


APPENDIX H. Measuring Process Improvement�xe "Process Improvement Process:measuring"��xe "Measurement"�


This appendix addresses what to measure, when to measure, and how to measure to determine and verify process improvement. This appendix describes the relationship between measurement practices and process maturity, the Goal–Question–Metric (GQM) method, and suggested process, product, and management measurements.


The GQM method uses the following definitions for measurement and metric:


•	A measurement is a number assigned to a directly observable aspect of a process or product.


•	A metric is a function of one or more measurements. A metric may be directly observable or may be derived through a calculation involving one or more metrics and measurements.


Refer to the Software Measurement Guidebook (Software Productivity Consortium 1992b) for more information on establishing a measurement program.


H.1 Measurement and Process Maturity�xe "Process Maturity:measuring"�


As a software development organization matures, it experiences an increasing level of software process measurement activity. This section discusses the organization's visibility into the software process that exists at various levels of process maturity. 


Software Measurement at Lower Maturity Levels


A software organization operating at a low maturity level measures little of its software process. There is no reliable way either to assess the status of the product under development or to assess the effectiveness of the development process. A process in this state of maturity can be represented by the open loop control system in Figure H–1. An open loop control system is characterized by an input to establish the process goals and product requirements, the process, and an output product that may or may not meet its requirements. The noise represents variability in the requirements and estimates that are the bases of the process goals. Establishment of the process goals depends on the skill and experience of the project management. Any corrective action, required due to noncompliance of the product to its requirements, depends on the skill of management and technical staff, rather than actual information about the process and product. The lack of measurement data precludes the use of actual experience to adjust the process for performance variances from the goals.


Software Measurement at Intermediate Maturity Levels


A software organization operating at an intermediate maturity level measures some of its software process, though is not likely to derive full benefit from the data it obtains. Therefore, an organization at this level needs to implement a well–planned measurement program that governs the collection and use of the measurements. The program would include development of software standards to define the metrics, and procedures to collect and analyze them. Only then could meaningful benefit be expected from the measurement activity. A process in this state of maturity may be represented by the open loop control system in Figure H–2. The measurement activity has been initiated, but it has not yet developed to the point of applying the measurement data to improve the process. The application of the measurement data to adjust the process would “close the loop."


Software Measurement at Advanced Maturity Levels


An organization operating at an advanced maturity level has a software development process that can be represented by the closed loop feedback control system model shown in Figure H–3. The model is characterized by inputs for product requirements and size, cost, schedule, and quality goals. The process functions that achieve these process goals are measured at the outputs of the various process activities and the process output. The process output measurements tend to undershoot or overshoot its goals, creating a variance in its attempt to achieve its set point. The amount and type of variance is used to determine the corrective action necessary for the process to meet its goals. Process improvement is achieved when the variances become smaller.


H.2 Goal–Question–Metric Paradigm�xe "Goal-Question-Metric paradigm"�


Metrics selection should be based on the goals of your project and organization. You can use the GQM method (Basili and Weiss 1984) to assist you in selecting specific metrics to meet your needs. The GQM method works as follows: 


1.	State a single goal of current importance to the project.


2.	Decide what question(s) you would ask to determine if the goal has been met (or if the goal is being met).


3.	Select the metric you need to answer the question(s) of Step 2.


An example of GQM as applied to process improvement follows:


1.	My goal is to increase defect removal before practice.


2.	Questions may include: “How many defects have been identified?" “How do we go about removing defects?" “How long does it take us to resolve defects?" “When do we find defects?"


3.	Metrics that would help answer these questions include number of defects by life–cycle phase, length of time to fix defects, and effort to fix defects.


You can use the GQM method to help you define measurements and metrics to measure your organization's process improvements.


