[image: image1.wmf]

Identify Risk

Stakeholders

Identify Risks

Analyze Risks

Using 80/20

Plan for Risks

Using 80/20

Track Risks

Risk Plan

Top 10

List

Software Risk Management

[image: image5.png]pa ro>§/s

[image: image4.png]pa ro>§/s

Software Risk Management

A White Paper

Author: Brian A. Will

Overview

This white paper was written to describe a successful risk management approach for the most critical and most common problems encountered during the course of any software development project. Software Risk Management, as described here, is based on years of experience within the software industry and the risk management approach as described by the Pareto Principle (80/20 Principle).

Its goal is to make available many of the approaches that are widely used in software development efforts of productized software systems, such as IBM’s AIX operating system, Mircosoft Word, Adobe Acrobat, or Symentac’s Norton AntiVirus.

Who Should Read This Paper?

In a time of ever-increasing quality demands and ever-shortening time-to-market windows, software development is a riskier business proposition than ever. During the 1970s and 80s, software development was not at the core of many businesses but was rather in a supporting function. Today, companies striving for a competitive edge must develop commercial software in order to stay viable.

Despite this surge in software development projects, the state of software project management for business critical software projects is still abysmal. Headlines and statistics like the following permeate the industry press:

“Nearly 40 percent of IT projects fail before completion.”

The question is: Why? This white paper submits that there are two basic problem areas that are insufficiently addressed in today’s best practices:

1. The convergence of business and technology disciplines.

2. The effective risk management during the project lifecycle.

A truly integrated risk management approach between business needs and technology needs is required in order to successfully deliver software projects within market imposed delivery timeframes and within the specific budget constraints.

Consequently, this paper was written specifically with two target audiences in mind:

1. Business people, such as marketing executives and product managers, concerned with creating viable business cases.

2. Technology people, such as vice presidents of software engineering or development managers, concerned with improving the probabilities of software project success.

Software risk management proposes the convergence of these two disciplines in order to improve upon the probabilities of software project success.

The Four Commercial Software Quadrants

Every software development project that tries to successfully bridge business and technology concerns deals with four key software quadrants. Each quadrant represents an area of major importance in the process of commercial software development – it is a means of grouping the issues involved and a point of major attention. Each quadrant also represents a specific perspective, usually represented by specific individuals within an organization.

[image: image4.png]
Figure 1 – The four key quadrants of software success

To illustrate, the following characteristics of commercial software development can be assigned to belong into one or the other quadrant.

· The Product Quadrant, addressing such concerns as the specific domain model (domain expertise), the requirements and software architecture, the development model and the code:

1) Strong market focus, i.e. domain expertise.

2) A justified business case.

3) Product requirements based on market focus and business case.

4) Clear separation of Project and Product Management.

5) Choice of appropriate technologies.

6) Applied iterative software development process.

7) Market specific quality characteristics.

· The Process Quadrant, involving planned activities, tasks, and milestones:

1) Realistic schedules, including schedule unknowns.

2) Acknowledgement of schedule unknowns.

3) Small implementation teams.

4) Implementation of high-risk features first.

5) A “synchronize and stabilize” development approach.

6) Staged releases with incremental feature sets and successful pilots.

7) Disciplined use of configuration management.

8) A project specific test approach.

· The Property Quadrant, addressing performance properties, schedules based on external demands, and costs:

1) Application performance.

2) Application scalability.

3) Application quality.

4) Application positioning versus the competition.

5) Delivery schedules based on competition and market demands.

6) Post implementation services (for example end user training and support).

7) Budget control.

· The Success Quadrant, identifying what constitutes individual success in terms of corporate and organizational results. This dimension varies for everyone involved. For example, the marketing executive might feel satisfied with the business case and the resulting marketing and PR campaign that spawned the project. Sales might be satisfied with the feature set and release date of the software, enabling them to successfully achieve their sales targets. Software engineers might feel satisfaction about the use of the latest technologies and the satisfaction of project ownership.

Each quadrant is faced with its own set of risks. Each quadrant is dependent on the other. Only by achieving true interdisciplinary convergence between various stakeholder organizations and applying effective risk management within each quadrant, can the probability of successfully delivering the software project be improved.

