Generic Software Metrics Manual
Keith Bennett

Department of Computer Science

Washington University

1 March 1994

This Page is Blank

Foreword

This manual describes the standard set of software project metrics. It is intended to be a learning guide for students of CS 585 - Software Project Management.

Additional Metrics Needed

Productivity - Revisions/additions of productivity metrics, particularly in integration and test productivity and pre-release productivity predictors.

Inspection and Test Coverage - Metrics are needed to aid in determining test coverage, i.e., what portion of the code has been exercised.

Complexity - Metrics to analyze the design/code complexity are needed.

SDR/Defect Correction Costs - Improved metrics are needed to analyze SDR/defect correction costs.

Document Status Tracking - Metrics are needed to track the status of deliverable documents.

Software Reuse Effort - Metrics are needed to measure the effort involved in reusing software.

Process Improvement Implementation - Metrics are needed to measure the overall development process improvement activities.

Project-Level ROI - Development of a metric to show the general return that a specific project is having for the company.

This Page is Blank

1.
Introduction
1

1.1.
Document Description
1

2.
Definitions And Acronyms
3

2.1.
Major Releases
3

2.2.
Software Development Phases
3

2.3.
Development Effort Data
4

2.4.
Software Labor
5

2.5.
Work Packages
5

2.6.
Baseline Plan
5

2.7.
Defect
6

2.8.
Change Documents
6

2.9.
Requirement
6

2.10.
Lines of Code
6

2.11.
Acronyms
7

3.
Metrics Overview
9

4.
Metrics Data
13

5.
Project-Level Metrics
15

5.1.
Project Status Metrics
15

5.1.1.
Implementation Progress
16

5.1.2.
Incremental Build Count
20

5.1.3.
Internal SDR (ISDRs) Status
22

5.1.4.
Requirements Verification
24

5.1.5.
Requirements Volatility
26

5.1.6.
Software Size
28

5.1.7.
Software Staffing
30

5.1.8.
Target Computer Utilization
32

5.1.9.
Test Progress
34

5.1.10.
Work Package Progress
36

5.2.
Defect Analysis Metrics
39

5.2.1.
Defect Distribution By Defect Source Type
40

5.2.2.
Defect Distribution By Defect Type
42

5.2.3.
Defect Distribution By Phase
46

5.2.4.
Defects Found
48

5.2.5.
External SDR (ESDRs) Status
50

5.3.
Productivity Metrics
52

5.3.1.
Software Labor Status
52

5.4.
Additional Project Data
53

5.4.1.
Development Effort Data
53

6.
Organization-Level Metrics
55

6.1.
Metric Descriptions
56

6.1.1.
Estimation Accuracy
56

6.1.2.
Productivity
58

6.1.4.
SDR Density
60

6.2.
Organization-level Analysis
63

7.
References
65

A.
Appendix - Defect Data
67

A.1.
Defect Source Product
67

A.2.
Defect Severity
68

A.3.
Defect Type
68

A.4.
Defect Mode
71

A.5.
Phase Defect Generated
71

A.6.
Phase Defect Found
71

A.7.
Defect Detection Method
71

A.8.
Other Data to be Collected Per Defect
71

B.
Appendix - SDR/SCR/RCR Data
73

B.1.
Software Discrepancy Report (SDRs)
73

B.1.1.
SDR Types
73

B.1.2.
Priority
73

B.1.3.
Category
74

B.1.4.
Originating Group
74

B.1.5.
Status
74

B.2.
Software Change Requests (SCRs)
75

B.3.
Requirement Change Requests (RCRs)
75

B.4.
Data to be Collected Per SDR/SCR/RCR
75

INDEX
76

This Page is Blank

1.
Introduction

This document describes the standard set of metrics to be used by software projects. This document is designed to serve as an example for students of CS 585 - Software Project Management. The metrics have been selected/compiled from a variety of sources and are designed to provide the maximum support to the project and division management with the minimum impact. In addition, the metrics are designed to meet SEI level 2 and 3 requirements and most government standards. Individual contracts may require different metrics depending on contract requirement

As shown in Figure 1-1, metrics are collected and analyzed at two levels: project and organizational. Project-level metrics are those directly related to the performance of a specific development. Organizational-level metrics are those related to software development organizations that have one or more projects or sub-organizations. (See Figure 1-1).

 EMBED Word.Picture.8

Figure 1-1. Metrics Reporting Levels

1.1.
Document Description

Section 1 of this document provides an introduction. Section 2 provides definitions for key terms. Section 3 provides a brief overview and list of the metrics described in this manual. Section 4 provides an introduction to the method of metrics data collection and use of the metrics database. Sections 5 and 6 provide detailed descriptions of the metrics. Section 7 provides a list of references on metrics. Appendix A and B describe the defects and Software Discrepancy Reports respectively. Section 5.4.1 describes “development effort” data that is to be collected for productivity and cost/schedule estimating improvements. Appendix C provides a complete description of the metrics database including an entity-relation diagram of the data used in the metrics, a process for entering the data, and a complete set of relational database tables.

2.
Definitions And Acronyms

This section defines terms used in this manual. These terms are for the purpose of this manual only. Many of the terms mean different things to different projects. The following terms have been found to have conflicting definitions: Major Release; Incremental Build; Work Package; various types of Change Documents; labor classifications; Line of Code; and Maintenance.

2.1.
Major Releases XE "Major Releases" and Incremental Builds XE "Incremental Builds"
Most large projects are not developed in one single effort. Rather they are subdivided into major releases and incremental builds. A project can contain one or more major releases with each release containing one or more incremental builds. A major release is a formal, contractual delivery XE "delivery" of a set of software to the customer excluding patch tapes and other minor maintenance deliveries. A major release should include at least one build which requires at least one complete life-cycle of requirements through formal test.

Incremental builds are pre-planned phased developments, where each build is considered a separate planned development cycle
. The development cycle should include preliminary design through integration and test and may include requirements analysis and formal test. (At least one incremental build in each major release should include requirements analysis and at least one build should include formal test). An incremental build, as defined in this manual, is not a software compilation and link used during system integration testing. Many projects will only have one incremental build, in which case, all references to incremental builds refer to the project.

2.2.
Software Development Phases XE "Software Development Phases" and Activities

Each build uses some or all of the following software development phases. These phases are general and may overlap. The purpose of these definitions is to aid in correct classification of metrics data. Projects should map their development approach to these phases when gathering data, particularly cost and schedule data.

System Requirement XE "System Requirement" Analysis / Design

The System Requirements Analysis and System Design phases are not technically software development phases since software is not normally developed during these activities. However, prototypes and simulations may be developed to aid in system definition/analysis. The system requirements are allocated to hardware, software, and operator in order to partition the system requirements into Hardware Configuration Items (HWCI), CSCIs, and manual operations requirements. Software engineering does define a preliminary set of software and interface requirements and usually performs software development planning. The System Requirements Analysis phase commences when the need for the system has been identified, usually after during proposal or after contract award, and terminates with the successful completion of the System Requirements Review (SRR). The System Design phase commences with the SRR and terminates with the successful completion of the System Design Review (SDR).

Software Requirements Analysis XE "Software Requirements Analysis" Phase
A complete set of engineering requirements for each CSCI is established. The phase commences with the successful completion of SDR or contract award, and terminates with the successful completion of the Software Specification Review (SSR).

Software Design XE "Software Design" Phase - Combination of Preliminary and Detailed Design:
Software Preliminary Design XE "Software Preliminary Design" Phase

The overall structure of the software to be developed is determined. The software will be partitioned into components and the function and relationship of each component is defined. The phase commences with the successful completion of the SSR and terminates with the successful completion of the Preliminary Design Review (PDR).

