On the integration of the Unified Process Model

in a framework for software architecture

Guido Dedene 1,2

Rik Maes 2
1 Vakgroep Beleidsinformatica

Faculteit Economische en Toegepaste Economische Wetenschappen

Katholieke Universiteit Leuven

Naamsestraat 69

B-3000 Leuven

Belgium

guido.dedene@econ.kuleuven.ac.be
2 Afdeling Accountacy en InformatieManagement

Faculteit der Economische Wetenschappen en Econometrie

Universiteit van Amsterdam

Roetersstraat 11

1018 WB Amsterdam

Nederland

maestro@fee.uva.nl
1. Introduction

The term ‘architecture’ is frequently used in the context of computers and information systems. This paper would like to contribute to the discussion on how valid the use of this term is in the context of information systems development.

Being aware that a transfer of concepts should be based on correspondences as well as differences, the paper start by revisiting some fundamental definitions on architecture, from an architect’s point of view. Since this paper focuses on information systems development, a major standard for the software development process is positioned in the next paragraph. The Unified Process Model (Jacobson et al., 1999) is discussed and partially augmented in view of the current emphasis on reuse in software practices.

Next, a framework for software architecture is developed in an attempt to integrate both the Unified Process Model and the concepts of architecture. The framework emerged from earlier work on the framework for information systems architecture, proposed by John Zachman (Zachman, 1987; Maes & Dedene, 1996).

The paper finishes with some applications of the proposed framework for software architecture, and a discussion on alternatives and extensions.

2. The view of the architect on architecture

Information systems have a bad reputation in many business organisations. Often, information systems are the blocking factor to transform business processes. They develop in legacy software, which is increasingly difficult to maintain. Methodologies for information systems development should preferably ensure that future systems avoid this bad evolution pattern.

At various places in the literature, it is argued that the growing complexity is a major explaining factor for this behaviour of information systems. Systems development should learn how to handle complexity, and – when possible – reduce complexity. Since the complexity of a system is lower bound by the complexity of the reality that it has to handle, the emphasis is clearly on handling complexity in the first place. This is, historically, precisely where architecture comes in place.

Architecture was defined by Marcus Vitruvius Pollio as a way to deal with the complexity of the process of building, and more in particular building is such a way that value is added to the spacetime in which the building takes place. Vitruvius defines architecture by discussing three dimensions in architecture: firmitas, utilitas et venustas (Vitruve, 1979).

Firmitas refers to the notion of structural construction aspects, expressed in architectural ‘form’. Rendering structure in a building process is indeed an important instrument in dealing with complexity.

Utilitas indicates the functionality that must be realised. Modern architectural practices try to handle functionality by using abstraction levels in architecture. Abstractions should not be confused with levels of detail (Alexander, 1965). Appropriate abstraction levels can result in the possibility to render intelligent zooming in architectural drawings. Rather than just presenting more pixels in zooming, a zoomed level shows other concepts, which can not be represented at a higher abstraction level (Neuckermans, 1992). The following schema shows a fragment of a framework for architecture, that became the basis for a CAAD-tool that proposes abstraction levels and structural aspects (Neuckermans, 1992).

[image: image1.wmf]
A leading principle behind this framework is the harmony between function and form in architecture. Mismatch between constructional aspects and functional aspects is avoided by aligning them. This principle has guided many contemporary architects, and was eloquently expressed by the famous architect Eiffel, in his response in the newspaper Le Temps to a petition by members of the artistic establishment in Paris, protesting his project in 1887.

“Must it be assumed that because we are engineers beauty is not our concern, and that while we make our constructions robust and durable we do not also strive to make them elegant?

Is it not true that the genuine conditions of strength always comply with the secret conditions of harmony ?

The first principle of architectural esthetics is that the essential lines of a monument must be determined by a perfect adaptation to its purpose”

Venustas is the third dimension in architecture, which encapsulates the esthetic notions of beauty and satisfaction. Needless to emphasise that this aspects has also been subject of discussion in the literature on architecture.

From this definition it becomes clear that architecture is the art as well as the science to order space, and in particular the building space. Some additional statements from architects confirm this viewpoint:

· Architecture is the thoughtfull making of spaces – Kahn (Van de Ven, 1978)
· L’architecture est le jeu savant et magnifique des formes rassemblées sous la lumière (Le Corbusier, 1958)
· Architecture is a system with elements which are mutually related and determined by their context (Alexander, 1963)
3. The Unified Process Model: a critical discussion

Building software is the process that should result in a particular version/release of workable software for an organisation. Over the past decades many software process models have been proposed, with the Waterfall model as a famous legacy model.