H.3 Process Improvement Measurement�xe "Process Improvement:measurement"�


This section provides suggestions for what to measure and when to measure to quantify and verify improvements to your software development process. These measurements are categorized into process, product, and management measurements. Within each category, the metrics are divided according to whether they support an organization at a low, intermediate, or advanced level of maturity. The latter maturity levels build on the measurements established earlier; therefore, measurements for more advanced maturity levels should be gathered by the organization in addition to the measurements listed for earlier maturity levels. Most of the measurements listed support improvements in more than one category.


Each category indicates when you should collect the measurement data. The data is usually collected in the Manage and Monitor activity (see Section 7) in each cycle of the process improvement process. The data you are able to collect is dependent on the status of each of the projects using the improved process; that is, you can collect only the data that is available from projects that are finished using, or in the process of using, some or all of the improved process.


When you collect process improvement measurement data, keep the following points in mind:


•	It is important that you maintain a database of your measurements so that you show the extent of the improvements made to the process. Ideally, you can measure the process before any improvements are made and use that as a baseline against which to measure your improvements.


•	You will collect the measurement data listed below from a variety of sources within your organization, including accounting reports for cost and effort expended; project management reports for schedule, staffing, and plan–related information; and configuration management reports and product status reports for product change information.


•	The measurements listed in this section do not represent a comprehensive list of all measurements you need to collect. You may take only a subset of these lists and then supplement that list with measurements that are not included here. The final list is up to you and your organization.


	


Process Measurements�xe "Measurement:process"�


Process measurements provide insight into the effectiveness and efficiency of a process. 


•	Low Maturity. Organizations at a low level of maturity must first focus on establishing effective management activities. For this reason, the following process measurements provide insight into the effort expended on basic management tasks.


The following process measurements should be collected and evaluated at major milestones (including the end) of the projects using the improved process.


-	Cost and effort expended on requirements management activities


-	Cost and effort expended on project planning activities


-	Cost, effort, and other resources expended on performing tracking and oversight activities (e.g., monitoring management metrics)


-	Number of changes made to the software development plan, including size, cost, critical computer resources estimates, and schedule changes


-	Cost, effort, and other resources expended on performing subcontract management activities


-	Cost, effort, and other resources expended on performing software QA activities


-	Cost, effort, and other resources expended on performing software configuration management activities


-	Number of configuration item change requests processed per unit of time


•	Intermediate and Advanced Maturity. At intermediate and advanced levels, organizations have a well–defined software process covering both management and engineering activities, and they conduct supporting activities, such as training, peer reviews, and intergroup coordination, to ensure the effectiveness of their process and the quality of the product.


In addition to the measures listed in each activity, the following process measurement data can be collected during each cycle of the process improvement process:


-	Cost and effort expended on process improvement activities


-	Number of management and staff using the improved process


-	Percentage of process users using the improved process as intended


-	Percentage of process users experiencing the expected benefits from the improvements


-	Number of management and staff satisfied with the improved process


-	Percentage of improvements that have been incorporated into the organization's governing mechanisms (e.g., policies and procedures)


-	Cost, effort, and other resources expended on organizational activities for process assessment, development, and improvement


-	Results and recommendations of each process assessment


-	Cost and effort expended on process definition activities


-	Cost, effort, and other resources expended on providing training opportunities to staff


-	Results of training evaluations and reviews


-	Number of training attendees 


-	Number of training waivers granted 


The following process measurements should be collected and evaluated at major milestones (including the end) of the projects using the improved process:


-	Frequency, causes, and magnitude of replanning efforts 


-	For each identified software risk, the realized adverse impact compared to the estimated loss


-	Number and magnitude of unanticipated major adverse impacts to the software project


-	Average length of time for problem reports to be resolved (from initial opening) 


-	Cost and effort to analyze, implement, and test proposed changes


-	Cost, effort, and other resources expended by the software engineering group in support of other software–related groups


-	Cost, effort, and other resources expended by other software–related groups in support of the software engineering groups


-	Number of peer reviews performed


-	Cost, effort, and other resources expended on peer reviews


-	Number of work products reviewed


	


Product Measurements�xe "Measurement:product"�


A key element of measuring process improvement is measuring the results of the process: the software products. Relevant product measurements should be collected and evaluated at major milestones (including the end) of the projects using the improved process. The product measurements that are relevant depend on the stage of the project; for example, if the project has just entered the design phase, you can collect data on the number of requirements developed.