Software Detailed Design XE "Software Detailed Design" Phase
The detailed software design is completed, including identification of the CSUs of each CSC and the relationship CSUs. The phase commences with the successful completion of the PDR and terminates with the successful completion of the Critical Design Review (CDR).

CSU Coding and Unit Test XE "Coding and Unit Test"
The detailed software design is translated into a programming language and unit testing is performed. The phase commences with the successful completion of the CDR and terminates with the successful completion of all CSU testing.

CSC Integration and Test XE "Integration and Test"
The software units and components, that have been independently tested, are combined and tested at the CSC level to verify the system design is fulfilled. The phase commences with the first integration testing of CSCs and terminates with the successful completion of the Test Readiness Review (TRR).

CSCI Formal Test XE "Formal Test " Phase (Formal Test Phase)

Formal tests are performed, in accordance with the software test plans and procedures, on each CSCI. Support is provided for the Functional Configuration Audit(s) (FCA) and Physical Configuration Audit(s) (PCA). The phase commences with the successful completion of the TRR and terminates with the successful completion of testing of the Computer Software Configuration Item.

System Integration and Test XE "System Integration and Test" Phase

This phase is not technically a software development phase and is included only for completeness. Software support may be required for the development and documentation of the system integration and test plans, test cases, test procedures, and post test analysis. Functional Configuration Audit(s) (FCA) and Physical Configuration Audit(s) (PCA) may be delayed until after the system integration and testing phase. This phase terminates with the successful completion of the Formal Qualification Review (FQR).

Pre-Release SDR Rework XE "Pre-Release SDR Rework"

Although not technically a phase, cost collection usually distinguishes correction of SDRs from normal development. Pre-release SDR Rework consists of the correction of internal and formal test SDRs prior to release.

Maintenance XE "Maintenance"

During the maintenance phase, the software development staff is involved in the correction of field SDRs and minor change requests. Major changes should be treated as a separate project.

2.3.
Development Effort Data XE "Development Effort Data"
A major part of the metrics activity is the collection of data for improvement of project planning and management. This includes collecting data for improving cost/schedule estimating XE "cost/schedule estimating" and identifying key productivity drivers.

Development effort data is the set of estimated and actual labor XE "labor" hours, along with estimated and actual lines of code and pages of document data gathered for each project. Development effort data is gathered at the lowest level feasible with the minimal being at the CSCI level for each build. Some projects may be able to collect this data at a work package or CSC level, while older projects may be unable to collect the data lower than the project level.

See Section 5.4.1 for a complete description of the development effort data. See Appendix C for a description of how this data is collected and stored in the database.

2.4.
Software Labor XE "Labor" Classifications

Several metrics require software labor information. For the purpose of these metrics, labor is categorized as follows:

Software Engineering XE "Software Engineering"
Software Engineering includes all labor directly involved in the design, code, unit test, and non-formal integration and test. It also includes software engineering participation in inspections, reviews, documentation preparation, and other activities performed during software development that are directly related to the product.

Software Requirements Analysis XE "Software Requirements Analysis"
Software Requirements Analysis includes all labor directly involved in the generation of the SRSs and IRSs of a software system. It excludes the effort involved in developing higher-level specifications such as the System/Segment Specification and the System/Segment Design Document.

System Engineering XE "System Engineering"
System Engineering is that effort involved in developing the high-level requirements specifications, such as the System/Segment Specification and the System/Segment Design Documents. Normally, system engineering is not included in software labor or software cost estimating.

Software Independent Test XE "Independent Test"
Software Independent Test includes the development and execution of the formal CSCI tests following TRR.

Software Quality Assurance XE "Quality Assurance"
Software QA includes all QA activities directly related to software.

Software Configuration Management XE "Configuration Management"
Software CM includes all CM activities directly related to software,

Software Management XE "Management"
Software Management includes all management activities directly related to software.

2.5.
Work Packages XE "Work Packages"
Work packages are project-specific sets of tasks to be performed by the development staff. Work package definitions are established during software planning/scheduling and during the course of development. The following guidelines should be followed in defining work packages:

• Each work package should trace to no more than one WBS element and one cost account

• Each work package should be planned, schedule, and tracked to completion.

• Each work package should be assigned to one individual or team.

• Each work package should be completely contained in a single major release, in a single incremental build

2.6.
Baseline Plan XE "Baseline Plan"
Many of the metrics use a baseline plan and a current plan. The baseline plan is established at ATP and changed only with an official change in job scope, such as an ECP XE "ECP" . The current plan is the plan that a project is actually working to. It will be modified from the baseline plan to reflect development problems or unforeseen events.

2.7.
Defect XE "Defect"
A defect prevents a software product (i.e., documentation, requirements models, designs, code, test plans/procedures/result, user documentation, etc) from meeting its requirements or standards. Appendix A describes the defect classifications and sources.

2.8.
Change Documents XE "Change Documents"
Software Discrepancy Reports XE "Software Discrepancy Reports" (SDR XE "SDR" s)

Software Change Requests XE "Software Change Requests" (SCR XE "SCR" s)

Requirements Change Requests XE "Requirements Change Requests" (RCR XE "RCR" s)

Aka-
Software Trouble Reports; (STR XE "STR" s)

Software Change Proposals XE "Software Change Proposals"

 XE ".i.Software Change Proposals" (SCP XE "SCP" s)

Software Enhancement Proposals XE "Software Enhancement Proposals" (SEP XE "SEP" s)

A Software Discrepancy Report (SDR) is a report generated on a perceived problem found in an baselined software product. SDRs are not, in themselves, defect XE "defect" s. They are normally an indication of one or more defects in the software product or user training. SDRs need to be analyzed to determine the defects.

Software Change Requests (SCRs) are similar to SDRs except that a) they do not generate defects, and b) they handle needed or desired changes to approved or released products.

Requirement Change Requests (RCRs) are used to track requirement changes from SRS baseline to product release. Like SCRs, RCRs do not generated defects.

Change documents can be internally or externally generated. Appendix B describes the SDR/SCR/RCRs classifications and describes when a change document is internal or external.

2.9.
Requirement XE "Requirement"

Requirement counts used in metrics, such as requirements volatility and verification, are based on original, derived, interface, quality, etc. requirements from sources such as Statements of Work, System/Segment Specifications, Systems/Segment Design Documents, Software Requirements Specifications, Interface Requirements Specifications, Interface Control Documents, and SDR/SCRs to implemented. As a rule, each requirement listed in the requirements traceability table should be counted.

2.10.
Lines of Code XE "Lines of Code"
Lines of code (LOC XE "LOC") are used in several metrics. LOC should be counted by Non-Commented Source Statements (NCSS). NCSS are:

1. All executable or compiler instruction statements including all firmware, JCL (Job Control Language), format statements, data type declarations, and data declarations. Statements are defined as:

In C, Ada, and Pascal, a statement that ends in a semicolon.

In Fortran, a statement ends at the end of the last continuation line.

In assembler, a statement ends at the end of a physical line.

Logical end of statement in other languages

This excludes:

1. Comments and blank lines.

2. COTS software

3. Non-deliverable software

Added LOC XE "Added LOC" : Count the number of NCSS that have been added.
Modified LOC XE "Modified LOC" : Count the number of NCSS that have been modified.

Total LOC XE "Total LOC" : Added, modified, and unmodified NCSS.