Managing Software Project Risks

The Pareto Principle

At the core of software risk management stands the Pareto Principle, better known nowadays as the 80/20 Principle
.

Wilfredo Pareto was an Italian economist and political sociologist who devised the 80/20 principle: The law of the vital few and the trivial many
. This principle states that, in many business activities, 80% of the potential value can be achieved from just 20% of the effort, and that one can spend the remaining 80% of effort for relatively little return.

Pareto's first work, Cours d'Économie Politique (1896-97), included his famous but much-criticized law of income distribution, a complicated mathematical formulation in which Pareto attempted to prove that the distribution of incomes and wealth in society is not random and that a consistent pattern appears throughout history, in all parts of the world and in all societies, namely that 20% of any given population owns 80% of the wealth.

The exact numbers 20 and 80 are of little importance, as they could actually represent 10 and 60. What is critical, though, is that there is a consistent concept of disproportion.
This concept of disproportion can be applied across many disciplines and various applications:

· 80% of all traffic is handled by 20% of all freeways

· 80% of all news is printed in the first 20% of the article

· 80% of the productivity on a project comes from 20% the workers

· 80% of all meals from a restaurant come from 20% of the menu

· 80% of benefit comes from the first 20% of effort

The following examples show the applicability of the Pareto Principle to software development efforts:

· 80% of application functionality is based on 20% of your requirements

· 80% of your website traffic comes from 20% of your pages

· 80% of your application functionality is used by only 20% of your customers (and corollary to that, only 20% of your application functionality is used by 80% of your customers
)

· 80% of your development effort is spent on 20% of your application functionality

· 80% of software defects are originated in 20% of the code

[image: image5.png]
Figure 2 – The Pareto Principle (also know as the 80/20 Principle)

As we will see, the Pareto Principle has profound importance to any software development effort. As is often the case with governing principals, people or organizations that follow them do so intuitively. By making the reader aware of the dynamics of the Pareto Principle as applied to commercial software development efforts, the effectiveness of its application will become clear.

Software Risk Management

“What is necessary is never a risk.”

Risk can be defined as the possibility of loss or injury. Webster defines it as danger, hazard, jeopardy, or peril. Every software project involves risk. As a consequence, managing risk effectively is crucial to the success of the project. Software risk management, based on the Pareto Principle, sets forth a discipline and environment of proactive decisions and actions to continuously assess what can go wrong, determine which risks must be dealt with, and implements strategies for dealing with them.

When a company begins to manage its risks, it identifies all the places in its organization where it is - or has the potential of being at risk. We have tried throughout this document to illustrate which types of risk are most likely to have a negative impact on the software organization.

The risk will be different for each software system created. One should realize, however, that there are multiple parts of the software system competing for a limited number of resources. Management teams that are involved with successful software projects are acutely aware that there are only three key factors that can be influenced during a software development cycle: Resources, Features, and Schedule. This is sometimes referred to as the “Magical Software Development Triangle”.

[image: image6.png]Cause
or
Effort

20%

80%

Effect
or
Outcome

80%

20%

Figure 3 – The magical software development triangle

The ultimate purpose of risk management is to take into account all potential risks and to enable a knowledge-driven trade-off within the constraints of the triangle.

Most risk assessment is focused on customer impact. For example, a company looking at the characteristics of its software, will recognize the need for focused testing. Since testing an entire application exhaustively is often impossible, companies may concentrate on those parts of a system, which will have the most customer impact, thereby reducing the number of errors where it is most critical. It is essential to realize the importance of exactly determining who the customer is. Is it the end user? Is it your customer who in turn will sell the system or act as an integrator? Determining exactly who will use the system and how is the first step to manage the associated risks successfully.

For an office application like a word processor, it may be fairly simple to reconstruct a day's work for a secretary or executive, should that be the impact of an error. On the other hand, successful mail order PC manufacturers generate revenue in the millions of dollars a day through their Internet e-commerce systems, and might stand to loose $10,000 per minute. That is a major impact.

Software Risk Characterization

Risk is an inherent part of every software project. Risk is the possibility of bearing a loss. The loss could be anything from diminished quality of an end product to increased cost, missed deadlines, or project failure.

Risk is neither good nor bad. Risk is not something to avoid, since it is inherent in every project. Rather, reviewing software project risks is something that needs to be confronted with deliberate forethought and decisive planning in order to guarantee software project success.

Risk is something to manage proactively. Successful software projects deal with risks by recognizing and minimizing uncertainty and by proactively addressing each identified risk.

Principles of Software Risk Management

Software risk management, based on the aforementioned Pareto Principle, is the cornerstone of making a software project successful. Risk involves technology, process, people, business/domain issues and competitive pressures but also the proactive cross-functional communication between various disciplines. Software risk management, as described here, includes the following principles:

Continuous risk assessment. Successful risk management is more than just identifying risk factors at the start of the project; it requires the constant assessment of risk throughout the life of the project. This is because new risks are revealed during the life of a project, while previously identified risks change by becoming either more or less probable or more or less severe. Ongoing risk management of a project introduces a degree of resilience to change.

80/20 thinking and 80/20 decision-making. Successful risk management requires that all decisions be made within the context of their risk. The team’s actions are prioritized in relationship to the status of the risk—the highest risk items are dealt with first.

Formalization of the risk management approach. Successful risk management requires a process that is understood and used by the team. This does not mean that the process must be a strict methodology, but that a reasonable amount of discipline and process is required. If the process of managing risk is too difficult, risk management will not occur. If the process is not structured, it will not be useful.

Coverage of cross-functional risk areas. Successful risk management requires the team to look for risk almost everywhere in the project. The team must ensure that the key persons and processes are covered, or it is likely that significant risks will be missed.

“Boundarylessness”
. For risk management to be effective, team members must be willing to identify risk without fear of punishment or criticism. The identification of a risk means that there is one less surprise waiting for an unsuspecting team. When risk is identified, the team can then prepare for the risk and perhaps prevent it from occurring altogether.

Proactive Software Risk Management

Proactive risk management means that the project team has a visible, transparent, measurable, and repeatable process for managing risks. The described approach to risk management emphasizes creating an environment in which the team proactively examines, on an ongoing basis, what can go wrong and then makes proactive choices about which risks need to be addressed and addresses them.

The team will carry risks forward and deal with them until the risk impact, or probability, is reduced to zero, or until the risk probability has become 100 percent or has occurred, which means that there is no longer the possibility of loss but now the guarantee of loss. Handling these issues involves minimizing the amount of that loss.

By contrast, project teams not applying this software risk management approach, assess risks only once during initial project planning, identifying and addressing major risks that they will never explicitly review again. This approach can produce initial plans that allow for the risks known at the project start, but does not help the project team respond to the changes it will meet throughout the project.

Software Risk Management Strategies

The described approach to software risk management uses four strategies to manage risk: elimination, reduction, transference, and avoidance. No single strategy is better than the other three. The best strategy for any given risk depends on the nature of the risk.

Proactive risk management involves identifying risks ahead of time and preventing them through elimination, reduction, transference, or avoidance.

Eliminate the risk. Risk elimination simply removes the specific risk associated with the project. A good example is that of eliminating certain supported client platforms of a client/server system, or eliminating the number and kinds of supported relational databases. In the worst case, this may involve canceling a project.

Reduce the risk. Risk reduction tries to minimize the likelihood that a risk will occur or to minimize the impact if the risk does occur. An example of minimizing the likelihood of a risk is architecting a system with strong system security so that the risk of data loss or corruption is reduced. An example of minimizing the impact of a risk is installing an uninterruptible power supply to your hardware.

Transfer the risk. Risk transference reduces overall risk by ensuring it is handled by the most competent party. For example, when a company contracts with a third-party firm to deploy software, the customer determines that contracting with an outside entity will result in fewer and less severe risks than if the customer’s own people were to do it. A company may also transfer a risk by transferring the consequences. For example, it may have offsite data backup and storage. Or, a company might choose to have an application-hosting provider host its critical functionality in a more secure or proven environment.