The Unified Process Model, UPM, (Jacobson et al., 1999) has been developed in conjunction with the Unified Modeling Language, UML, (Booch et al., 1999), a notation standard for systems development schemas and drawings. The following shows the components originally proposed in the Unified Process Model.

[image: image2.wmf]P

r

e

l

i

m

i

n

a

r

y

I

t

e

r

a

t

i

o

n

(

s

)

i

t

e

r

.

#

1

i

t

e

r

.

#

2

i

t

e

r

.

#

n

i

t

e

r

.

#

n

+

1

i

t

e

r

.

#

n

+

2

i

t

e

r

.

#

m

i

t

e

r

.

#

m

+

1

I

n

c

e

p

t

i

o

n

E

l

a

b

o

r

a

t

i

o

n

C

o

n

s

t

r

u

c

t

i

o

n

T

r

a

n

s

i

t

i

o

n

I

t

e

r

a

t

i

o

n

s

P

h

a

s

e

s

C

o

r

e Tasks

A

n

i

t

e

r

a

t

i

o

n

i

n

t

h

e

e

l

a

b

o

r

a

t

i

o

n

p

h

a

s

e

Requirements

Design

Implementation

Test

Analysis

The phases correspond to the major milestones in giving rise to a particular version/release of a software system. The Unified Process Model stresses that for each new software version/release the process must be executed again. The phases coincide remarkably well with the information/knowledge management process proposed by Choo (Choo, 1998). The phases aim at the following milestones:

· Inception: the identification of the needs for the information system, also including the business case for the system and the partitioning of the system in clusters.

· Elaboration: the identification and choice of the required systems components.

· Realisation: the building and testing of the individual systems components, as well as the overall relationships between the system components.

· Transition: handing over the system in the hands of the business professionals that will use it.

In each phase, iterations represent time boxes which should result in concrete deliverables in the software process. A typical time box in the Unified Process Model could corresponds to a Use Case in the Unified Modeling Language.

The core tasks represent the major types of activities that must be executed more or less in each phase. The tasks are the following:

· Requirements: the identification of the requirements for the system.

· Analysis: the exploration of the problem domain for the system.

· Design: the exploration of the solution domain, involving the development of alternative solutions for the problems identified in analysis.

· Implementation: the building of system components, and in particular the documentation of all the components.

· Test: the testing of the components and the overall system.

Several critical remarks can be added on these generic tasks. First of all, the difference between inception and requirements is far from clear, even in new publications on the Unified Process Model. Another element that is completely missing in the generic tasks is making software components reusable. Reusing software components is economically very interesting in software development, and has been proposed explicitly as an additional task in systems development by various authors (Meyer, 1997). Finally, testing is only one way to verify the integrity and consistency of system components. Modern software engineering disciplines, such as strong typing in object-orientation, allow the verification of software components very early in the definition of the components. Consequently, the following enhancements are proposed to the Unified Process Model:

· Drop the requirements task: all requirement aspects are covered in the inception phase.

· Expand the test-task into a verification task.

· Add a generalisation task

The degree of involvement of the generic tasks in the phases of the Unified Process Model can be represented graphically in the following way.

[image: image3.wmf]P

r

e

l

i

m

i

n

a

r

y

I

t

e

r

a

t

i

o

n

(

s

)

i

t

e

r

.

#

1

i

t

e

r

.

#

2

i

t

e

r

.

#

n

i

t

e

r

.

#

n

+

1

i

t

e

r

.

#

n

+

2

i

t

e

r

.

#

m

i

t

e

r

.

#

m

+

1

I

n

c

e

p

t

i

o

n

E

l

a

b

o

r

a

t

i

o

n

C

o

n

s

t

r

u

c

t

i

o

n

T

r

a

n

s

i

t

i

o

n

I

t

e

r

a

t

i

o

n

s

P

h

a

s

e

s

C

o

r

e Tasks

Analysis

Realisation

Verification

Generalisation

Design

This picture suggests, among other things, that modern software engineering processes use more energy for the verification than the realisation of systems components, in particular when they reuse existing software components.

The reason why the Unified Process Model is discussed in the definition of a framework for software architecture is clear: the UPM phases and generic tasks give a precise definition of the constructional aspects of software. Hence they are a guideline for defining the Firmitas dimension of software architecture.

There are some correspondences with earlier attempts to define frameworks for software architecture. In particular, the framework of John Zachman proposes questions as structural elements, such as why, what, how, where, and so on. It is clear that all these questions can be addressed by the constructional aspects of the enhanced Unified Process Model that is presented here.