2.11.
Acronyms

ACWP - Actual Cost of Work Performed
ADL - Ada Design Language
ATP - Authority to Proceed
C/SCS - Cost / Schedule Control System
CDR - Critical Design Review
CM - Configuration Management
CMM - Capability Maturity Model
COTS - Commercial Off-The-Shelf
CPU - Central Processing Unit
CRISD - Computer Resource Integrated Support Document
CSC - Computer Software Component
CSCI - Computer Software Configuration Item
CSOM - Computer System Operators Manual
CSSR - Cost Schedule Status Reporting
CSU - Computer Software Unit
DB - Database
ECP - Engineering Change Proposal
ESDR - External Software Discrepancy Report
FCA - Functional Configuration Audit

FQR - Formal Qualification Review
FSM - Firmware Support Manual
HWCI - Hardware Configuration Item
I/O - Input/Output
ICD - Interface Control Document
IDD - Interface Design Document
IRS - Interface Requirements Specification
ISDR - Internal Software Discrepancy Report
LOC - Lines of Code (See Section 2.4)

Lv - Level
NCSS - Non-Comment Source Statements (See Section 2.4)

PC - Product Center
PCA - Physical Configuration Audit
PDL - Preliminary Design Language
PDR - Preliminary Design Review
QA - Quality Assurance
RCR - Requirements Change Requests
ROI - Return on Investment
S/W - Software
SCM - Software Configuration Management
SCP - Software Change Proposals
SCR - Software Change Requests
SDD - Software Design Document
SDR - Software Discrepancy Reports
SDR - System Design Review

SEP - Software Enhancement Proposals
SPM - Software Programmers Manual (SPM)
SQA - Software Quality Assurance
SRR - System Requirement Review
SRS - System Requirements Specification
SSDD - System/Segment Design Document
SSR - Software Specification Review
SSS - System/Segment Specification
STD - Software Test Descriptions
STP - Software Test Plan
STR - Software Test Report
STR - Software Trouble Report
SUM - Software User’s Manual
TRR - Test Readiness Review
VDD - Version Description Document
WBS - Work Breakdown Structure
WP - Work Package
3.
Metrics Overview

Metrics are divided into project-level metrics and organization-level metrics. Project-level metrics are designed to provide information to the project software manager and program manager on the status of their project. Because of the differences between projects, special care must be taken when comparing data from different projects. In many cases, the data will not be comparable.

Organizational-level metrics provide data to track and improve development organizations that have multiple software projects.

Project level metrics are further subdivided based on the data needed. Tables 3-1 and 3-2 list both project and organization-level metrics, along with the key issues they address.

Project Level
Per
Performance

Price/Cost

Features

Quality

Project Status Metrics

 Implementation Progress
CSCI

and Build

 Incremental Build Count
Project
√

 Internal SDR (ISDRs)
Build
√

 Requirements Verification
Build

√

 Requirements Volatility
Build
√

 Software Size
Build
√

 Software Staffing
Project

√

 Target Computer Utilization
Target Comp.

√

 Test Progress
Build

√

 Work Package Progress
Build
√

Defect Analysis Metrics

 Defects Found
Project or CSCI

√

 Defect Distribution by Defect Source
Project or CSCI

√

 Defect Distribution by Defect Source Type
Project or CSCI

√

 Defect Distribution by Phase
Project or CSCI

√

 Defect Distribution by Defect Type
Project or CSCI

√

 External SDR (ESDRs) Status
Project
√

Productivity Metrics

 Software Labor Status
Build
√

Figure 3-1 - Project Level Metrics

Organization-Level
Performance

Price/Cost

Features

Quality

Estimation Accuracy
√

Productivity

√

SDR Density

√

Table 3-2 - Organization-Level Metrics

This Page is Blank

4.
Metrics Data

Metrics go beyond the simple generation of graphs. Metrics represent the analysis of data to aid in understanding and solving a variety of problems. This metrics approach is based not only on collection of metrics data that appears on the graphs but on collecting data for use in more detailed analysis, supporting organization metrics analysis, and providing data for improving future program estimating and planning (See Figure 4-1).

Data is collected during initial planning data and monthly
. Initial planning data
 is based on the proposal plan or initial plan generated at ATP. Monthly data updates reflect the current status of the project. This data is entered into a project database. All organization-level metrics are based on the collection of data from these project databases.

Appendix C describes the content of the project and organizational metrics database.

 EMBED Word.Picture.8

Figure 4-1 - Use of Metrics Data

5.
Project-Level Metrics

This section described the project-level metrics (See Figure 3-1).

5.1.
Project Status Metrics

Project status metrics provide a project with general cost/schedule tracking and cost/schedule impact metrics. Project status metrics are not designed for comparisons to other projects. Status metrics are designed to provide a project manager tracking against a plan. The reason is the difference in development approaches. These differences arise due to: contracts; government standards; maintenance vs new development; year initiated; methods, tools, and development environments; embedded vs stand-alone software; etc.. Comparison is also difficult because different projects use different definitions of things such as software units, requirements, and integration tests.

5.1.1.
Implementation Progress

Implementation progress tracks the general progress of new or modified software units of a project against the project plan. Software units are CSUs, CSCs, SDR/SCR implementations, software developed under a single work package, or some other project-specific block of code. As a rule, software units should be small enough to provide the project with an adequate level of progress tracking.

The purpose of this metric is to identify potential schedule problems as early as possible. When a project is not meeting plan, the problem should be investigated. Possible reasons could include the following:

• Inadequate planning

• Complexity higher than expected

• Insufficient staffing and/or other resources

• External influences (e.g., requirements inadequately defined or changing)

Characteristics

Graph
of software units vs months

Graph Per:
Per CSCI Per Incremental Build

Used
From start of software unit detailed design through completion of integration

Tailoring
Projects may plan and track implementation progress at either a higher level (such as major release level) or at a lower level such as at CSC level. The level of tracking should provide the project software manager as much visibility as practical.

Input Data

Initial and Monthly - Baseline plan and current plan implementation profiles. Cumulative Profile of total number of software units:

1) Passing
 detailed design to-date

2) Passing
 code and unit test to-date

3) Integrated
 to-date

Monthly - Actual number of software units:

1) Passing detailed design to-date

2) Passing code and unit test to-date

3) Integrated to-date

Monthly - Current estimated number of software units at completion

Initial - Definition of S/W unit

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

This Page is Blank

5.1.2.
Incremental Build Count

This metric tracks the planned vs. actual content of incremental builds. Incremental builds are pre-planned phased developments, where each build is considered a separate planned development cycle (See Section 2). An incremental build is not a software compilation and link used during system integration testing. This metric is used to measure the success of delivering what was planned in each incremental build.

Postponement of functions to later builds may indicate problems in the internal requirements definition, software design, coding, or internal test. Postponement may put the final release at risk.

Characteristics

Graph
Profile of requirements vs time

Graph Per:
Project or Major Release

Used
ATP through program completion

Tailoring
Incremental build count can use CSUs or work packages instead of requirements. Projects may also want to show the major release dates if there are several builds per release.

Input Data

Initial and Monthly - Baseline Plan and Current Plan - Estimated Completion Date for Each Build

Monthly - Actual completion date for each build completed

Initial and Monthly - Current estimate at completion of the number of requirements, CSUs, or work packages in each build

Monthly - Actual number of requirements, CSUs, or work packages in each build completed

Initial - Definition of build content units: requirement, CSU, or work package

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.1.3.
Internal SDR (ISDRs) Status

This metric tracks the state of Internal SDRs within a project (See Appendix B for a complete definition of SDRs).

The purpose of this metric is to monitor accepted
 ISDRs identified in the product after development baselining and prior to formal test (See Appendix B). The number of open ISDRs indicate the amount of work remaining to be completed. The ISDR rate is an indicator of the readiness of the software to be released and should fall to near zero before formal test.

Characteristics

Graph
ISDRs vs Time

Graph Per:
Incremental Build or Major Release

Used
Start of build through build completion

Tailoring
Projects may wish to report more information on ISDRs such as a breakdown by type, priority, or classification. In addition, projects may want to add mean time to closure.