Avoid the risk. Risk avoidance tries to eliminate the risk by doing something less risky. This could involve sacrificing some functional requirements to allow adoption of a packaged solution or avoiding unproven technology. For example, instead of creating open Internet access for a Web-based application, the company might choose to build a virtual private network to provide greater security.

Steps of the Software Risk Management Process

Software risk management is a six-step process through which the team mitigates risks by identifying them and taking actions appropriate to the nature of each individual risk. This ongoing process should be part of all project management. The following figure illustrates the risk management process.

[image: image8.png]Resources

Features Schedule

Figure 4 – Software Risk Management Process

Briefly, the six steps of the risk management process are:

1. Identify the risk stakeholders. Identify each project stakeholder who will be responsible to deal with a particular risk. Stakeholders often are aligned along organizational structures, such as Development, Support, Marketing, Public Relations, Sales, Finance, etc. It is important to identify stakeholders that are able to deal with the risk mitigation, i.e. they need to be empowered to make decisions and take action.

2. Identify the risk. Bring risks to the surface so teams can deal with them before the risks impact a project.

3. Analyze the risk. Using the 80/20 principle, convert risk data into information that a team can use to make decisions.

4. Plan for the risk. Devise plans that will support 80/20 decision-making and actions.

5. Track the risk. Monitor the status of risks and any actions taken to mitigate them.

6. Control the risk. Move risk management into day-to-day project management, which is crucial in ensuring that risk management remains a high-profile activity. Steps 2 through 5 should be repeated at least weekly, based on new project information.

Results of risk management from each project need to be incorporated into future risk management to improve organizational learning about risks and to improve effectiveness in risk identification and analysis for future projects.

Risk Management Plan

A risk management plan is the compilation of many risk assessment pieces, including such contents as risk statements, risk probability, mitigation plans, contingency plans, and risk ownership. It is a living document that the team will review on a weekly basis, if the software project is moderately sized, and more frequently if the software project is of shorter duration.

The risk management plan is used to:

1. Prioritize the effort put into resolving risk.

2. Drive decisions.

3. Highlight risk dependencies.

4. Determine schedule.

5. Educate management.

Simplistically put, each risk is analyzed and documented in the risk management plan, using the following questions:

· Why is a risk in the risk management plan? Identify the reasons.

· How can we deal with the risk? Identify general mitigating actions.

· What are we doing to address the risk? Identify specific mitigating actions.

· Who is responsible for how we are addressing the risk? Identify who will be responsible implementing the specific mitigating actions.

· When are we addressing the risk? Identify time lines and milestones.

· How much effort, time, and money will it take? Identify the costs.

The following section shows a sample risk management plan for one individual risk item, Creeping / Changing Requirements. It assumes that the preliminary work of determining the percentage of requirements overrun has been successfully accomplished. This sort of data might not be available in many companies, however, that by itself is just representative of another risk: The lack of basic software metrics, including how to apply them to requirements.

It is important to point out that effective software risk management, as proposed in this paper, can only achieve the optimum project impact if there are certain basics in place. One of them is rudimentary statistical analysis on what was planned, what was achieved, how long it took to achieve, and the final costs associated with it. Without such information, risk management becomes entirely an intuitive process, which in itself is risky.

Without any kind of basic statistical data available, one of your first risk management items should be “Lack of Statistical Data for Decision Making”.

Sample Risk Management Plan for Creeping / Changing Requirements:

	Why?
	Our analysis found that the average requirements overrun on our projects is about 40%. We need to control creeping requirements to prevent uncontrolled cost and schedule increases on the project.

	How?
	In general, we need to look for ways to eliminate the source of requirements changes by doing a good job of gathering requirements in the first place. After that, we need to be sure to allow only those requirements changes that are absolutely necessary.

	What?
	We are addressing the risk in three specific ways:

1. We're using a user interface prototype at the beginning of the project to be sure we gather high-quality requirements. We will continue showing the prototype to the users, refining it, and showing the prototype to the users again until we are confident that they will be very happy with the software we build.

2. We're using a staged delivery approach to keep the delivery cycles short, which reduces the need for changes within cycles. Between stages we can change features if needed.

We'll upgrade this risk to a higher level if any of the following conditions become true:

· We can't get users to buy into a user interface prototype within a reasonable amount of time.

