

[image: image2.emf]VERSATA Professional Services

[image: image3.png][image: image4.png]
[image: image5.wmf]Check Cust

Credit

Create Order

Item

Calculate Cust

Balance

Calculate Order

Total

Modeling requirements In UML

OOPSLA Position Paper

Authors:
Tony Phillips and Michael Mohammed

Date:
September 2000

Version:
3.0

Preface

This discussion paper is focussed on the initial phase of an e-business application development project when requirements are being gathered. The approach and concepts discussed here focus on how requirements should be captured so that they are comprehensive and easily lead to business rules as required by the Versata Logic Server.

This document will remain a work in progress. Any comments or suggestions should be sent to Tony_Phillips@Versata.com (phone +1 510 238 4100)

[image: image6.wmf]Customer

Customer ID

Customer First Name

Customer Last Name

Customer Address

Payment

Payment ID

Payment Amount

Payment Timestamp

Account

Account ID

Account Type

Account Limit

Account Balance

1..*

1..*

1..*

1..*

This document is proprietary and confidential

1.1 Contents

21.1
Contents

2
Method Principles
3
2.1
What are Business Rules?
3
2.2
Data, Processes and Controls
4
2.3
The Benefits of Rules Based Systems Development
5
2.4
The Business Rules Meta Model
6
2.5
Decomposing Activities
7
3
The Versata Method Steps
8
3.1
Module 1, Project Start-up
8
3.1.1
Identify the Actors, Contexts and Deliverables
8
3.2
Module 2, Requirements Decomposition
10
3.2.1
Step 1: Identify Business Processes
10
3.2.2
Step 2: Decompose Business Processes
10
3.2.3
Step 3: Create a relationship matrix for all identified data objects.
10
3.2.4
Step 4: Determine the dependencies and sequencing of Key Actions
10
3.2.5
Step 5: Decompose the Key Actions into Operations
10
3.3
Data Modeling
12

2 Method Principles

2.1 What are Business Rules?

The OMG group has the following definition of Business Rules:

Rules hold the key information about why business functions the way that it does. They define the controls over the business processes.

Business Rules are (or, at least, normally are) declarative statements, not procedural code. They control the update to data in a similar way that a spreadsheet controls updates to the individual spreadsheet cells. The impact of any changes are automatically evaluated and automatically applied across all relevant data items, without the user having to determine the optimum processing sequence.

Below is an example of some Business Rules, as they would be defined for implementation in the Versata Studio:

2.2 Data, Processes and Controls

The Zachman Framework, and Rudyard Kipling both say that, in order to understand something fully, the questions that you need to ask are: What?, How?, Where?, Who? When? and Why?

Normal systems analysis techniques such as Information Engineering (e.g. SSADM), or OOA are very good at identifying the What? (the Data or Structure of a system), and the How? (the Processes or Behavior of a system). Neither approach explicitly identifies the Why?, (the decisions that control the changes in a system).

OO Analysis in particular seems to allow analysts to mislay business rules for the following reasons:

· Use Cases document each use case scenario separately and so it is easy to miss the decision points where two alternative scenarios split paths. And any decision point represents a business rule.

· Use Cases tasks are described as text and so it is very difficult to check them internally for errors and omissions, and extremely difficult to check them externally across multiple use cases to identify errors

· Different analysts pitch use Cases at different levels. The use cases may represent high level business processes, or low level system operations.

· Object Interaction Diagrams, or Sequence Diagrams also follow a single thread through the system and so again decision points are hidden

The Versata analysis approach identifies the rules, the reasons for each process and the tests that are applied before a change in the business is allowed to occur (the preconditions). Often the business rules need to be applied every time a change occurs to a particular data item (an entity or a data object). For example, it may be necessary to check a customer’s credit status every time the customer places an order, changes an order or makes any revisions.

The single piece of code that implements the business rule may end up being duplicated in every process associated with the order entity and the customer entity. This can lead to huge duplication of effort during construction, and cause a maintenance nightmare when the system needs enhancing.

The Versata analysis approach identifies the business rule, extracts it from all the processes where it occurs, and holds it, just once, against the data.

