
Pattern-Oriented Approach to Software Process Evolution
(Submitted to IWPSE99)

Hajimu Iida (iida@itc.aist-nara.ac.jp)
Information Technology Center, Nara Institute of Science and Technology

8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0101 Japan

Abstract

In this article, an approach for evolving software development processes using Software

Process Pattern as a template of process evolving transformation is proposed. Software Process

Pattern is a form of encapsulated knowledge about development project/product management

issues. As well as Software Design Pattern, Software Process Pattern mainly consists of several

components such as Problem, Context, Resulting Context, etc.

By applying pattern-based transformations to a primitive process, we can generate practical

development processes with less effort of process authoring.

1. Introduction

In order to produce large-scale software with high quality in specified schedule, precise

planning and appropriate management of projects are essential. This issue is widely discussed as

software process technique. Various software process models or languages are proposed for

process description, and some of them tried to describe practical process of real projects. These

researches exposed a problem that huge efforts are required to clarify, define, and describe

practical software processes, even though the modeling frameworks provide rich concept for

description. Some process modeling framework offer capability to reuse existing process

descriptions and to adopt/customize them, so that the process model fits the actual process

requirement factors such as product scale, organization scale, organization culture, or applied

methodology. However, only with these formal frameworks, it is not easy for process engineers to

determine how customize target process model to fit the current situation.

Various knowledge and techniques of software process such as task scheduling, resource

assignment, and product management, are actually required to build-up detailed process for

practical projects. Skilled process engineers or project managers would have these techniques as

their knowledge, and they can use this knowledge for customizing the target process. We believe

some of process technique can be explicitly clarified and categorized, so that inexperienced

process engineer can easily reuse them to customize their target process.

In this article, we try to formalize such knowledge as process patterns. We also try to facilitate

these patterns for process evolution. In this approach, process patterns are used as templates of

process evolving transformation. As an initial stage of this research, we have examined an

existing process description, which was actually used for experimental software development

project.

2. Software Process Patterns

2.1 Concept

Process pattern concept directly comes from software design pattern, which originally came

from building-architectural patterns. There are already some researches concerning process

patterns. Coplien has made some good works on organizational patterns in software development

[1,2], and he called them “Process Patterns”. As the other example, Ambler explicitly

distinguishes organizational pattern from software process pattern in his book “Process

Patterns”[3]. He defines the Organizational pattern as a pattern that describes a common

management technique or a potential organization structure, while the Process pattern is defined

as a pattern which describes a proven, successful approach and/or series of action for developing

software. Ambler tries to define a software process for object-oriented development as a set of

process patterns in his book. Thus these patterns are limited to object-oriented software

development, although some of them seems to be valuable for the process using other

methodology.

In this paper, we’d take more comprehensive view about process patterns; some patterns can

be independent from certain methodologies, and they might be generic for various processes. We

also argue that we take more descriptive approach about software process. We describe patterns

based on diagram describing relationships among three entity types (task, role, and product).

Detailed definition of our process patterns will be shown in following section.

2.2 Related Works

Other existing process patterns also identify valuable knowledge of software development.

However, when we try to employ these patterns in order to construct practical software process

description, there are many difficulties due to following characteristics:

• Many of them are organization management issues, not really process issues.

• There are so many ambiguities in pattern descriptions.

• There are no process formalisms or process models.

In next section, we introduce more explicit and formal process model, as a basis for clearer

pattern definitions.

2.3 Process Pattern Language

We use following template for process pattern description:

• Problem (to be solved by using the pattern)

• Forces (additional factors for pattern needs, restrictions)

• Context (describing the situation for pattern capability) and Resulting Context (situation to be

established) including:

 Process diagram (E-R-A diagram)

 Context Vector which represents project specific characteristics as a set of parameter values

• Description (actual pattern description in natural language)

• Remarks (other comments including rationale, classification hints, related patterns, etc.)

An actual process patter example is shown in Figure 1.