Input Data

Monthly - SDR data on all project generated SDRs (See Appendix B)

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.1.4.
Requirements Verification

This metric tracks the percent of requirements traced to one or more test cases and to one or more software units.

In order to verify that a program meets requirements, all requirements should be tested against the final code. To insure that all requirements are tested, each requirements should be traced to at least one integration or, preferably, one formal test case. In addition, all requirements should be traced to one or more software units. A requirement that is not traceable indicates a problem with either the requirement (untestable), design, or test plan.

Characteristics

Graph
% vs Time

Graph Per:
Incremental Build

Used
Start of build through build completion

Tailoring
Projects may wish to track at the major release level if there is no formal testing at the incremental build level.

Input Data

Monthly - % of all project software requirements traced to an integration or formal test case

Monthly - % of all project software requirements traced to a software unit

Monthly (Optional) - % of all project software requirements verified, i.e., all tests that the requirement traces to have been passed.

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.1.5.
Requirements Volatility

This metric compares the total number of requirements to the estimated number of requirements. In addition, it measures changes (additions, deletions, modifications) in the approved requirements.

Although changing requirements are typical in most applications, highly volatile requirements pose a risk to the program. Special consideration should be given to major requirement changes late in the program as these will threaten cost and schedule.

Characteristics

Graph
Requirements Vs Time

Graph Per:
Incremental Build

Used
Start of build through build completion

Tailoring
Project may wish to track at major release level if there is no requirements analysis phase at the incremental build level.

Input Data

Initial and Monthly - Current estimated number of requirements at completion.

Monthly - Number of approved requirements
 to-date

Monthly After SRS Baseline - Number of minor
 requirement changes during month

Monthly After SRS Baseline - Number of routine
 requirement changes during month

Monthly After SRS Baseline - Number of major
 requirement changes during month

As Occurs - SRS Baseline Date

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.1.6.
Software Size

This metrics tracks the actual and estimated software size of a project.

Software size (i.e. LOC) is currently the primary method of sizing a project. The software size metric provides management with a view to how the project is growing. Growth in estimated size is an indication of poor estimating, volatile requirements, or “gold-plating”.

Characteristics

Graph
LOC vs Time

Graph Per:
Per CSCI Per Incremental Build

Used
Start of build through build completion

Tailoring
Project may wish to break down size by CSCs. Projects may wish to track at the CSCI per major release level. Projects may also tailor out the LOC added, modified, deleted data.

Input Data

Initial and Monthly - Current Estimated CSCI Software Size (Total estimated LOC
)

Monthly - Current CSCI Software Size (Total Approved LOC
 To-Date)

Monthly - # LOC Added During Month

Monthly - # LOC Modified During Month

Monthly - # LOC Deleted During Month

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.1.7.
Software Staffing

The staffing metric allows project managers to monitor software staffing needs and available resources. Software staff includes software requirements analysis, software engineering, software independent test, SQA, SCM, and software management (See Section 2 for definitions). Projects are encouraged to break out graphs by staff type and experience level.

Failure to meet the planned software staffing profile may threaten the program schedule. High turnover can be a potentially major problem for the program. Program plans may need to be adjusted accordingly.

Characteristics

Graph
People vs Time, Turnover Rate vs Time

Graph Per:
Project or Major Release

Used
ATP Through project completion

Tailoring
Project may break out staff by the following:

• Staff Experience

• Staff Type

• CSCI

Input Data

Initial and Monthly- Baseline Plan and Current Plan - Planned Staffing Profile

Monthly - Actual Project Staff

Monthly - Number of Staff Added To and Lost From the Project During Month (Planned and Unplanned)

Processing

Metric Item
Processing

Turnover Rate
Smaller number of # people added to or lost from the project during the month

Actual Staff at End of Month

 EMBED Word.Picture.8

5.1.8.
Target Computer Utilization

This metric tracks changes in estimated use of target computer resources.

Most projects experience an upward trend in resource usage. It is important to recognize when that trend could cause resource utilization to approach either absolute hardware limits or contractual spare requirements. Software costs and schedules increase greatly as resource limits are approached because optimization, rework, redesign, and deletion of functionality are increasingly necessary the closer the limits are approached. In addition, new or modified hardware must be obtained when resources are exhausted or when the spares requirements are not met. The resource utilization metrics can help to anticipate the growth so that appropriate action can be taken as early as possible.

Characteristics

Graph
Resources Vs Time

Graph Per:
Target Computer

Used
ATP through project completion

Tailoring
Project may add additional key target computer parameters. In addition, it is suggested that projects track key parameters on their development systems.

Input Data

Initial and Monthly - CPU Spare Requirement

Initial and Monthly- Memory Spare Requirement

Initial and Monthly- I/O Spare Requirement

Initial and Monthly- Disk Storage Spare Requirement

Monthly - Estimated Peak CPU Usage

Monthly - Estimated Peak Memory Usage

Monthly - Estimated Peak I/O Usage

Monthly - Estimated Peak Disk Storage Usage

Monthly - Actual Peak CPU Usage

Monthly - Actual Peak Memory Usage

Monthly - Actual Peak I/O Usage

Monthly - Actual Peak Disk Storage Usage

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.1.9.
Test Progress

This metric tracks actual vs. planned software test generation and execution of integration tests and formal system tests. It can also be used to track any other special test requirements.

Progress of test generation can be followed to determine whether testing can begin on schedule. Similarly, actual test execution can be monitored.

Characteristics

Graph
Profile of Tests vs Time

Graph Per:
Incremental Build

Used
Start of build through completion of build testing

Tailoring
Projects may break out data to CSCI level for integration test progress. Projects may also track formal test progress at the major release level if there is no formal test at the incremental build level.

Input Data

Initial and Monthly - Baseline Plan and Current Plan - Cumulative Profile of Completed Integration
 Test Plans

Initial and Monthly - Baseline Plan and Current Plan - Cumulative Profile of Completed Formal Test Plans

Monthly - Actual Completed Integration Test Plans

Monthly - Actual Completed Formal Test Plans

Initial and Monthly- Baseline Plan and Current Plan - Cumulative Profile of Completed Integration Tests

Initial and Monthly- Baseline Plan and Current Plan - Cumulative Profile of Completed Formal Tests

Monthly - Actual Completed Integration Tests

Monthly - Actual Completed Formal Tests

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.1.10.
Work Package Progress

This metric tracks the status of work packages. Work packages are project-specific sets of tasks to be performed by the development staff. Work package definitions are established during software planning/scheduling and during the course of development. When possible, the following guidelines should be followed in defining work packages:

• Each work package should trace to no more than one WBS element and one cost account

• Each work package should be planned, scheduled, and tracked to completion.

• Each work package should be assigned to one individual or team.

Characteristics

Graph
Number of Work Packages Vs Time

Graph Per:
Project

Used
ATP through project completion

Tailoring
Project may wish to break out by major release, incremental builds, and/or CSCIs.

Input Data

Initial and Monthly - Current Estimated Total Number Of Work Packages To Be Implemented At Completion

Initial and Monthly - Baseline Plan and Current Plan - Cumulative Profile of Planned Number of Work Packages Completed

Monthly - Actual Number of Work Packages Completed To-Date

Monthly - % Work Complete:

A) For projects not using C/SCS or CSSR:

∑ (Work Packages (% Complete * Planned Effort))

--

∑ (Work Packages (Planned Effort))

B) For Projects Using C/SCS or CSSR:

ACWP

Total Estimated Effort

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.2.
Defect Analysis Metrics

 A defect in a software product (i.e., documentation, requirements models, designs, code, test plans/procedures/result, user documentation, etc) prevents the product from meeting its requirements or standards. Appendix A describes the defect classifications and sources. The defect analysis metrics are a set of metrics that utilize the defect data for identifying, tracking, and analyzing defects in a software product.