2.3 The Benefits of Rules Based Systems Development

The Business Rules approach gives the following benefits

· It improves communication and understanding, as rules are captured in unambiguous formulae and statements that can be read by the business and the developers.

· It helps get requirements right first time as errors are easy to spot.

· It centralized business knowledge as rules are held just once, in a central repository.

· It reduces development time and effort as the rules are captured just once, and are captured as formulae, so expensive, scarce programmers are not required.

· It enables faster maintenance and enhancement as rules are centralized, and the impact of changes can be quickly tested, normally without having to individually test each application.

The Business Rules Meta Model

Th Business Rule model is based on the following principle: every change is caused by an activity, and every activity is instigated by a control.

So when an object is created, or updated or when any change to the state of an object or in the value of an attribute occurs, there is always an activity that caused it. Activities transform input states into output states, hence when defining an activity it is always necessary to define the inputs and resultant outputs to and from the activity.

Hence, an activity is defined by inputs and outputs, and is always triggered by a control.

A control consists of two parts: the algebra and the variables.

The algebra is similar to the ‘IF part of an ‘IF..THEN’ statement in programming languages.

The variables are attribute values that are always set or changed by some activity.

The diagram below illustrates how controls are based on testing states, and how the control leads to the initiation of some activity that causes a state change, which in turn might be tested by some other control that leads to another activity etc. This then is a basic model that explains how dynamic systems work, and it is the model on which the methodology is based.

Decomposing Activities

Business processes are gradually decomposed from the high level statements of business operations or process, into low level application operations (i.e. specifications or rules). This leads to a hierarchy of activities in a business system that goes from high-level statements of process to low-level operations on data. This hierarchy is illustrated below.

This hierarchy can also be presented as a set of nested process flows as shown in the diagram below. At the lowest level, the logical operations can be transformed into physical rules for Versata.

[image: image1.wmf]Business Process 1

Action 3

Action 1

Action 2

Operation 1

Operation 2

Action 4

Action

Operation

Operation

Operation

Action

Business Process, Workflow

Action

Rule

Actions contain Operations

Logical Operations

become

Physical Rules

Action

Action

Business Processes

contain Actions

that contain

Operations

3 The Versata Method Steps

The method is presented in 3 modules as follows:

Module 1, Project Start-up

This module sets the stage – and defines a clear set of business objectives and deliverables.

Module 2, Requirements Decomposition

Module 2 is based on a process decomposition approach to analysis. It first identifies requirements at a high (broad and general) level, and gradually brakes these down into more and more specific details. The lowest level requirements specifications are translatable to Versata rules.

Module 3, Data Modeling

A common problem in data modeling is lack of techniques for correctly identifying data objects, relationships, and their associated attributes. Module 3 provides a technique for modeling data.

3.1 Module 1, Project Start-up

3.1.1 Identify the Actors, Contexts and Deliverables

Actors

The Actors are the users of the system. They are the reason why the system is being built.

Context

A context represents the frame of reference of the Actors (the users) for whom the system is being built. This frame of reference is the purpose or business goal or motivating factor within which the user accesses the system.

Understanding the contexts of the users helps to ensure that all the requirements and needs of the users of the system are considered when defining deliverables of the system.

Deliverables

The system deliverables are the results, in concrete terms, that the system is expected to produce. Deliverables for information systems are typically:

· Reports

· Documents (eg. contracts)

· Images (eg. diagrams, schema)

· Data stores

· Data files.

It is important to define a system’s deliverables so that it is clear what the purpose and scope of the system is. For this reason, identifying the system’s deliverables will typically be done in the project initiation stage to provide focus and scope for the project.

Module 2, Requirements Decomposition

3.1.2 Step 1: Identify Business Processes

A business process is a high level description of the activity within the business that results in the deliverable within a given context. The business process is described in the normal terms used by that business area.