•	Low Maturity. The basic product measures that a low–maturity organization should collect are based on product requirements and source code; requirements is the most visible input to the software process, and code is the most visible output.


-	Number of requirements


-	Number of requirement changes, including changes that are proposed, open, approved, and incorporated into the baseline


-	Number of requirement changes from the customer, end user, and software engineering group


-	Critical computer resources, such as computer memory capacity, computer processor use, and communications channel capacity


-	Number of changes to configuration items that are requested, approved, and incorporated into the baseline


-	Number of problem reports for configuration items that are generated, approved, and resolved


•	Intermediate and Advanced Maturity. Intermediate and advanced maturity organizations have insight into inputs and outputs associated with each phase of the software life cycle. This level of maturity allows these organizations to measure the intermediate inputs and outputs. In addition to the measures for the organization at a low level of maturity, the following are suggested product measurements:


-	Size of requirements in number of requirements statements, number of (function) boxes in system diagrams, number of (hardware) boxes in a computer network diagram, and number of major subjects or headings in a system description document


-	Size of design in number of design statements, number of program design statements, and number of structured narrative statements


-	Size of code in number of source statements (i.e., thousand source lines of code, or KSLOC) by language, new, added, modified, and reused; comments; number of object code instructions; number of words in memory; number of screens; number of operators and operands; and number of tokens


-	Number of tests and number of test procedure steps


-	Number of computer software configuration items (CSCIs); number of computer software components (CSCs); number of computer software units (CSUs); number of hardware boxes; number of inputs and outputs; and number of function points


-	Size of documentation in number of pages by document type


-	Percentage of requirements traced to design, code, and test cases


-	Percentage of test coverage achieved


-	Number of defects found during peer reviews in requirements, design, code, and test


-	Number of defects found in testing


-	Number of changes incorporated into the software baseline by category (e.g., interface, security, performance, system configuration, and usability)


	


Management Measurements�xe "Measurement:management"�


Management measurements, sometimes referred to as project measurements, provide insight into the progress of a project. They measure the management attributes of the software development process.


Management measurements should be collected and evaluated at major milestones (including the end) of the projects using the improved process. Management measurements that are relevant depend on the stage of the project; for example, if the project has just entered the design phase, then you can collect data on the estimated–to–actual time and effort spent in requirements activities.


•	Low Maturity. At a low level of maturity, organizations focus on the accuracy of their planning efforts. The following are suggested measurements useful in managing a project:


-	Estimated and actual amount of project effort for each life–cycle phase and for each high–level task


-	Estimated and actual number of personnel for each life–cycle phase and for each high–level task, including change in skill type required


-	Estimated and actual amount of other project costs for each life–cycle phase and for each high–level task


-	Planned–to–actual project schedule (start and stop dates, milestones)


-	Planned–to–actual delivery dates of subcontractor products to prime


-	Planned–to–actual dates of prime contractor deliveries to the subcontractor


-	Planned–to–actual number of software quality assurance product audits and activity reviews held


•	Intermediate and Advanced Maturity. Organizations at intermediate and advanced levels of maturity have much more visibility into the software process at both the organization level and the project level. In addition to the measurements for organizations at a low level of maturity, the following are suggested management measurements:


-	Planned–to–actual process assessment, development, and improvement schedule (start and stop dates, milestones)


-	Planned–to–actual process definition schedule (start and stop dates, milestones)


-	Planned–to–actual project management costs


-	Planned–to–actual schedule of the software engineering group to support other software–related groups (start and stop dates, milestones)


-	Planned–to–actual schedule of the other software–related groups to support the software engineering group (start and stop dates, milestones)


Appendix H. Measuring Process Improvement





Appendix H. Measuring Process Improvement





H–�





H–�











H–�











