[image: image1.png]pa ro>§/s

[image: image2.png]pa ro>§/s

[image: image1.png]

Software Test Performance Benchmarking

A Methodical Approach to Calibrating a Commercial Software Test Effort

A White Paper

Author: Brian A. Will

Introduction

New York, NY – ABC, Inc.
 is a startup in the true sense. It all started out with the two visionaries. The visionaries were able to obtain financing (convincing their mother company to finance the spin-off, venture capital, private financing – it does not matter) based on a business plan conceived on a napkin.

The business idea itself is revolutionary: The software will guarantee that your servers will never, ever again be infected by a software virus. In short, a super virus scanner, using sophisticated Artificial Intelligence, genetic algorithms, and a state of the art adaptive rule based system. The market potential for the software package is quoted to be in excess of $5B. Licensing rights alone could easily generate more than $500M in revenues.

The team itself is undergoing constant change as new hires are joining the effort on a daily basis. Based on numbers sent out in an email memo headlined “Hiring Update”, the company did the impossible, hiring 30 technical resources over the last 25 days – with another 150 people to join over the next 6 months. The majority of new hires have titles like Director, Senior Manager, Senior Director, Vice President, Senior Vice President, and Executive Senior Vice President. Offices have double and triple occupancies.

The halls are buzzing. Boxes labeled Dell, Gateway, and IBM are stacked in the halls. Floor plans are being posted in the kitchen (next to a memo headlined “Quality First”), preparing all employees to move again (the second time in 8 weeks). Meeting rooms are constantly booked. The mood is upbeat and intense. Deadlines are set based on the available money – i.e. the system must be operational within the next 12 months – not based on technical feasibility. People set out to do the impossible – Mission Impossible – and are proud to tell about it: “I work for a startup!”

ABC, Inc. is facing an uphill battle against existing virus scanning and network security companies. Their competitors direct sales forces outright started a campaign ridiculing their technical viability. The initial enthusiasm by the press suddenly turned into skepticism.

The average hours worked per employee hovers around 65 per week. The deadline for the first Beta program slipped by more than 3 ½ months. After that, no more email announcements regarding the date were sent out. Demo versions of the product have been plagued by quality problems (unexpected crashes, configuration problem). Processes do not exist – even informal write-ups are not available. Recently some employees complained in an open email to a general distribution list that their 401(K) contributions for the last calendar year got lost.

Washington, DC – Iguana Inc.
 is a small application server vendor. In business for 7 years, revenue last year topped at $32M. The company currently has 115 employees.

Over the last 4 years, Iguana has consistently achieved profitability and average revenue growth between 10% and 15%. The revenue breakdown is as follow: 72% product sales, 19% service sales, and 9% support sales. The company is well respected by their customers and their competition – as proven by the third buyout offer Iguana received over the last 3 years.

Iguana was one of the early Application Server vendors and has undisputed expertise in this area. Iguana developers and managers frequently speak at industry conferences. This expertise is in turn cleverly utilized in Iguana’s Marketing and PR programs.

Iguana releases its core product, IAS, every year with a maintenance point release every 6 months. Controlled emergency fixes are delivered to customers that bought the Platinum Support Plan. These fixes in turn get rolled into the maintenance point releases or the major yearly release.

The company spends roughly 20%, or $6.3M, on R&D (this budget includes line items for Development, QA, Technical & Customer Support, and Technical Publications). The development staff consists of 17 developers, 7 QA engineers, 9 Technical Support engineers, and 2 Customer Service representatives, 3 Tech Writers, 3 Administrative Assistants, 4 Managers and one Vice President.

Overall, Iguana’s organization structure is flat. The entire company only has 5 Vice Presidents (Development, Sales, Marketing, Finance, and Operations).

Managers can be described as “hand-on”. Flexibility is appreciated, but not to the point of creating or introducing chaos. Contributions of individual employees and teams are key focus areas of the company. Competitiveness, with a capital “C” is a core value at Iguana, for employees, managers, founders, and the company itself.

The running joke at Iguana is that you can never relax and enjoy the fruits of (past) labors because the prevalent attitude of the founders and the management team is “what have you done for me, lately?”.

Los Angeles, CA – USG&H
, a large insurance company with multi-billion revenues, is in the process of reengineering their business in addition to the Information Services operations. They see that to compete effectively in the insurance business their Information Services functions must be able to keep up with the pace of change in the industry. For this reason, USG&H set aside a $450M budget.