5.2.1.
Defect Distribution By Defect Source Type

This metric is used to review the distribution of defect data by defect source type.

The purpose of this metric is to identify the highest defect source types in order to direct resources to improve the process. Improvements can include improved inspection checklist, improved training, improved process specification, etc.

Characteristics

Graph
Defect Distribution By Defect Source Type

Graph Per:
Project

Used
ATP through project completion

Tailoring
Projects may break out data according to CSCIs or other organizational structure.

Input Data

Monthly - All defect data as described in Appendix A on all defects found since ATP

Processing

Metric Item
Processing

Defect data is sorted and displayed according to defect source type. Source types are described in Appendix A and include:

System Rqmts/Design

Software Rqmts

Software Design

Deliverable PDL/ADL/Code

Non-Deliverable PDL/ADL/Code

Unit Test Plan/Procedure

Unit Test Case

Integration Test Plan/Procedure

Integration Test Case

Formal Test Plan/Procedure

Formal Test Case

User Documentation

Other Products

COTS/GOTS

 EMBED Word.Picture.8

5.2.2.
Defect Distribution By Defect Type

This metric is used to review the distribution of defect data by defect type.

The purpose of this metric is to identify the type of defects found in order to direct resources to improve the process. Improvements can include improved inspection checklist, improved training, improved process specification, etc.

Characteristics

Graph
Defect Distribution By Defect Type

Graph Per:
Project

Used
ATP through project completion

Tailoring
Projects may break out data according to CSCIs or other organizational structure. Project may also want to break out by defect type vs defect source type.

Input Data

Monthly - All defect data as described in Appendix A on all defects found since ATP

Processing

Metric Item
Processing

Defect data is sorted and displayed according to defect type. Defect types are described in Appendix A and include:

Standards

Ambiguity

Procedure

Unclassified

Rqmts Interface

Rqmts Standards

Rqmts Data

Rqmts Unverifiable

Design Logic

Design Interface

Design Precision

Design Performance

Design Data

Design Standards

Code Interface

Code Logic

Code Precision

Code Performance

Code Standards

Code Data

 EMBED Word.Picture.8

5.2.3.
Defect Distribution By Phase

This metric is used to review the distribution of defect data by phase generated and found.

The purpose of this metric is to monitor the phase in which the defect was created vs the phase in which the defect was found. Defects should be found as soon as possible after they are generated.

Characteristics

Graph
Defect Distribution By Phase Found/Generated

Graph Per:
Project

Used
ATP through project completion

Tailoring
Projects may break out data according to CSCIs or other organizational structure.

Input Data

Monthly - All defect data as described in Appendix A on all defects found since ATP

Processing

Metric Item
Processing

Defect data is sorted and displayed according to phase in which the defects are generated and found.

 EMBED Word.Picture.8

5.2.4.
Defects Found

This metric is used to track the defects found in the product.

Characteristics

Graph
Defects vs Time

Graph Per:
Project

Used
ATP through project completion

Tailoring
Project may break this out by CSCI

Input Data

Monthly - All defect data as described in Appendix A on all defects found in this incremental build since ATP

Processing

Metric Item
Processing

All defects generated against developed deliverable code, i.e. excluding COTS.

 EMBED Word.Picture.8

This Page is Blank

5.2.5.
External SDR (ESDRs) Status

This metric tracks the state of external SDRs within a project (See Appendix B for a complete definition of SDRs).

The purpose of this metric is to monitor problems identified in the product during formal test and after release to the customer. The number of open SDRs indicates the amount of work remaining to be completed.

Characteristics

Graph
ESDRs vs Time

Graph Per:
Project

Used
ATP through project completion

Tailoring
Projects may wish to report more information on SDRs such as a breakdown by type, priority, or classification.

Input Data

Monthly - SDR Data on all Project ESDRs (See Appendix B)

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.3.
Productivity Metrics

5.3.1.
Software Labor Status

This metric compares planned effort vs actual effort for various phases of the life-cycle. Significant overruns or underruns indicate a problem.

Characteristics

Graph
Mhrs vs Time

Graph Per:
Incremental Build

Used
ATP through project completion

Tailoring
Project should breakout the effort expended and effort planned. For example, the graph could include breakouts by phase or labor type.

Input Data

Initial and Monthly (If Change) - Baseline Plan and Current Plan - Profile of planned labor expenditures by development phase and labor type (See Section 2.0)

Monthly - Actual labor expenditures by development phase and labor type.

Processing

Metric Item
Processing

All
No specific processing - all data displayed as entered

 EMBED Word.Picture.8

5.4.
Additional Project Data

A major part of the metrics activity is to collect data for improvement of project planning and management. This includes collecting data for improving cost/schedule estimating and identifying key productivity drivers. This data, in many cases, is not directly associated with an individual metric. Some of this data is used by the project-level Software Labor Status and Software Size metrics and the ogranizational-level Productivity and Estimating Accuracy metrics. The rest of the data is for improving cost/schedule estimating and for early identification of problems on future programs.

5.4.1.
Development Effort Data

Most of the additional data is development effort data. This data is to be collected at the lowest level practical for each build. On most projects this will be at the CSCI level although some projects may be able to collect at a CSC, CSU, or work package level. Other projects will be forced to collect at the project level.

Although, this data is to be collected monthly, it is expected that much of it will not change from month to month. The purpose of collecting it monthly it to allow analysis of change patterns across multiple projects. This will improve an organizations estimating abilities by allowing it to identify typical patterns and plan for them.

 The following information is to be collected on each CSCI, etc. per incremental build:

• Baseline Plan and Current Plan - Cumulative Profile of Estimated Manhours By Development Phase and Labor Types
.

• Actual Manhours Expended to Date By Development Phase and Labor Types.

• Estimated LOC
 to be added

• Estimated LOC to be modified

• Estimated LOC to be deleted

• Estimated unmodified LOC to be incorporated

• Estimated Equivalent LOC

• Actual LOC added this month

• Actual LOC modified this month

• Actual LOC deleted this month

• Actual unmodified LOC incorporated this month

• Estimated Pages of Documentation At Completion and Actual Pages To Date For Each:

• System/Segment Specification (SSS) or equivalent

• System/Segment Design Document (SSDD) or equivalent

• Interface Control Document (ICD) or equivalent

• System Requirements Specification (SRS) or equivalent

• Interface Requirements Specification (IRS) or equivalent

• Software Design Document (SDD) or equivalent

• Interface Design Document (IDD) or equivalent

• Software Test Plan (STP) or equivalent

• Software Test Descriptions (STDs) or equivalent

• Software Test Reports (STRs) or equivalent

• Version Description Document (VDD) or equivalent

• Computer Resource Integrated Support Document (CRISD) or equivalent

• Computer System Operators Manual (CSOM) or equivalent

• Software Programmers Manual (SPM) or equivalent

• Firmware Support Manual (FSM) or equivalent

• Software User’s Manual (SUM) or equivalent

• Other Development Documents

• Other User’s Documents

• Other Documents

• Target Machine Description (CPU, Throughput, Memory, Other Constraints)

• Development Machine/Environment Description

• Government Standards Description(e.g. 2167a, Tailoring Applied, 2168, etc.)