2.4 Process Pattern Extraction

As a source of process patterns, we have investigated the description of SFB501 reference

process model developed in University Kaiserslautern[4]. SFB501 is a special research project,

and one of its goals is the development of methods and tools for experiment-based modeling of

software engineering processes as well as the management of experimentally gained experiences.

Table 1: Process patterns extracted from SFB501 reference process model description

ID Name Rough Categorization
SFBP1 Waterfall Process phasing
SFBP2 Divide & Integrate Generic strategy
SFBP3 Prototype Requirement analysis method
SFBP4 Product Verification Quality management principle
SFBP5 Feedback by Change Products Process control principle
SFBP6 Requirement Analysis with Informal

Object Design

Object-Oriented method specific task

refinement
SFBP7 Two Phased Informal Object Design Object-Oriented method specific task

refinement

Problem: Systems requirement is hard to determine in advance
Forces: It is undesired to change requirements at later tasks.
Description: Create simple prototype system in order to assure that the requirement specification is

acceptable for customer. Once requirement is settled, prototype is usually disposed.
Remarks: Related Patterns = (Incremental, Object-oriented

Pattern Category = (Requirement analysis phase)

Problem RequirementRequirement
Analysis

AnalystCustomer

Problem RequirementRequirement
Analysis

prototype

Create
PrototypeTest Cases

Prototype
TestTest Results

Analyst
Prototype
CreatorCustomer

… modified entity

… introduced entity

Name: Prototype

Context: Resulting Context:

Role Product ActivityLegend:
Product flow Role-Activity

association

[Phase=“Analysis”] [Phase=“Analysis”, Strategy=“Prototype”]

Figure 1. Example of Software Process Pattern Description (Prototype pattern)

An experiment to develop an air-conditioning control system based on prescriptive process has

been carried out. The source software process description is written in a process modeling

language MVP/L. The description contains 2300 lines including comments and 67 entities in total.

Gem tool, a visual editor for MVP/L was mainly used for the investigation.

Table 1 summarizes extracted patterns from SFB501 process description. Figure 1 shows the

content of Prototype pattern.

3. Process Evolution with Process Patterns

3.1 Approach

We now introduce the concept of

software process evolution established by

applying process patterns. We categorize

process evolution in two cases --- process

growth and process improvement. Process

growth is made by applying process

patterns to a certain primitive process in a

generative way. Process improvement is

done by finding anti-patterns that indicate

some inappropriate structure and then

applying improvement pattern to that

process. For both cases, formal context

matching should be done to determine the

applicability of patterns. In this paper, we

show an example of process growth.

Figure 2 is an overview of meta-process for pattern-oriented process evolution written in

pseudo language. In this case, methodology is first decided and the process will be decomposed

into sub-processes, then management principle is decided and the process will be modified by

adding some entities for management activity. Decomposition and modification are guided by

process patterns. Earlier decisions, which were made at upper-level meta-process, will restrict

later decision. This information is kept in context vector of the process and also in the shape of the

process.

3.2 Evolution Example

Figure 3 shows step-by-step example of process growth established by pattern application.

This example demonstrates how simple patterns can grow the process into more complex one.

4. Summary

We have proposed a framework of formal software process patterns, which is used to

generative process evolution. We have actually extracted several process patterns from the

existing process description, and we have also shown that these patterns are capable for

generative process evolution. With this pattern framework, process patterns can be electronically

SURFHGXUH 0DLQ�WRS� SURFHVV�

EHJLQ

JURZ�WRS��

HQG

SURFHGXUH JURZ�S� SURFHVV�

EHJLQ

�
 GHFRPSRVH LQWR VXE�SURFHVVHV
�

GHWHUPLQHBGHYHORSPHQWBPHWKRGRORJ\�S��

�
 DGG PDQDJHPHQW SURFHVV HOHPHQWV
�

GHWHUPLQHBPDQDJHPHQWBPHWKRGRORJ\�S�VXE>@��

�
 *R GRZQ DQG UHSHDW
�

LI �S�VXE �! HPSW\�

IRUHDFK V LQ �S�VXE�

JURZ�V��

HQG

Figure 2. Meta-Process for Process Evolution

stored and can be easily reused. In order to reuse stored patterns efficiently, appropriate

categorization should be made. We are currently working on this categorizing issue. As a future

plan, we are going to develop pattern-oriented process evolution system.