4. A framework for software architecture

A full framework for software architecture should address the other two dimensions of architecture: venustas and utilitas. Venustas can be translated into quality criteria for software systems. This is a shortlist of quality criteria for software systems (Maes & Dedene, 1996).

· Maintainability
A software system is maintainable if the opportunity costs for

running the system can be kept minimal. This occurs, for example, if error corrections and implementation changes can be executed without introducing further errors in the system.

· Adaptability
It should be easy to add functionality to a system.

· Transparency
A system can be transferred smoothly between developers.

· User-Friendliness
User should recognise the systems functionality in a

spontaneous fashion.

· Reliability

A system should continuously perform as expected.

· Efficient

Minimal critical resources should be used for the systems

performance.

Methodologies for systems development can indeed be evaluated against these criteria to determine how much venustas they establish for both the developers as well as the professional users of the system.

Utilitas, the functionality of a software system, is traditionally considered in an overall fashion in systems development methodologies. A typical example is the handling of requirements: methodologies tend to treat requirements as a global set of systems requirements (as emphasised in the original Unified Process Model). The definition of architecture indicated the direction to deal with the functionality: it suggests the use of levels of abstraction.

The next question is the determination of the appropriate abstraction levels for software architecture. The framework for Information Systems Architecture identifies multiple levels of abstraction (Zachman, 1987): Scope – Business – Information – Technology – Details. Several questions can be raised against these proposed levels of abstraction:

· Does ‘scope’ belong to architecture, or, has it no to do more with making strategic choices about the context for information systems, and in particular, multiple systems ?

· Is ‘details’ a valid abstraction level, or just one of the constructional aspects ?

· The Zachman papers discuss the levels of abstraction as levels of detail, which may not be appropriate in a contemporary view on architecture, as explained before.

Hence, what are the most appropriate levels of abstraction for software architecture. An interesting consensus is possible on the basis of the Information/Communication Management Enneahedron, proposed by one of the authors (Maes, 1999). The three fundamental abstraction levels are:

· Business: the viewpoint of the business professionals, responsible for that part of the business that must be addressed by the software system.

· Information/Communication: the viewpoint of the professional users of the systems, in terms of the input/output functionality of the software system.

· Technology: the viewpoint of the software engineers, responsible for the implementation and scheduling alternatives for the operational software system.

When using these abstraction levels, the systems requirements can be refined in business requirements, information/communication requirements and technology requirements. Let it be clear that this is precisely what architecture is about: dealing with complexity. Business requirements, for example, can be handled by business architects, whereas technology requirements must be addressed by a different type of architect.

The I/C management enneahedron allows also to position scope explicitly at the strategic layer in the enneahedron, as is summarised in the following overview of the enneahedron (Maes, 1999).

[image: image4.wmf]BUSINESS

INFORMATION/

COMMUNICATION

TECHNOLOGY

STRATEGY

STRUCTURE

OPERATION

Architecture

Scope

So, the framework that is proposed in this paper for software architecture, can graphically be represented in the following schema.

[image: image5.wmf]Business

Information/

Communication

Technology

Incep

-

tion

Business “Logic”

Presentation “Logic” (intake, control,

presentation and dispersion of information)

Technology and Scheduling options

A

B

S

T

R

A

C

T

I

O

N

ASPECTS

Analysis

Design

Realisation

Verification

Generalisation

Structure

F

u

n

c

t

i

o

n

 TASKS

Elabora

-

tion

Con-

struction

Transi

-

tion

The schema gives an explicit checklist for the utilitas and firmitas dimensions of software architecture. The venustas dimension is covered by the list of quality criteria discussed before.

5. Applying the proposed framework

The taste for the framework comes in the application of the framework. Various applications can be envisioned, and some of them are suggested here. First of all, an obvious question is how systems developed under architecture can be recognised. An important criterion is of course the realisation of the different abstraction layers of the utilitas dimension in the software specifications. The business functionality consitutes the core functionality of the software system, and the other layers are built around it.

Such an approach is not new, and was proposed earlier (Jackson, 1983). A fundamental critique at that time was the fact that this layering impacts heavily the software process: the information/communication layers can only be developed when the business model is completed, for example. Today, with component-based and object-oriented development, these remarks are obsolete. An architected software system can also be developed in slices, which contain the components/object with their appropriate levels of abstractions (which can be represented as stereotypes in the Unified Modeling Language notations).

