

Herd, James, Doty Associates Inc., Software Cost Estimation Study, Volume 1, June 1977

IIT Research Institute, Test Case Study: Estimating The Cost of Ada Software Development, April 1989

Ingrassia, Frank S., The Unit Development Folder (UDF): An Effective Management Tool for Software Development, TRW Technical Report, October 1976

Institute for Defense Analysis, A Descriptive Evaluation of Automated Software Cost Estimation Models, October 1986

International Function Point Users Group, IFPUG - Function Point Counting Practices Manual, Release 3.0, 1990

Kile, Raymond L., Considerations for Establishing Software Metrics Data Bases, September 1990

Reifer, Donald J., and Fowler, John, Software Economics Seminar Supplemental Information (describes the SoftCost Model), June 1987

Software Productivity Consortium, Code Counting Rules and Category Definitions/Relationships, May 1990

Wolfinger, B.E., MITRE Corporation, An Ada Cost Impact Study, September 1987

Wolverton, R.W., Software Costing, TRW Software Series, January 1981

Wolverton, R.W., Software Cost Analysis and Estimating: A Software Acquisition Guidebook, TRW Software Series, September 1980

Xerox Corporation, A Cooperative Industry Study - Software Development Maintenance Productivity, March 1985

BRIEFING MATERIAL

Boehm, B.W. & Royce, Walker, TRW, Ada COCOMO: TRW IOC Version, October 1987

Card, David N., Computer Sciences Corporation, Applying Software Measures Effectively, May 1990

Castellana, C.A., An Overview of the MITRE Washington Economic Analysis Center and Function Point Analysis, MITRE, January 1990

Data & Analysis Center for Software (DACS), Cost Models Overview -An Overview Course in Software Cost Estimation Tools, RADC/IIT Research Institute, c. 1987

Houtz, Carol A. PRC, Resource Estimating using COCOMO, c. 1987

Houtz, Carol A. PRC, The Art of Software Resource Estimating (Tools and Techniques, c. 1987

Jensen, Randell, Quantitative Methods in Software Management, Engineering 819.200 Short course, c. March 1990

Kile, Raymond L., Software Cost and Schedule Estimating, June 1989

Management Consulting & Research, Inc. Space Systems Division Software Development Data Base Application, 24th Annual DoD Cost Analysis Symposium, 4-7 September 1990

McCall, Jim, Science Applications International Corporation, Introducing Software Metrics in Your Company, Achieving Quality Software - A National Debate, Society for Software Quality, 29 January - 1 February 1991

Reifer Consultants, Inc., Software Economics In Ada (c), Prepared for Naval Ocean Systems Center, 22-23 Oct 90

REVIC Users' Group, Proceedings of the 2nd Annual REVIC Users Group Conference, January 1990

REVIC Users' Group, Proceedings of the 3rd Annual REVIC Users Group Conference, February 1991

Storch, Richard, Logicon, San Antonio I - DoD Software for the 1990s, Presented to CEPWG13, 4 April 1991

ARTICLES

Can the US Stay Ahead In Software, Business Week, March 11, 1991

Keller, John, DoD to Release Software Cost-Tracking Guidelines,

Pfleeger, Shari Lawrence and McGowan, Clement, Software Metrics in the Process Maturity Framework, Elsevier Science Publishing Co., Inc. 1990

Reifer, Dr. Donald J., CASE and Software Cost Estimating, CASE Trends, January/February 1991

MISC

Coy, Mark, Directorate for Resource Management, Cost Analysis Division, User's Guide - The Coy-Slim Model, Version 2.0, Headquarters US Army Communications-Electronics Command and Fort Monmouth, June 1990

REVIC Users' Group Newsletters

REVIC Users' Group Bibliography

San Antonio I Handbook - "DoD Software for the 1990s", Joint Logistics Commanders Joint Policy Coordinating Group on Computer Resources Management, 28 January - 1 February 1991

CEPWG MATERIAL

CEPWG 1, 21 Nov 89

Topics: SEPO Charter, SW Estimation Tactical Action Plan

CEPWG2, 1 Jan 90
Topics: Comparison of REVIC/SEER/SASET
CEPWG3, 12 Feb 90

Topics: 1) Highlights of Annual REVIC User's Group Meeting; 2) Estimate of Code 40 Project based on Functionality