Rapid change has been a significant problem for the insurance industry in general. The marketing functions within insurance companies have been able to define and create new insurance products faster than the Information Services or Information Technology operations of the companies have been able to support these new products. In that manner, the IS and IT shops have become obstacles to the insurance operations rather than the enablers that they should be. Therefore, many insurance companies believe that IT shops that can respond rapidly to changing business rules and deliver applications in support of those changing business rules at the rate at which the rules change (or can be simulated) is a key factor to success.

Further, the insurance business is transforming itself from a products business to a services oriented business. That is, customer service and the ability to process claims rapidly, directly and easily for the customer, become the product and company differentiators. This is especially true as insurance rates fall and the ability for the consumer to shop competitive rates increases.

USG&H wants to deploy applications to their field agents. A field agent typically has an Intel‑Pentium laptop computer with 128MB of memory running Microsoft Windows 2000 Professional (the last laptops just got converted to Windows 2000 from the old OS/2 Warp system that was the company standard until 1998). All field agents have portable printers as well.

All laptops are configured according to set standards, down to the Service Pack and specific device drivers. They also typically have many applications running on their laptop at the same time, all of which go through a “clean room” compatibility test lab before being approved for rollout. USG&H controls over 4,000 software components (custom software, drivers, and COTS packages). Their test process was recently featured in “InformationWeek” as top of the line and state of the art. Product adoption cycles average 2 ½ to 3 years. The CIO prides himself as a technology innovator who is ferociously committed to “continuous process improvement” efforts because of the support that his organization provides to USG&H’s 19,000 field agents. USG&H is CMM Level 3 certified.

From the sales perspective, it is becoming more common for the agent to sit with the client in front of the laptop at the client’s home or place of business to complete on‑line paperwork and to simulate the costs and benefits of various insurance products. From the claims perspective, it is very valuable for a field agent to be able to process a claim in the field, at the place of loss or accident, directly with the customer. Again, the laptop configuration is key. And any kind of defect, crash, or application inconsistency that might occur in front of client is viewed by USG&H as a blemish in their armor of professionalism.

Here are three cities, three commercial software projects at different stages in their process maturity, and three different software quality challenges. What kind of appropriate software quality process should be adopted for each? How can you get from New York to Washington, figuratively speaking? And if you want to go on your journey from New York to LA, how can you obtain a roadmap and make sure that you are on the right interstate?

This paper details a methodical approach on how to calibrate your commercial software test effort using a process called Test Performance Benchmarking. Test Performance Benchmarking tries to answer three important questions:

1. How you are doing compared to similar companies in your industry?

2. What processes to appropriately adjust over the lifetime of your project?

3. How to monitor your progress towards your project’s predefined success criteria?

What Is “Commercial” Software And Why Is It Different?

Before proceeding, we must define what is meant by the term “commercial software”.

Commercial software products are significantly different from IT / MIS software solutions for two obvious but often times ignored differences:

· With IT / MIS software solutions, there must be at least one right way to use the software.

· With commercial software products, there must be no wrong way to use the software!

This deserves some further explanation as it represents one of the most misunderstood concepts. Many commercial software development projects have failed because the people involved did not understand the difference. Many IT / MIS developers proudly talk about their “products”. Many corporate recruiters do not understand what it means if a job description says “commercial product development experience an absolute must”.

IT / MIS software solutions are often developed in response to internal business demands or requests. The solution often does not require to be “polished”; as a matter of fact, applying commercial software development techniques, processes, and quality requirements to an IT / MIS software solution would in most cases be considered overkill and a waste of time and money. IT / MIS solutions are specialized solutions, often only functional in their specific environments, and often solely created to support the business. Many times these systems have a short anticipated lifespan as they fulfill only short-term or seasonal needs (although many times these systems seems to develop a life of their own and stick around much longer than anticipated).

Nevertheless, as long as there is one right way to execute the program, the business need is met and the implementation is considered a success.

Commercial software products in contrast are generalized solutions, requiring the ability to be installed and operated in potentially thousands of different environments and interface with their surroundings in a well-behaved manner. Most importantly, commercial software products need to be able to deal with the widest variety of end users (from novices to advanced “power user”). The commercial software product needs to be “polished” and “self-explanatory” (for its target market) in order to minimize the risk of potentially receiving thousands of support calls. Commercial software products are targeted to serve tens of thousands of end users (although the number of product units sold might be very small if it is a server based implementation).

Over the last several years, hybrid software systems have evolved, popularized by large scale “web enabled” projects, such as the online airline reservation system, SABRE(, or various web based online banking systems. Why are they considered hybrid software systems? Because they impose the development process, and quality requirements of a commercial software product but interface with IT / MIS software systems that were, for the most part, never intended for external use. Quiet often the hybrid software systems require the commercial software product focus on the front end (i.e. the user interface), as that is the part of the system that is exposed to a variety of environments and a large number of end users. Many hybrid software solutions experienced ongoing quality problems and are now being replaced by reengineered solutions that considered their commercial focus right from the project inception.

The following table summarizes the key differences:

	Criteria
	Commercial
	IT / MIS
	Hybrid

	There is at least one right way to use the software.
	
	X
	

	There is no wrong way to use the software.
	X
	
	

	Polish is not required.
	
	X
	

	The software is a specialized solution.
	
	X
	

	The software only runs in one or very few target environments.
	
	X
	

	The software serves a limited user base.
	
	X
	

	The software is a generalized solution.
	X
	
	X

	The software runs in potentially thousands of environments.
	X
	
	

	The software is polished and self-explanatory.
	X
	
	

	The software product is targeted to serve tens of thousands of users.
	X
	
	

	The software’s front-end has a large user audience, the back-end is protected from access.
	
	
	X

Table 1 – Differences between Commercial, IT/MIS, and Hybrid Software Systems

How Has Software Quality Assurance Changed?

With the advent of client/server computing, the software development profession has seen dramatic changes in how to develop and deliver a software product. These changes had profound impact on how to test a commercial software product – an impact that most software quality professionals have not dealt with.

Shorter Time-to-Market Windows

First and foremost, over the past 20 years, software development cycles can be characterized by ever shortening time-to-market windows. Whereas software development cycles used to be anywhere from 18 to 36 months, we now see cycle times that are as short as 3 months – with certain Internet applications having no discernable cycle at all, but rather undergoing an ongoing improvement and modification process (when was the last time you heard www.amazon.com announce a new release?).

Also, over the last twenty odd years, we have seen a fundamental shift away from the traditional waterfall model, towards various versions of a more dynamic iterative development cycle.

Software Quality Assurance Processes and Techniques did not Adapt

A fundamental challenge that software quality assurance professionals are struggling with is the fact that many of the well established and time honored QA processes and techniques are based on the old waterfall model. For example:

· “Requirements Trace-ability” – it assumes the waterfall-based idea of requirements completeness, not the iterative idea of requirements discovery as we cycle through the development process.

· Boundary Value Partitioning – although boundary value partitioning still applies to basic data types, such as integers, characters, and floats, it does not apply to complex object data types, such as a 64K XML stream. Today, there are virtually no moderately complex software systems available that only utilize basic data types!

· Extensive Test Documentation – many paper bound processes are too time intensive to fit into today’s shortened development cycles.

Software Quality Assurance Professionals did not Develop Their Technical Skills

Software developers have undergone dramatic technical changes over the last 20 years, requiring them to retrain on a constant basis, if through company sponsored training programs or through self-study. Most developers working on commercial software are faced with fundamental technology changes at least every two years.

Most software quality assurance professionals have not kept up with the latest technology changes! The sad truth today is that most software quality assurance professionals struggle with even the most basic technical concepts (client/server principles, networking topologies, communications protocols, n-tier software design, distributed technology concepts) and are relegated to testing the front end only.

Software quality assurance in many companies is, to this day, an entry-level position. If a test professional attains a certain level of technical know-how, he/she very often is hired into development, leaving the less technical (and less talented) behind
. This lack of technical sophistication causes problems when testing today’s complex software systems, which frequently require the software quality assurance professional to at least understand rudimentary concepts of the technologies used.

Development Focus Shifted From Front End To Back End

During the late ‘80s and early ‘90s, the majority of application development was focused on front-end development, i.e. GUI design and implementation. Most systems were designed either as monolithic stand-alone executables or with a 2-tier mindset, with plenty of application logic being embedded in the user interface and the back end merely acting as a data store.

Over the last 10 years and the proliferation of 3- and n-tier models, the focus of development has shifted from the GUI to the back end. Server side implementation of business logic, completely separate from the presentation layer, is now the predominant development approach.

Also more and more common nowadays is the use of sophisticated GUI design tools that allow developers to rapidly implement or change the front end. Combined with the newly adopted iterative development methodologies, this now allows developers to focus on flushing out the business logic on the back-end and delay front-end development until very late in the development cycle. In turn, this also shortens the available test cycle in which the front-end is fully functional and available to test – with disastrous results, because most software test professionals cannot test without a front-end!