· We receive requests for requirements changes constituting more than 5% of the system in the first 30 days after the requirements have been base-lined.

	Who?
	The technical lead is responsible for the user interface prototype.

The change team is responsible for maintaining the requirements under change control.

The project manager is responsible for keeping the stages within our staged delivery plan short.

	When?
	We'd like to have the UI prototype complete by 4/15. If it isn't complete by 6/1, we'll upgrade the severity of this risk to "project critical."

The requirements spec should be baselined by 5/15. If it hasn't been baselined by 6/15, we'll upgrade the severity of this risk to "project critical."

We should have completed our first staged delivery by 7/15. If it hasn't been completed by 8/15, we'll upgrade the severity of this risk to "project critical."

	How much?
	We estimate the UI prototype will cost 6 engineering staff months. Explicit change control is accounted for in our standard development practices and does not add cost to the project. Staged delivery increases the apparent project cost by about 5% because of the increased effort associated with releasing the software multiple times, but it reduces integration risk and the risk of building the wrong product. In the end the only increase is probably in the visibility of project's true cost, so it is a net gain rather than a cost.

Table 1 – Sample Risk Management Plan for Creeping / Changing Requirements

Top Ten Risk List

The Top Ten Risk List is a useful management tool for keeping track of the most important risks on a software project. It is important to keep the actually list short – hence the title. Only the most important risks that could potentially have a grave impact on the project should make it onto this list. It is OK to have 15 items on the hot list, but if more than that end up being tracked, either the list is being used to track “regular” issues or the project is in really bad shape.

	This week
	Last week
	Weeks on List
	
Risk
	
Risk resolution progress

	1
	1
	5
	Creeping requirements
	· User interface prototype used to gather high-quality requirements.

· Staged delivery approach will be employed to provide some ability to change features if needed.

	2
	5
	5
	Requirements or developer gold-plating
	· Vision statement specifies what is not included in software.

· Design emphasis placed on minimalism.

· Reviews have checklist item to check for “extra design or implementation.”

	3
	2
	4
	Released software has low quality
	· User interface prototype developed to assures users will accept software.

· Disciplined development process is used.

· Technical reviews are used on all requirements, designs, and code.

· Test planning assures all functionality will be covered by system testing.

· System tests are performed by independent testers.

	4
	7
	5
	Unachievable schedule
	· Project avoids making schedule commitment prior to completing requirements specification.

· Upstream reviews are used to detect and correct problems when it is least expensive to do so.

· Schedule is reestimated several times over the course of the project.

· Active project tracking assures that any schedule slips will be detected early.

· Staged delivery allows for delivery of partial functionality even if whole project takes longer than expected.

	5
	4
	2
	Unstable tools delay schedule
	· Only one or two new tools are used on this project; remainder have been used on previous projects.

	6
	-
	1
	High turnover
	· Project vision encourages developer buy-in.

· Active, detailed project planning creates clear expectations.

· Productivity environment supports high developer productivity, high motivation, and high retention.

	7
	3
	5
	Friction between developers and customers
	· User interface prototype aligns developers and customers on same detailed vision.

· Staged deliveries provide customers with evidence of steady progress.

	8
	6
	5
	Unproductive office space
	· Will move development to off-site environment with private offices after completing user interface prototype.

· Still need budget approval for conducting project off-site.

Table 2 – Top Ten Risk List

Risk Review

Software risk management is intended to address the most critical but most common problems encountered during commercial software development projects. Each of the following risks represent “standard fare” and probably account for the majority of all projects failures. Being aware of them, managing and avoiding them with a disciplined Software Risk Management approach, will dramatically increase the chances of any commercial software project.

Slipping Deadlines

How does a project get to be a year late? …One day at a time.

One major risk is related to not getting a product to market in time to exploit the marketing window. The end of the marketing window is usually fixed; how much of a product a company sells depends on how early their product reaches the marketplace - within that time-to-market-window. A similar risk is related to IT-type software. Rather than missing the marketing window, a company loses its competitive advantage.

Software development is an extremely complex task, primarily so because there are many moving parts, not just technically but also from a business and people perspective.