• Description of Availability of Development and Test Facilities

• Customer Identification and Description

• Development Language Description (Ada, Fortran, etc. with % if mixed)

• Security Requirements Description

• Estimated Current Value for All Revic Parameters :

1.
Analyst Capability

2.
Programmer Capability

3.
Application Experience

4.
Virtual Machine Experience

5.
Programming Language Experience

6.
Execution Time Constraints

7.
Main Storage Constraints

8.
Virtual Machine Volatility

9.
Computer Turnaround Time

10.
Requirements Volatility

11.
Product Reliability

12.
Data Base Size

13.
Product Complexity

14.
Required Reuse

15.
Modern Programming Practices

16.
Use of Software Tools

17.
Required Security Classification

18.
Management Reserve for Risk

19.
Required Development Schedule

20.
Software Development Mode

6.
Organization-Level Metrics

Organization-level metrics are based on the individual metrics and software engineering maturity level data of the organization’s projects. With the exception of the SEI level metric, no additional data is needed beyond what is collected through the metrics database by the individual projects. Organization-level metrics are normally generated quarterly, although organizations can generate them more frequently if desired.

6.1.
Metric Descriptions

6.1.1.
Estimation Accuracy

This metric is used to track an organization’s ability to estimate software cost and schedule.

Estimation accuracy gives an organization an indication of how well it is estimating cost and schedule. Failure to accurately estimate cost and schedule can result in loss of earnings and a dissatisfied customer.

Characteristics

Graph
Accuracy Indices vs Time

Tailoring
No tailoring identified.

Input Data

Quarterly
 - For each project delivering a major release in previous twelve months: Sum of last baseline plan estimated software manhours for software requirements, software engineering, software independent test, SQA, SCM, and software management
.

Quarterly
 - For each project delivering a major release in previous twelve months: Sum of actual software manhours including software requirements, software engineering, software independent test, SQA, SCM, and software management
.

Quarterly
 - For each project delivering a major release in previous twelve months: Estimated number of calendar days from ATP to product delivery plus any additional calendar days added due to a change in job scope
.

Quarterly
 - For each project delivering a major release in previous twelve months: Actual number of calendar days from ATP to product delivery .

Processing

Metric Item
Processing

Cost Accuracy Index
Index =

 ∑ (Actuals Mhrs)

 ∑ (Estimated Mhrs)

Schedule Accuracy Index
Index =

 ∑ (Actuals Calendar Days)

 --

 ∑ (Estimated Calendar Days)

 EMBED Word.Picture.8

6.1.2.
Productivity

This metric is used for tracking productivity of various projects within the organization.

This graph is used to track trends in productivity. As a whole, organizations should see a move to the upper right as new projects with higher levels of productivity are completed.

Characteristics

Graph
Scatter Graph of Total Software Productivity vs Release Date.

Each “dot” on the graph represents one project. The dot is placed at release date (x axis) and productivity (y axis). The size of the dot is a relative indication of total software size: white indicating unmodified code and black indicating new and modified code.

Tailoring
No tailoring identified.

Input Data

Quarterly
- For each project delivering a major release in previous twelve months:

 1) Completion date

 2) Total Added/Mod LOC
 Generated

 3) Total Unmodified LOC
 Included

 4) Total Software Mhrs

Processing

Metric Item
Processing

Total Software Productivity
Total Added/Mod LOC
 Generated

Total Software Mhrs

Total LOC
Total Added/Mod LOC Generated + Total Unmodified LOC Included

 EMBED Word.Picture.8

6.1.4.
SDR Density

This metric is used to track the total number of problems that the customer is experiencing on the organization’s delivered programs.

SDR density is a gross measure of customer problems with the software. High density rates indicate that the customer is experiencing a significant number of problems in operations.

Characteristics

Graph
Accepted External SDR Density Index vs time

Tailoring
No tailing identified

Input Data

Quarterly - For each project delivering a major release in previous twelve months: Number of external SDRs accepted in previous twelve months and the priority level of each SDR.

Quarterly - For each project delivering a major release in previous twelve months: Total LOC of the last fielded release.

Processing

Metric Item
Processing

SDR Density Index
Weighted sum of all external SDRs generated against a project released in the previous 12 months=
∑ (0.5 * # Priority 5 ESDRs +

 1 * # Priority 4 ESDRs +

 5 * # Priority 3 ESDRs +

 15 * # Priority 2 ESDRs +

 50 * # Priority 1 ESDRs)

--∑(Total LOC
 Fielded)

 EMBED Word.Picture.8

This Page is Blank

6.2.
Organization-level Analysis

In addition to the organization-level metrics reported quarterly, each organization should perform quarterly analysis using the metics database. This analysis will help an organization identify characteristics about software development that will aid in future estimating, scheduling, planning, and monitoring projects within that organization. As organizations implement these metrics and data is collected, good analysis metrics will be identified and included here in future versions of this manual.

This Page is Blank

7.
References

1.
Code Counting Rules and Category Definitions/Relationships, Code_Count_Rules-90010-N Version 01.00.04, May 1990, Software Productivity Consortium.

2.
Selected Management Metrics, Naval Air Warfare Center

3.
Software Management Indicators, AFSCP 800-43, Air Force Systems Command, Management Insight, 31 January 1986

4.
Standard for Software Productivity Metrics, P1045/D3.0, May 1, 1990, IEEE Computer Society

This Page is Blank

A.
Appendix - Defect Data

This appendix describes the data to be collected on each defect and the defect classifications. Defects are classified according to source product, severity, type, mode, phase generated, and phase found.

A.1.
Defect Source Product

A defect in a software product prevents the product from meeting its requirements or standards. This section describes the type of source products that defects are traced to. A recommended product “size” is included for each product. This guideline facilitates identification of defect-prone products. The actual “size” used is project-specific and should be documented in the SDP or other organization standard. Each source description includes a “code” to be used in the database, for example SYS.

System Requirements / System Design (SYS)
 Includes all documentation that is used to describe the system requirements and design including SSSs ,SSDDs, and ICDs. Specifications should also include method-specific diagrams, such as data flow diagrams. Normally, a defect should be traced to a document or document section of no more than 10 pages of text or diagrams. The document or document section should be related to a major system function, configuration item, interface, or other major requirement.

Software Requirements (SRQ)

Includes all documentation that is used to describe the software requirements, including SRSs and IRSs. Software requirements specifications may also include method-specific diagrams, such as data flow diagrams. Normally, a defect should be traced to a document or document section of no more than 10 pages of text or diagrams. The document or document section should be related to a major software function, CSC, interface, or other major requirement.
Software Design (SDN)

Includes all documentation that is used to describe the software design except PDL/ADL. This includes both the preliminary and final versions of the SDDs and IDD. Software design specifications can also include method-specific diagrams, such as structure charts or object charts. Normally, a defect should be traced to a document or document section of no more than 10 pages of text or diagrams. The document or document section should be related to a CSC, interface, or other major design element.

Deliverable PDL/ADL/Code (DCD)

Includes all PDL, ADL, source code, job control scripts, etc. that are used to compile and/or build the software. Normally, a defect should be traced to an individual source file.

Non-Deliverable PDL/ADL/Code (NCD)

Includes all PDL, ADL, source code, job control scripts, etc., that are used to compile and/or build support software such as prototypes. Normally, a defect should be traced to an individual source file.
Unit Test Plan or Procedure (UTP)

Includes all documentation that is used to describe the test plan or procedures that will be run to test a software unit. Normally, a defect should be traced to the unit test plan or procedure.

Unit Test Case (UTC)

Includes all PDL, ADL, source code, job control scripts, etc., that are used to compile and/or build software for testing a software unit. Normally, a defect should be traced to an individual source file or test script.
Integration Test Plan or Procedure (ITP)

Includes all documentation that is used to describe a test plan or procedures that will be run during the integration and test phase. Normally, a defect should be traced to a test plan or procedure.