Increasing Abstraction Layers And Dynamic Content Invalidates Traditional SQA Approaches

The shortcomings of 2-tier implementations (and the maintenance nightmares associated with it) led development to adopt 3- and n-tier models that not only improved modularity and code maintenance but finally opened the door to have the presentation layer truly divorced from any application logic, allowing for various “views” into the same system. Combined with dynamic content, both developments unsettled some long-standing software quality doctrines:

1. Non-Testability – one mantra of the software quality community has always been the statement that if you cannot test a specific requirement / function, development should not implement it. With an increasing number of systems whose content is being fed by various heterogeneous content providers, non-testability was designed into the system! In most systems for valid business reasons. Also, with increasing competitive pressures shortening the time-to-market windows for software products, non-testability is virtually designed into the schedule!

2. Regression Testing the Entire System – in truly data driven applications, regression testing the entire system becomes increasingly complex as test results depend on the underlying data. And if the system under test involves regular (or automatic) data updates, regression testing becomes a questionable business at best. Testing sub-system and their respective interfaces yields more reliable results, but requires technically more sophisticated software quality assurance professionals.

3. Input / Processing / Output – this approach does not work any longer because of the proceeding bullet. Until recently, a system would take a fixed input, would perform some processing, and deliver a verifiable output. The test process was very static – if you knew the processing rules and the input, the output was predictable or if you knew the output and the processing rules you could deduct the input. That’s what testing was all about! Now we are faced with the issue that either the processing or the input changes dynamically. With the introduction of dynamic content, cookies, and profile specific user interfaces, static testing becomes borderline useless. Peter, Paul, and Mary might get different results based on different conditions and criteria. Peter might search for a specific term and get 22 hits; tomorrow the same search term will yield 13 hits; the day after that 31 hits. Paul and Mary might see different numbers altogether!

4. In truly distributed systems, defect reporting becomes a technical task that requires serious technical investigative skills and a thorough understanding of the overall system. After all, was it a front-end problem, did your database connection drop, is your ODBC driver faulty, or did the business component on the server die? Hmmm….

5. SQA Needs To Be Involved Early In The Cycle – Despite what SQA and test professionals say about early project involvement, most SQA and test professionals don’t have the technical expertise to participate in early software design session and test without a GUI
. The current state of the art is that if SQA professionals cannot touch and feel the system under test, they cannot test it.

6. Most Test Automation Projects Fail – for the reasons mentioned above and the fact that most software test automation tools require serious programming expertise (as most of them are script base and often require extensions in the form of custom DLLs, etc.), most test automation projects fail if they are staffed with SQA professionals and not with programmers.

The Software Executive’s Dilemma – No Comparative Data

So far we have discussed the issues that any software executive faces today with regard to ensuring his or her product’s quality. Anybody working in the software industry is aware of these things, even if they are just perceived unconsciously. The question really is: How do I solve the problem? How do I make my SQA team more efficient? How can I guarantee that I get optimal SQA productivity within the short time-to-market window? How do I make sure that my SQA professionals can test early in the life cycle of the product, when the front end is not available yet? How do I know if I am on track?

The most methodical approach to solving an acknowledged problem is to find baseline data that enables the problem solver to put the specifics into perspective (i.e. relate the specific findings to data points relating to similar problems). Various professions use this approach, for example, the doctor performs a comprehensive analysis on a specific physical problem and obtains a second opinion before recommending treatment. The car mechanic checks the engine for wear and tear of specific parts and checks the recall listing before recommending the specific repair. Both of them relate their finding to baseline data in order to recommend a solution. In most cases the baseline data is based on long established empirical data used as a decision support tool.

Unfortunately, there really is no baseline data available for software quality assurance and testing. This is evidenced each time software quality assurance professionals of various organizations come together and talk about their trade. Questions like “What is your developer to tester ratio?”, “What are your salary caps?”, or “How big is your budget for test automation?” are common and reflect the total lack of generally accepted baseline information. Every software quality assurance effort is reinventing the proverbial wheel. To make things even more complex, the wheel that gets invented is different from one scenario to the other (reflecting back to our three cities). What might be adequate for a fast paced startup might not be applicable to a large established, CMM Level 4, organization.

It is not uncommon in the software development industry to see a Quality Assurance Manager with a CMM Level 4 background walk into a startup, trying to impose the same rigor and discipline that she experienced in her previous job. Suffice to say that most likely this is a setup for disaster, as is the reverse situation.