Nevertheless, categorizing all moving parts ultimately leads to only three areas that can be controlled in software development: Resource, Features, and Schedule.

Poorly Defined Users

When there is a potential of millions of users of a company's software product, it is often very difficult to characterize the user environment. If a software product is perceived as being too difficult to use, going down too often for too extended a period of time, not doing exactly what they want – or what their business needs, users tend to look towards the competition.

In today's PC/Web-based environment, there is little brand loyalty. If a user does not "trust" a company's product (web site), they will look elsewhere. 45 seconds seems to be the accepted response time for e-commerce sites – at that time, sites experience a dramatic drop-off of users leaving their site. The only solution is to fully understand what the user needs, and to create brand loyalty by providing a matching solution. For example, the reason that http://www.amazon.com/ still attracts new customers and seems to have a loyal customer base that returns time and time again, is that the buying process presented to the user, including checkout, email notifications, and follow-up Thank You notes, is superb. Only very few e-commerce sites can compete.

Use case driven design, user group meetings, focus groups, and early pilot programs and beta releases all help minimize the risk of ending up with poorly defined users. At the core of every successful commercial software project, stands the need to be completely connected within the specific target market.

Loss of Project Control

Loss of project control is probably one of the biggest issues when managing a software project and is mostly responsible for the other potential project management issues listed here.

[image: image2.wmf]Zone of Chaos

Rqmts

Design

Coding

Doc

Testing

Maint

Rqmts

Design

Coding

Doc

Testing

Maint

Defect

Origins

Defect

Discovery

Figure 5 – The Zone of Chaos

The picture shows a very common problem: defects are originated in early phases of the software project but not discovered until very late in the project lifecycle, resulting in frantic debugging and fixing cycles and complete chaos. Depending on the size and complexity of the project, this state can last indefinitely, until management cancels the project or forces a project turnaround.

Control can be achieved and maintained only by applying the right level of project control and risk assessment techniques throughout the software development lifecycle phases.

[image: image3.wmf]Zone of Control

Rqmts

Design

Coding

Doc

Testing

Maint

Rqmts

Design

Coding

Doc

Testing

Maint

Defect

Origins

Defect

Discovery

Figure 6 – The Zone of Control

It should be noted that the loss of project control sometimes occurs based on influences external to the project. Some of these external influences might include:

· Acquisition of similar technology/solutions as the project was developing

· Budget cuts or substantial changes in funding

· Changing market condition

· High employee turnover

· Competitive pressures (see below)

Creeping / Changing Requirements

In an attempt to meet the needs of the often indefinable user, programmers and marketers tend to keep adjusting their product, adding and modifying requirements as they think of them. This often causes thousands of lines of code to be changed and changed again. Also, further downstream, thousands of test cases can become invalidated, and scores of pages of documentation potentially need to be rewritten. Code that was tested and worked before becomes broken and needs to be tested over and over again, adding to the software development life cycle, often allowing error prone code to get past the test group and into the field. This leads to a substantial increase in time-to-market. Test Engineers and Documentation Personnel give up trying to keep everything current and wait for the development to be finished before beginning their testing and documentation activities. The Documentation Personnel tend to wait until the testing is complete or the software has stabilized before beginning their efforts. This can add 100% to 150% to the time-to-market for the product – assuming the company finally learns their user profile.

When there is a potential of hundreds of thousands of users of a company's software product, it is often very difficult to characterize the user environment. If a software product is perceived as being too difficult to use, going down too often for too extended a period of time, not doing exactly what they want – or what their business needs, users tend to look towards the competition.

Lack of Configuration Management

A critical area of risk that is often either underestimated or simply not well understood is that of software configuration management. As surprising as this statement might sound, many software projects do not have a reliable and repeatable way to rebuild their software systems on a regular basis, which in turn poses great risks in various areas: development, test, documentation, and final delivery.

Software configuration management is a set of engineering procedures for tracking and documenting software throughout its life cycle, to ensure that all changes are recorded and the current state of the software is known and reproducible. Simply put, if you cannot reliably build the software system, you cannot reliably test it, and ultimately, the delivery is at risk.