Integration Test Case (ITC)

Includes all PDL, ADL, source code, job control scripts, etc., that are used to compile and/or build software for conducting an integration test. Normally, a defect should be traced to an individual source file or test script.
Formal Test Plan or Procedure (FTP)

Includes all documentation that is used to describe a test plan or procedures that will be run during the formal test phase. Normally, a defect should be traced to a test plan or procedure.

Formal Test Case (FTC)

Includes all PDL, ADL, source code, job control scripts, etc., that are used to compile and/or build software for conducting a formal test. Normally, a defect should be traced to an individual source file or test script.

User Documentation (UD)

Includes all documentation that describes how customers use the product, including the VDD, CRISD, SUM, CSOM, SPM, FSM, and other user documents. Normally, a defect should be traced to a document or document section of no more than approximately 25 pages.

Other Product (OP)
All other source products.

COTS/GOTS (CT)
All commerical off the shelf or government provided software products.

A.2.
Defect Severity

Major:

• Something that causes a malfunction or unexpected result

• Information that would lead to an incorrect response or misinterpretation of the information by the user

Minor:

• Information that is undesirable but would not cause a malfunction or unexpected result

• Information that is undesirable but would not be readily noticed by the user

A.3.
Defect Type

Listed below are the defect types. Projects are free to add additional defect types as long as they can be mapped back to one of the following in order to collect defect statistics at an organizational level.

Defect Type
Description
SYS
SRQ
SDN
DCD
NCD
UTP
UTC
ITP
ITC
FTP
TTC
UD
OT
CO

Standards (XST)
A standards defect that cannot be classified as a requirement, design, or code standards defect (See RST, DST, and CST defect types)
√
√
√
√
√
√
√
√
√
√
√
√
√
√

Ambiguity (XAM)
A description or name is ambiguous or confusing. More detail may be needed.
√
√
√
√
√
√
√
√
√
√
√
√
√
√

Procedure (XPR)
A procedure, such as a user or operator procedure, is incorrectly specified.
√
√
√
√
√
√
√
√
√
√
√
√
√
√

Unclassified (XUN)
A defect that is not classifiable as any other defect typ.
√
√
√
√
√
√
√
√
√
√
√
√
√
√

Table A.3-1 - General Defects

Defect Type
Description
SYS
SRQ
SDN
DCD
NCD
UTP
UTC
ITP
ITC
FTP
TTC
UD
OT
CO

Rqmt Interface (RIN)
Defect in requirements interface spec
√
√

Rqmt Standards (RST)
Requirement spec does not meet requirements standard
√
√

Rqmt Data (RDT)
A defect exists in a data element specified in a requirement spec
√
√

Rqmt Unverifiable (RUV)
A requirement is unverifiable
√
√

Table A.3-2 - Requirement Defects

Defect Type
Description
SYS
SRQ
SDN
DCD
NCD
UTP
UTC
ITP
ITC
FTP
TTC
UD
OT
CO

Design Logic (DLO)
A logic defect exists in a design spec, test design, or in PDL/ADL.

√
√
√
√
√
√
√
√
√

Design Interface (DIN)
A defect exists in a design interface of a design spec, test design, or in PDL/ADL.

√
√
√
√
√
√
√
√
√

Design Precision (DPR)
A design specified in a design spec, test design, or PDL/ADL fails to meet the precision requirements.

√
√
√
√
√
√
√
√
√

Design Performance (DPF)
A design specified in a design spec, test design, or PDL/ADL fails to meet performance requirements.

√
√
√
√
√
√
√
√
√

Design Data (DDT)
A defect exists in a design data element specified in a design spec, test design, or PDL/ADL.

√
√
√
√
√
√
√
√
√

Design Standards (DST)
A design standards defect exists in a design spec, test design, or in PDL/ADL.

√
√
√
√
√
√
√
√
√

Table A.3-3 - Design Defects

Defect Type
Description
SYS
SRQ
SDN
DCD
NCD
UTP
UTC
ITP
ITC
FTP
TTC
UD
OT
CO

Code Interface (CIN)
A defect exists in the code interface between two elements., for example, between two procedures in an Ada package.

√
√

√

√

√

Code Logic (CLO)
A logic defect exists in the code

√
√

√

√

√

Code Precision (CPR)
The code fails to meet the precisions rqmts.

√
√

√

√

√

Code Performance (CPF)
The code fails to meet performance rqmts.

√
√

√

√

√

Code Standards (CST)
The code fails to meet coding standards.

√
√

√

√

√

Code Data (CDT)
A defect, not related to precision, performance, interface, or standards, exists in a data statement, data file, or in data initialization.

√
√

√

√

√

Table A.3-4 - Code Defects

A.4.
Defect Mode

Missing

• Information that is missing from the defect source, but that according to requirements, specifications, or standards, should be present.

Extra

• Extraneous information present, but that according to the requirements, specifications, or standards, should not be present.

Wrong

• Information present, that but according to the requirements, specifications, or standards, is incorrect.

A.5.
Phase Defect Generated

Software life-cycle phase in which the defect was originally introduced.

A.6.
Phase Defect Found

Software life-cycle phase in which the defect was first detected.

A.7.
Defect Detection Method

1) SDRs

2) Inspections or Formal Reviews

3) Other

A.8.
Other Data to be Collected Per Defect

• Project Name

• Build Name - If appropriate

• CSCI, CSC, CSU - On defects found in PDL/ADL or Code.

• Parent Document - On defects found in a document section.

• Date Defect Found

• Date Defect Corrected

• Estimated Mhrs to Correct Defect

This Page is Blank

B.
Appendix - SDR/SCR/RCR Data

Software Discrepancy Reports/Software Change Requests are used to handle problems found and changes needed in approved and release products.

B.1.
Software Discrepancy Report (SDRs)

(aka - Software Trouble Reports)

A Software Discrepancy Report (SDR) is a report generated on a problem found in a product after it has been baselined and/or delivered (see below). An SDR can be an internal report generated on a product not yet released, or an external report generated by the customer on a product that has been released.

SDRs are also written against any development tool or COTS software that is used in the development of the final product. For example, an SDR would be written anytime a problem was found in a compiler that was in use by the implementors.

B.1.1.
SDR Types

Internal SDR (ISDRs)

SDRs generated by the internal development staff against products that have been incorporated into the developmental configuration (IAW DoD-Std-2167A or project Software Development Plan
) but have not been released for formal qualification testing.

External SDR (ESDRs)

SDRs generated by the customer or others against formally controlled products or products that have been released for formal qualification testing. On most programs, ESDRs are tracked, corrected, and closed under a Change Control Board or special contract conditions.

B.1.2.
Priority

SDRs are prioritized as per DoD-Std-2167A:

Priority 1

(1) prevents the accomplishment of an operational or mission essential capability specified by the approved requirements,

(2) prevents the operator’s accomplishment of an operational or mission essential capability, or

(3) jeopardizes personnel safety

Priority 2

(1) adversely affects the accomplishment of an operational or mission essential capability specified by approved requirements so as to degrade performance and for which no alternative work-around solution is known, or

(2) adversely affects the operator’s accomplishment of an operational or mission essential capability specified by approved requirements so as to degrade performance and for which no alternative work-around solution is known.

Priority 3

(1) adversely affects the accomplishment of an operational or mission essential capability specified by approved requirements so as to degrade performance and for which an alternative work-around solution is known, or

(2) adversely affects the operator’s accomplishment of an operational or mission essential capability specified by approved requirements so as to degrade performance and for which an alternative work-around solution is known.

Priority 4

A software problem that is an operator inconvenience or annoyance and which does not affect a required operational or mission essential capability.

Priority 5

All other errors.

B.1.3.
Category

SDRs are classified as per DoD-Std-2167A:

Software Problem

The software does not operate according to supporting documentation and the documentation is correct.