Acknowledgement

This research was initially done during the author was at University Kaiserslautern. The

author is quite grateful to Professor Dieter Rombach, Dr. Martin Verlage, Mr. Juergen Muench

and other people for their support and collaboration.

Bibliography

[1] Coplien and Schmidt (Ed.) “Pattern Languages of Program Design”, Addison-Wesley 1995.

[2] Coplien, J.O. "A Generative Development-Process Pattern Language". Pattern Languages of

Program Design, Addison Wesley Longman, Inc., pp. 183-237, 1995

[3] Scott W. Ambler “Software Process Patterns”, Cambridge university press 1998.

[4] SFB501:Development of large systems with generic methods, WWW document,

http://www.sfb501.uni-kl.de/

SFB501 Process composition: Step 0 - Initial Process

problem

Requirement
Analysis

Requirements
Specification

SFB501 Process composition: Step 1
- Apply Pattern “Prototyping”

problem

Requirement
Analysis

Requirements
Specification

prototype

Create
Prototype

Test Cases

Prototype
Test

Test Results

SFB501 Process composition: Step 2
 - Method (OOD) specific refinement (“Req.Analysis for OO”)

problem

Informal
Object
Design

Requirement
Description

Requirement
Modeling

Requirements
Specification

prototype

Create
Prototype

Requirement Analysis

Test Cases

Prototype
Test

Create
Test Case

Test Results

SFB501 Process composition: Step 3
 - Apply Pattern “Product Verification” (2 places)

Verify
Requirements

Description

Verify
System

Requirements

problem

Informal
Object
Design

Requirement
Description

Requirement
Modeling

Requirements
Specification

Create
Test Case

Test CasesTest Results

Process
Guidelines

Defect List

Defect List

Check List

Check List

SFB501 Process composition: Step 4
 Method (OOD) specific refinement (“Informal Object Design”)

Verify
Requirements

Description

Verify
System

Requirements

problem

Object
Structure
Design

Requirement
Description

Requirement
Modeling

Requirements
Specification

Create
Test Case

Test Cases

Process
Guidelines

Defect List

Defect List

Check List

Check List

Task
Assignment

Object
Structure

Object
Changes

Informal Object Design

Test Results

SFB501 Process composition: Step 5a
 Feedback by Change Products between Object Structure Design
and Task Assignment

Verify
Requirements

Description

Verify
System

Requirements

problem

Object
Structure
Design

Requirement
Description

Requirement
Modeling

Requirements
Specification

Create
Test Case

Test Cases

Process
Guidelines

Defect List

Defect List

Check List

Check List

Task
Assignment

Object
Structure

Object
Changes

Informal Object Design

Test Results

SFB501 Process composition: Step 5b
 Feedback by Change Products between Informal Object Design
and Requirement Modeling

Verify
Requirements

Description

Verify
System

Requirements

problem

Object
Structure
Design

Requirement
Description

Requirement
Modeling

Requirements
Specification

Create
Test Case

Test Cases

Process
Guidelines

Defect List

Defect List

Check List

Check List

Task
Assignment

Object
Structure

Object
Changes

Test Results

Task
Changes

Informal Object Design

Informal Object Design

SFB501 Process composition: Resulting Process

Verify
Requirements

Description

Verify
System

Requirements

problem

Object
Structure
Design

Requirement
Description

Requirement
Modeling

Requirements
Specification

Create
Test Case

Test Cases

Process
Guidelines

Defect List

Defect List

Check List

Check List

Task
Assignment

Object
Structure

Object
Changes

Test Results

Task
Changes

Informal Object Design

Figure 3. Example Process Evolution by Pattern Applications