Poor Quality

Of all the areas, poor product or service quality should be the easiest to solve, yet it is the hardest to implement in an ongoing organization. Computer Science students are rarely taught to make their code "testable". Experienced programmers are rewarded for getting their code running on time and with a desired performance, rarely does quality mean more than "low error rates", if errors are even looked at.

Even if there is a "testing life cycle" in place, the test engineers find themselves up against a brick wall. System Testing is done by the test organization in the absence of effective Unit Testing. The product – as defined in the specification and as the code actually exists – is almost impossible to test. Thousands of test cases are required where hundreds should have done the job. Cries for higher quality code frequently are ignored – or responsibility for higher quality code is put on programmers who are up against unrealistic deadlines and have little or no time for code design or Unit Testing.

Cost Overruns

Cost overruns are directly associated with the various risk areas mentioned and often turn out to be the only indicator management has visibility over. When estimating the schedule for a software project, uncertainties are a way of life, so consequently the only viable way to estimate the software project schedule is by recalibrating the effort frequently, along key milestones.

The same applies for the cost estimation effort. In order to obtain realistic and up-to-date cost estimates, it is necessary to recalibrate the software project budget on a regular basis.

Setting expectations about schedule and budgets across the organization is one of the most challenging tasks in commercial software development. The author observed the following schedule and budget variations on commercial software projects based on initial timelines and budgets established at the outset of the project:

	Project Milestone
	Schedule Accuracy
	Budget Accuracy

	Project Launch Complete
	+100%/-50%
	+60%/-30%

	Preliminary Requirements Complete
	+75%/-45%
	+40%/-20%

	Detailed Requirements Complete
	+40%/-30%
	+25%/-10%

	Architecture Complete
	+30%/-20%
	+20%/-10%

	Alpha Stage Complete
	+30%/-20%
	+15%/-10%

	Beta Stage Complete
	+5%/-5%
	+10%/-5%

	Product Release
	+0%/-0%
	+0%/-0%

Table 3 – Schedule and Budget Accuracy

Today’s software projects are frequently budgeted and planned for by “backing into” allocated budgets and milestones. Often only high-level business ideas drive the allocation of funds and envisioned delivery dates. Frequently, delivery dates are completely fixed because of business reasons or the perceived time-to-market window. At best, budget and time allocations are performed by a knowledgeable technical resource that determines the manpower and schedule requirements based on previous professional experiences.

For example, imaginary project “ABC” might have an allocated budget of $5,000,000 and a projected duration of 12 months. The “real” budget at the time of the project launch can vary by as much as +60% and -30%. This results in a need to potentially allocate an additional $3,000,000 (or free $1,500,000). The timeline of the project, at the project launch date, might vary by +100% and –50%. This results in additional 12 months project time, or 6 months ahead of the original estimate. These variances are quiet substantial because the full extent of the technical details is not fully understood at the beginning of the project. As the “ABC” project moves through key milestones, smaller variances occur, making the budget and schedule variances smaller and smaller.

The important point here is to emphasize the uncertainties faced at each stage of the software development process – and the fact that even at the Alpha and Beta stage, significant variances can still arise. The above table is consistent with well-published schedule slips of major software companies.

Please note that the above example does not address post-implementation maintenance and support cost.

Changing Technologies

Often a software development project must adapt / create their software in the presence of new or rapidly changing technology. A good example might be moving from Windows 2000 to Windows XP. It might involve moving from a Windows to a Web-based environment. Alternatively, it may mean interfacing with a new type of device, such as a Palm Pilot. Typically, this means that those who program to this interface or platform must "come up to speed" on it. Whenever new technology is involved, there is always the potential risk that it will take longer than anticipated to create the desired software.

Some companies refuse to send their employees to conferences and to have them take commercial courses specific to the company's current and future needs, ignoring the fact that radical technology shifts will make it necessary for their programmers and management personnel to stay up-to-date. Over the years, these employees get out of the main stream and have a difficult time staying up with the technology. The result is that once radical technology shifts do occur, programmers and managers alike are not going to be able to design and build software that is state-of-the-art.