Documentation Problem
The software does not operate according to supporting documentation but the software operation is correct.

Design Problem

The software operated according to supporting documentation but a design deficiency exists. The design deficiency may not always result in a directly observable operational symptom, but possesses potential for creating further problems.

B.1.4.
Originating Group

Each SDR will have one of the following originator groups:

• Customer

• End User

• Software Requirements Analysis

• Software Engineering

• Software Independent Test

• Other Company Engineering

• Company Field Support

• SQA

• SCM

B.1.5.
Status

Each SDR will track two types of status: Acceptance (Proposed, Accepted, Rejected) and Progress (Open, Closed). A project must define what constitutes acceptance and progress. The recommended definitions are:

• Acceptance

• Proposed - Entry of the SDR into the tracking system until review completed by a Change Control Board

• Accepted - Agreement that it is a problem by a Change Control Board

• Rejected - Agreement by a Change Control Board that it is not a problem

• Progress

• Open - Any SDR that has not been completed and closed by a Change Control Board

• Closed - Any SDR that has been rejected or accepted and completed and has been reviewed by a Change Control Board.

A project may have a different Change Control Board for different types of SDRs.

B.2.
Software Change Requests (SCRs)

{aka - SCP/SEPs}
Software change requests are typed, prioritized, and classified identically to SDRs. Change requests are generated whenever a change is needed or desired in a approved product. All data collected for an SDR should be collected for an SCR.

B.3.
Requirement Change Requests (RCRs)

Any changes to baselined requirements prior to product release should be tracked via Requirements Change Requests (RCRs). RCRs are typed, prioritized, and classified identically to SDRs and SCRs. All data collected for an SDR should be collected for an RCR.

In addition to the regular SDR data, the following should be collected for all RCRs:

• Impact

• Minor - No redesign, recode, or retest of a CSC

• Routine - Up to 5% redesign, code, or retest of a CSC

• Major - Greater than 5% redesign, recode, or retest of a CSC

• Addition To Progress Status -

• Incorporated - RCR incorporated into requirements baseline

• Date RCR Incorporated Into Requirements Baseline

B.4.
Data to be Collected Per SDR/SCR/RCR

• SDR vs SCR vs RCR

• Type (Internal vs External)

• Acceptance Status (Proposed, Accepted, Rejected)

• Progress Status (Open, Closed, Incorporated (RCR Only))

• Priority (1,2,3,4,5)

• Category (Software Problem, Design Problem, Documentation Problem) (SDR Only)

• Date Submitted (Proposed)

• Date Accepted or Rejected

• Date Correction/Enhancement Started (SDRs and SCRs only)

• Date Correction/Enhancement Ended (SDRs and SCRs only)

• Date(s) Tested

• Date Passed Testing

• Estimated Mhrs to Correct/Enhance (SDRs and SCRs only)

• Date Correction/Enhancement Fielded (for ESDRs and ESCRs)

• Number of Defects Causing SDR (SDRs Only)

• Originator Group

• Impact (RCRs only)

• Date Requirement Incorporated (RCRs Only)

INDEX

.i.Software Change Proposals 6

Added LOC 6

Baseline Plan 5

Change Documents 6

Coding and Unit Test 4

Configuration Management 5

cost/schedule estimating 4

Defect 6

delivery 3

Development Effort Data 4

ECP 5

Formal Test 4

Incremental Builds 3

Independent Test 5

Integration and Test 4

labor 4, 5

Lines of Code 6

LOC 6

Maintenance 4

Major Releases 3

Management 5

Modified LOC 6

Pre-Release SDR Rework 4

Quality Assurance 5

RCR 6

Requirement 6

Requirements Change Requests 6

SCP 6

SCR 6

SDR 6

SEP 6

Software Change Requests 6

Software Design 3

Software Detailed Design 4

Software Development Phases 3

Software Discrepancy Reports 6

Software Engineering 5

Software Enhancement Proposals 6

Software Preliminary Design 3

Software Requirements Analysis 3, 5

STR 6

System Engineering 5

System Integration and Test 4

System Requirement 3

Total LOC 6

Work Packages 5

�A system build may be contained in one or more separate contracts or a set of builds may be contained in one contract.

�See Mil-Std-881B - 18 Feb 1992 Draft

� May be broken out to CSCIs for CSCI-Specific Integration Tests

�Project may wish to generate certain metrics more frequently during key development phases.

�All initial planning data may not be available at the start of the project. The data should be entered at the appropriate monthly update.

�The definition of how a software unit passes detailed design is project-specific and should be documented in the SDP or other organizational standard.

�The definition of how a software unit passes code and unit test is project-specific and should be documented in the SDP or other organizational standard.

�The definition of when a software unit is considered integrated is project-specific and should be documented in their SDP or other organizational standard.

�Project-specific - See Appendex B

�Requirement need only be traced on traceability matrix. A successful test is not required for this metric.

�S/W Unit is project-specific and may be a CSU, work packaged, etc.. See Implementation Progress Metric.

�Approval of a requirement is project-specific. Normally, an approved requirement is one that has passed all required internal reviews (e.g. inspections) and has been approved by the appropriate approving organization, usually SQA or System Engineering for new requirements, prior to requirements baseline or a Change Control Board for post-requirements baseline changes.

�No redesign, recode, or retest of a CSC

�Up to a 5% redesign, recode, or retest of a CSC

�Greater than 5% redesign, recode, or retest of a CSC

�Added, Modified, and Unmodified Non-Comment Source Statements

�Added, Modified, and Unmodified Non-Comment Source Statements

�Exact target configuration may not be available until some time after ATP. In those cases, projects should estimate target configuration resources.

�The level of integration tests tracked is project-specific and should be documented in the SDP or other organization standard. At a minimum, tracking should include CSCI-level testing done prior to formal testing.

�Definition of completed test plan is project-specific and should be documented in the SDP or other organization standard.

�Definition of successful completion of a test is project-specific and should be defined in the SDP or other organization standard.

�See Mil-Std-881B - 18 Feb 1992 Draft

�Completion of a work package is project-specific and should be defined in the SDP or other organization standard. Normally, a work package is defined as completed when the approving authority closes it. The approving authority is usually the Software or Program Manager.

�See Section 2 for Phase and Labor Type Definitions

�Added/Modified Non-Comment Source Statements

�Generally number of added lines plus a percentage of the number of modified lines. LOC = Non-Comment Source Statements

�Extracted from project metrics database

�Sum needed for metric. Development effort data collects broken out (See Appendix C)

�Extracted from project metrics database

�Sum needed for metric. Development effort data collects broken out (See Appendix C)

�Extracted from project metrics database

�See Section 2 - Baseline Plan

�Extracted from project metrics database

�Extracted from project metrics database

�Added and Modified Non-Comment Source Statements

�Unmodified Non-Comment Source Statements

�See Appendix C

�Added and Modified Non-Comment Source Statements

�See Appendix C

�Extracted from the project SDR data.

�Extracted from the project productivity/estimating data.

�Total Non-Comment Source Statements currently in use in the field for each project counted

�Incorporation could include passing inspection, approved by SQA, accepted by SCM, or accepted by independent test. Projects should document in their SDPs when SDRs are written, how they are accepted, how they are closed, etc.

_977048033.unknown

_977048038.unknown

_977048041.unknown

_977048042.unknown

_977048039.unknown

_977048036.unknown

_977048037.unknown

_977048034.unknown

_977048028.unknown

_977048031.unknown

_977048032.unknown

_977048030.unknown

_977048024.unknown

_977048026.unknown

_977048027.unknown

_977048025.unknown

_977048021.unknown

_977048023.unknown

_977048019.unknown

_977048020.unknown

_977048018.unknown