[image: image6.wmf]Business model

Transaction

model

Input, output &

control logic

User

interface

Technology

logic

Components

Another important application of the proposed framework is the fact that it suggests a structure for the meta-models which underlie Computer Aided Software Engineering (CASE) tools and application software frameworks. Frameworks and tools that really assist the developers in realising their tasks should incorporate the dimensions of the proposed framework for software architecture.

The framework will also stimulate the research for patterns for software reuse: business analysis patterns are different from, for example, technical design patterns. An overwhelming rich variety of patterns has been proposed in the literature today (Jezequel et al., 2000). The framework can help considerably in classifying these patterns, also in view of their applicability in the software development process.

Finally, the framework can help in realising a better degree of exchange between software system specifications. Software architecture can help to improve the degree of model interchanges between software development communities. Needless to emphasise that this may be very important to stimulate modern software approaches, such as Open Source Software.

6. Discussion

This paper proposes a framework for software architecture. The proposed framework enjoys a number a advantages:

· The structure of the framework is compliant with the way the original Zachman framework for Information Systems Architecture (Zachman, 1987) was conceived. However, it also satisfies further formalisations of this type of frameworks, as proposed in (Martin & Robertson, 1999).

· The proposed framework coincides with the various dimensions in architecture, in the way they have been discussed in the architecture literature.

· The proposed framework is compliant with and enhances the Unified Process Model and the Unified Modeling Language. This allows a fair integration of the framework with a variety of tools that are on the market today. Moreover, the proposed framework induces further structure in the UML notations.

Further research should reveal how much the framework can assist in comparing and assessing software development methodologies. At least it is our impression that systems that are realised under architecture enjoy a higher degree of quality and a more transparent complexity, nothing more, nothing less…

References.

Alexander Ch., ‘A City is not a Tree’, in: Architectural Form, april 1965, vol. 122, nr. 1, pp. 58–61.

Alexander Ch., ‘The determination of Components for an Indian village’, in: Conference on design methods, Pergamon Press 1963, pp. 83–114.

Alexander Ch., Ishikawa S., Silverstein M., Jacobson M., Fiksdahl-King I. & Angel S., A Pattern Language, Oxford University Press, 1977.

Booch G., Rumbaugh J. & Jacobson I., The Unified Modeling Language User Guide, Addison-Wesley, 1999.

Choo C. W., The Knowing Organization, Oxford University Press, 1998.

Jackson M., Systems DevelopmentI, Prentice-Hall, 1983.
Jacobson I., Booch G. & Rumbaugh J., Unified Software Development Process, Addison-Wesley, 1999.

Jézéquel J.M., Train M. & Mingins Ch., Design Patterns and Contracts, Addison-Wesley, 2000.

Le Corbusier, Vers une Architecture, Fréal, Paris, 1958.

Maes R., Dedene G. , Reframing the Zachman Information System Architecture, Tinbergen Institute discussion paper TI 96-32/2, Amsterdam, 1996.

Maes R. , Reconsidering Information Management Through a Generic Framework, PrimaVera Working Paper 99-15, Universiteit van Amsterdam, 1999.

Martin R., Robertson E.L., Formalization of Multi-level Zachman Frameworks, Technical Report 522, Computer Science Department, Indiana University, 1999.

Meyer B., Object-oriented Software Construction, Prentice Hall, 1997.

Neuckermans H., ‘A conceptual model for CAAD’, in: Automation in construction, 1992, vol. 1, nr. 1, pp. 1–6.

Van de Ven C., Space in architecture, Van Gorcum, Assen (Ndl), 1978.

Vivtruve, Les dix livres d’architecture corrigés et traduits en 1684 par Cl. Perrault, Margada, Brussels, 1979.

Zachman J.A., ‘A framework for information systems architecture’, in: IBM Systems Journal, 1987, vol. 26, nr. 3, pp. 276–292.

PAGE
1

_1034624526.doc

P

r

e

l

i

m

i

n

a

r

y

I

t

e

r

a

t

i

o

n

(

s

)

i

t

e

r

.

#

1

i

t

e

r

.

#

2

i

t

e

r

.

#

n

i

t

e

r

.

#

n

+

1

i

t

e

r

.

#

n

+

2

i

t

e

r

.

#

m

i

t

e

r

.

#

m

+

1

I

n

c

e

p

t

i

o

n

E

l

a

b

o

r

a

t

i

o

n

C

o

n

s

t

r

u

c

t

i

o

n

T

r

a

n

s

i

t

i

o

n

I

t

e

r

a

t

i

o

n

s

P

h

a

s

e

s

C

o

r

e Tasks

Analysis

Realisation

Verification

Generalisation

Design