Software engineering has been refining various ways to estimate the development effort for a project. From the time honored Lines of Code estimates, over advanced Function Point Analysis, to CoCoMo, software engineering research has been trying to create a radar screen. Some of the methods used seem questionable, require lots of overhead or are purely academic, but nevertheless, they are serious attempts to obtain reliable data points through estimation and projection methods.

Test engineering on the other hand has largely ignored this subject and consequently software quality assurance and testing have been considered more of an art or craft than an engineering profession. Compare this to more mature industries, like the auto industry, where development issues are dealt with in a statistical model, down to understanding that any given defect might cause X number of accidents, resulting in Y number of law suits, costing the company Z number of dollars (THAT is the reason, some defects do not get fixed on cars).

Every software executive faced with the challenge of delivering a commercial software system is confronted with the problem of determining the approach to their software testing effort without being able to review any comparative data! Which leads us to the next section: Why is no comparative data available?

Why Companies Do Not Share Their Data

Generally, companies do not share data regarding their development, software quality assurance, or support organizations because it is viewed as confidential.

The reality today is that in the high-stakes game of high-tech, financial repercussions and brand damage could easily result if a company would openly admit to selling software that has known defects – contrary to reality!

Although everybody working in the software industry knows that software products are released with hundreds if not thousands of open defects, saying so publicly would ensure a public outcry. Frequently, defect numbers for released products are leaked to news groups or the media. The responsible companies frequently feverishly deny defect statistics that are leaked after a software release. This is pure survival instinct as publicly admitted quality issues in a commercial software product often spells doom for product sales, which in turn impacts the value of the company stock, etc.

Consequently, the entire software industry is silent regarding this matter.

The Need For Different Data At Different Stages Of The Game

To make things worse, we are not only dealing with a lack of data points in order to enable software executive to make educated decisions regarding the calibration of their software quality assurance efforts, but we are dealing with the need for distinct data sets that would be required for various stages in the game.

Going back to our three cities, it is clear that different software quality methodologies must be used for each of them. Simplistically stated, using an approach that works for a CMM Level 4 shop in a startup would stifle not only creativity but, more importantly, productivity.

On the other hand, applying an informal methodology that is successful in a startup environment at a large, multi-site, multi-year software development project would cause chaos and, most likely, serious software quality problems.

This is really not surprising because similar parallels can be drawn looking at the organizational maturity in other company functions – sales, marketing, operations, public relations, operations, and others. As a company matures, its processes and approaches must mature as well. One methodology does not fit all circumstances. Looking at organizational failures, companies frequently fail when trying to cross over to the next level, i.e. a startup grows into a mid-sized company, or a mid-sized company grows into a large company. The failures are most often based in a lack of readjusting the core business processes, including software quality assurance, to deal with the new environments.

This, by the way, applies to the reverse action as well. Large companies with sophisticated process models sometimes spin off well financed technology “skunk-works”, assuming that the business processes that worked for the multi-billion dollar conglomerate could be applied to the startup. It turns out that this is wrong and many a large company spent millions of dollars failing, not because of a lack of vision, but because of the erroneous assumption that existing processes could be successfully adopted in the new environment.

Small companies do not work with large company procedures. Large companies do not work with small company procedures. It is that simple.

The same applies to job functions: A software quality assurance manager who might be very efficient and productive in a startup might not be very effective in a CMM Level 4 environment and vice versa.

Therefore, there is a need for at least four different models and data sets
:

1. Startups

2. Mid-sized Organizations

3. Large Organizations

4. Regulated software (DoD, FAA, FDA, etc.)

Creating A Radar Screen… Test Performance Benchmarking (TPB)

What is the proposed solution? It is a process called Test Performance Benchmarking and the following sections outline how it works.

Test Performance Benchmarking is a methodical approach to calibrating your commercial software test effort by measuring data points in your organization, comparing the data points to companies of similar size and creed, and adjusting your process based on the comparative data. Test Performance Benchmarking is a process that needs to be repeated several times, at fixed time intervals in order to reevaluate the progress. Time intervals can be as short as 8 weeks or as long as 12 months, depending on the size and complexity of the software development project.

Test Performance Benchmarking provides relative measures, i.e. it does not state in absolute terms if your software quality assurance process is in need of corrective action or not but highlights risk areas that need to be addressed by the company – based on comparative data.