CEPWG4, 30 Mar 90

Topics: 1) CVLF Estimate, L. Nixon (Code 833);

2) Estimate for Code 40 Technology Upgrade Project with REVIC & SEER; 3) Comparison of REVIC Modes; 4) Impact of Design for Reuse; 5) Cost of CASE Tools

CEPWG5, 7 May 90

Topics: 1) CAIS Enhancement Estimate, D. Hayward (Code 411); 2) Estimate for the Coverage Prediction Improvement Program, C. Kleinhans (Code 831); 3) Latest estimates for the Code 40 Technology Upgrade Project; 4) Use of SW Estimation Models at NOSC; 5) Comparison of Schedule vs. Cost - REVIC, SEER, SASET; 6) Use of REVIC to Generate CRLCMP Manpower Estimates

CEPWG6, 14 Jun 90

Topics: 1) Application of REVIC to Three Small C Projects, G. Hartling (Code 425); 2) Overview of the SLIM model and Application to a Code 40 Project, J. Mclaughlin (Code 9202); 3) Impact of Modifying Schedules - REVIC, SEER, SASET; Multiple CSCIs vs. One CSCI with REVIC, SEER, SASET

CEPWG7, 2 Aug 90

Topics: 1) DMIS Estimation Metrics, J. Mclaughlin (Code 9202); 2) Project Management Tools Estimation Metrics, J. Caldwell (Code 846); 3) Two Approaches to Calibrating the REVIC Model; 4) Demonstration of the SLIM Model

CEPWG8, 14 Sep 90

Topics: 1) Estimate for a Code 40 Prototype Project; 2) Sensitivity of Models to Documentation; 3) Highlights of 24th DoD Cost Analysis Conference, 5-7 Sep 90

CEPWG9, 1 Nov 90

Topics: 1) Demonstration of the Software Size Model (SSM), J. Maclaughlin (Code 9202); 2) Application of REVIC and SEER for Cost Tradeoffs of Wargaming Software Project Options, Jay Martin (Code 405); 3) Highlights of 7th Annual COCOMO Users' Group Meeting, 23-25 Oct 90; 4) Overview of CALICO COCOMO calibration tool

CEPWG10, 13 Dec 91

Topics: 1) IUSS/UCP Effort/Schedule Estimate with REVIC - Lessons Learned, S. Christensen (SYSCON); 2) Demonstration of SoftCost-Ada Estimation Model, C. Kleinhans (Code 831)

CEPWG11, 18 Jan 91

Topics: 1) Code 70 Ocean Surveillance System: a) Software Maintenance Estimate with REVIC, b) Survey of Navy SSA Historical Data, E. Holler (Code 7207); 2) Code 60 Recode/Rehost Project: a) REVIC for Pascal/FORTRAN to C Estimate, b) Project Metrics Tracking Plan, D. Dahlseid (ARINC)

CEPWG12, 1 Mar 91

Topics: 1) Halstead's Metrics and Cost Models, Dr. M. Shapiro (Code 411); 2) Code 60 Estimate with REVIC and SoftCost-Ada; 3) Highlights of REVIC Users' Group (RUG) Conference, 20-21 Feb 91

CEPWG13, 1 Apr 91

Topics: 1) Proceedings of San Antonio I - DoD Software for the 1990s, R. Storch (Logicon)

CEPWG14, 16 May 91

Topics: 1) Tutorial on SEER-SEM (Version 1.81), -SSM, J. Rampton, (Galorath Associates, Inc.)

(1) Items annotated with a (c) are copyrighted and cannot be reproduced without written consent.

DOCUMENT CHANGE REQUEST (DCR)
DOCUMENT:

 TRACKING NUMBER:

NAME OF SUBMITTING ORGANIZATION:

ORGANIZATION CONTACT:

 TELEPHONE:

MAILING ADDRESS:

DATE: _____________ SHORT TITLE:

CHANGE LOCATION (section #, figure #, table #, etc.):

PROPOSED CHANGE:

RATIONALE FOR CHANGE:

Note:
For SEPO to take appropriate action on a change request, please provide a clear description of the recommended change along with supporting rationale.

Send to:
NCCOSC, RDTE Division
Software Engineering Process Office, Code D13
53560 Hull Street
San Diego, CA 92152-5001
or Fax to: (619) 553-6249

DCR Form 12/94
–
 –

–
 –