Competitive Pressures

Out of all the risks mentioned in this document, the risk of facing unforeseen competitive pressures is the one that is least likely to be managed successfully. Although many companies pre-announce their new upcoming products and strategies (and create what is commonly known as FUD – fear, uncertainty and doubt), many do not.

The good news is that in this market of ever-decreasing time-to-market windows, many companies feel they must announce upcoming products through press release, at user conferences, and other media events. This in turn provides commercial software projects with an opportunity to gauge what the competition is doing. The only way to gauge the competition is to understand what is going on in the market and research, research, and research again. This by itself is a full-time task. However, the fact remains that sometimes, despite all effort to research the newest developments in a target market, the competition will come up with something better, faster, or more revolutionary – and that is why software development is so challenging and exciting in the first place.

Summary

This white paper illustrates how software projects can significantly improve their chances of success by applying a consistent risk management approach based on the 80/20 Principle (Pareto Principle). Software Risk Management is an effective way to manage risks on any software project. It is a valuable methodology that allows project participants to proactively manage risks associated with a software project, thereby lowering the chances of serious project failure.

The value of Software Risk Management cannot be stressed enough. Today’s commercial software development efforts are increasingly risky endeavors that require cross-functional awareness and involvement. Competitive pressures, ever decreasing time-to-market windows, rapidly changing technologies, and shifting business models all call for an adaptive risk management model such as was presented here.

Managing projects risks based on the 80/20 Principle (Pareto Principle) is not an option but rather a real necessity that literally can make the difference between project success and project failure.

Author’s Biography

Brian Will is the founder and managing director of Paroxys, LLC, specializing in management and organization development for software development projects. He has over 17 years of hands-on software engineering, management, and business experience, encompassing a broad base of software systems and complex consulting engagements. His experience covers organizations from bootstrapped startup to multinational Fortune 500. Brian is the former president of Time to Market Software, Inc. and held senior management positions at Reliable Software Technologies, Thomson Corporation, KPMG Peat Marwick, ParcPlace-Digitalk, Easel/VMARK, and Best Software.

� CIO Insight, Ziff Davis Media, September 2001, Number 05

� Not all software projects require the same test approach. For example, applying highly rigorous test techniques used on mission critical systems might prove overkill for a web site. On the other hand, lax test techniques might prove disastrous for mission and life critical systems. Choosing the appropriate test approach is critical.

� See “The 80/20 Principle”, Richard Koch, Currency/Doubleday

� Pareto observed this phenomenon as applied to distribution of wealth, and advanced the theory of a logarithmic law of income distribution to fit the phenomenon. Dr. Joseph Juran was the first to identify the phenomenon of the vital few and trivial many as a universal one, applicable to many fields.

� This “discovery” is essential when trying to understand what requirement and what application functionality must be included in a new release, as well as has implications for the application testing effort.

� Cardinal De Retz, Memoires, (1718)

� Coined at GE, “boundarylessness” refers to the job of smashing the barriers that block the free flow of ideas and actions, horizontally and vertically, within an organization.

� Some projects are so risk prone, in so many cross-functional areas, that canceling them is the prudent thing to do. Having said that, many projects try to gain the “first mover advantage” and that may well be worth the risk (see � HYPERLINK "http://www.amazon.com" ��http://www.amazon.com�). Software Risk Management does not propose to stop taking risks – rather it encourages a disciplined approach that allows for a knowledge-driven trade-off.

� See The Mythical Man-Month, Frederick P. Brooks, Jr., Addison Wesley

� This goes directly against the traditional budget process that determines budgets once a year. It is crucial for the project manager to set expectations with the CFO and other influencers across the organization to allow for regular schedule and budget adjustments as risks are narrowed down.

(2001 Paroxys, LLC. All Rights Reserved.

(2001 Paroxys, LLC. All Rights Reserved.

Page 21 of 21

[image: image7.png]Product
Dimension

Process
Dimension

Property
Dimension

Success
Dimension

_1073721725.doc

Identify Risk

Stakeholders

Identify Risks

Analyze Risks

Using 80/20

Plan for Risks

Using 80/20

Track Risks

Risk Plan

Top 10

List

Software Risk Management

_1063532202.bin