Risk areas are determined based on three criteria:

1) Absolute complexity measures

2) Comparative complexity measures

3) Standard deviation from your peer group

The TPB process consists of four distinct steps:

1. Measure

The measurement process mainly consist of a review of company specific information, and one-on-one interviews with key members of the following focus areas:

· Software Development, including

i. Software Engineering

ii. Software QA / Test

iii. Software Configuration Management

iv. Technical Support

v. Customer Support

vi. Technical Publications

· Sales

· Marketing / Public Relations

The following sample static data points are gathered during the measurement process:

· Development environments / platforms

· Development languages

· Databases uses

· Distributed technologies used

· Target and vertical market focus

· Development processes

· Software quality assurance and test processes

· Defect counts

· Trouble ticket counts

· Documentation standards used

2. Compare

Once all static data points are gathered and entered, the Test Performance Benchmarking process involves three main activities:

· Calculate dynamic data points

· Compare static and dynamic data points to the Test Performance Benchmark Database. This activity generates additional data points and shows standard deviations

· Feed data to a graph engine that generates graphs and charts for each focus area

Dynamic data points are calculated values based on static data points. For example, if the total number of defects found during the project equals 100 and the SQA budget equals $100,000, then the calculated dynamic data point for “QA Cost per Defect” equals $1,000.

The Test Performance Benchmark Database holds data of previously performed Test Performance Benchmarking projects, and allows for anonymous comparison to previous participants’ information. For example, if the average QA Cost per Defect is $750, an additional static data point might be stored, “QA Cost per Defect over Average”, containing a $250 value.

Finally, all data point and data ranges are fed to a graph engine that will produce graphs and charts for each of the focus areas dealt with.

3. Adjust / Take Corrective Action

Based on the comprehensive information provided and the hard data used to generate reports, graphs, and charts, a corrective action plan can be implemented.

4. Reevaluate

If, as part of a corrective action plan, major improvement areas were uncovered, the Test Performance Benchmarking process can be repeated several times, at fixed time intervals, in order to reevaluate and monitor progress.

Time intervals can be as short as 8 weeks or as long as 12 months, depending on the size and complexity of the software development project.

Challenges and Limitations of Test Performance Benchmarking

Test Performance Benchmarking is without a doubt the best way to obtain insight into what is really important to your software quality assurance effort – namely how you are doing compared to your peer group. Why spend time and effort worrying about the zero defect rates that are accomplished at the Kennedy Space Center and the shuttle program, if all you really care about is how well you are doing compared to you competition – which might happen to be an e-commerce web site or an online bank.

The limitation of Test Performance Benchmarking is that it is a system that gets better with age and industry participation – in other words, as longs as there are not a significant number of participating companies in each peer group which your company can relate to, the feedback that can be derived out of Test Performance Benchmarking remains questionable.

Conclusion

Test Performance Benchmarking is an effective way to obtain information about your software quality assurance process. It is a valuable methodology that allows companies to compare themselves to their peer group and obtain relevant performance data, based on comparative data.

The value of Test Performance Benchmarking cannot be stressed enough. Today’s commercial software development efforts keep their performance data secret, primarily because of competitive reasons. Being able to anonymously compare your company’s performance data to your peer group’s averages, allows you to deduct important information for corrective action planning while maintaining complete confidentiality.

Author’s Biography

Brian Will is the founder and managing director of Paroxys, LLC, specializing in management and organization development for software development projects. He has over 17 years of hands-on software engineering, management, and business experience, encompassing a broad base of software systems and complex consulting engagements. His experience covers organizations from bootstrapped startup to multinational Fortune 500. Brian is the former president of Time to Market Software, Inc. and held senior management positions at Reliable Software Technologies, Thomson Corporation, KPMG Peat Marwick, ParcPlace-Digitalk, Easel/VMARK, and Best Software.

� All company names are fictitious. Any similarities with past or existing companies are purely coincidental.

� All company names are fictitious. Any similarities with past or existing companies are purely coincidental.

� All company names are fictitious. Any similarities with past or existing companies are purely coincidental.

� The author is fully aware how controversial this statement is, and acknowledges that several companies have made significant inroads in changing this situation. Unfortunately, though, the majority of the software development industry still suffers from the symptoms described.

� Again, the author understand the controversial nature of this statement, nevertheless, based on my personal experience as well as experiences of fellow software development managers, this holds true.

� I could easily see the need for eight to twelve data sets, but for the purpose of this white paper will stick with four.

� A peer group is the subset of companies in the Test Performance Benchmark database that meet certain selection criteria.

(2001 Paroxys, LLC. All Rights Reserved.

(2001 Paroxys, LLC. All Rights Reserved.

Page 14 of 17

[image: image2.png]_1063532202.bin