Business processes describe the essential nature of the work that must be done to result in the desired deliverable. Business processes are typically one – and only one – of the following types:

· Generate, Build, Acquire, Create

· Modify, Amend, Update

· Record, Report, Search, Read

· Obsolete, Archive, Dispose, Delete

3.1.3 Step 2: Decompose Business Processes

Each business process is decomposed into key actions, together with its inputs and outputs. To this point we have described the business requirements or user requirements in high level business oriented terms. At this level of our decomposition – the second ‘layer’ – we begin to capture more of the processing nature – in an IT sense – of the work required, as well as focussing more on specific required data.

A Key Action then is part of a business process and reflects more of the type of processing that is involved in turning inputs into the outputs that constitute the deliverable. Key Actions are one of three types:

· Test

· Derivation/Calculation

· Store/Retrieve

3.1.4 Step 3: Create a relationship matrix for all identified data objects.

In previous steps we would have captured a number of data objects and possibly a number of relationships that must be used or produced by the system. We need to keep track of all the relationships that exist between the data objects so that a database can be designed and implemented to support the requirements identified thus far

3.1.5 Step 4: Determine the dependencies and sequencing of Key Actions

In step 2 we identified the actions that need to be performed as part of a business process to convert input data into the required output data for the deliverable. We have not yet specified the order in which those actions are to be completed, so in this step we consider how to organize the actions into their flow sequences based on data dependencies or operating standards that might exist.

3.1.6 Step 5: Decompose the Key Actions into Operations

Decompose the Key Actions into Operations with their required Inputs and Outputs, and repeat Steps 3 and 4 for Operations.

There are certain types of operations that are typically used in certain types of actions. The types of operations are:

· Comparison Operations: these operations involve comparing one data item to another and always result in a true/false outcome.

· Relationship check Operation: these operations involve checking a data repository (a table or file) to ensure that 2 objects specified as inputs to this operation, have recorded instances that pair them in the repository.

· Existence/Null test Operations: these operations checks for the existence or a null value of its input, and outputs a success/failure or true/false value for the ‘completion status’ attribute of the Existence/Null test operation itself.

· Mathematical/Statistical Operations: these operations involve any of the standard mathematical or statistical operations.

Data Modeling

The data objects and attributes need to be identified independently of their context. Often when a data model is developed for a particular user community, the data model is subject to change when a new user community wants to access the data stored in the model. These changes often require time consuming modifications and increased maintenance costs.

The more closely we can model the real world the more flexibility we have in supporting multiple interpretations (i.e. multiple contexts) against the real-world view, since all contextual interpretations are usually classifications or derivations made against the real world.

For example: when we record the price of an item we are recording information about the current value or net-worth ‘state’ of the item. So for every data element (i.e. every data attribute) we need to ask ourselves:

“When the value of this attribute changes, what object or relationship is actually changing state?”

www.versata.com

Versata, Inc. 2101 Webster St. 8th Floor, Oakland, CA 94612

Approve

Business Function

Insert Order Item

Process Late Payments

Accounts Clerk

Chase Outstanding Accounts

Credit Agency

Create Customer Account

Rules are declarations of policy or conditions

that must be satisfied [OMG, 1992]

 How?

The rules that control the business

The information used by the business

The activities performed by the business

 Why?

Create

Customer

Order

Authorize Customer

Set

Customer Status

Test Status

Customer

Calculate

Customer Fee

Customer

Check Credit Limit

Customer Balance not > CreditLimit

Customer Balance = sum of unpaid Order Total’s

Compute Order Total

Order Total = Freight + Amount Items

Amount Items = sum (Item Amounts)

Item Amount = QtyOrdered * Price

Item Price = Part Price at time of order

Determine whether Reorder required

Reorder if OnHand - QtyUnShipped < Reorder Level

QtyUnShipped = sum(Item QtyOrdered) where unshipped

Item.UnShipped is obtained from Order

 What?

VERSATA Proprietary And Confidential
 Page 2
03/05/02

_1025011008.ppt

Action

Operation

Operation

Operation

Action

Business Process, Workflow

Action

Rule

Actions contain Operations

Logical Operations

become

Physical Rules

Action

Action

Business Processes

contain Actions

that contain

Operations

Business Process 1

Action 3

Action 1

Action 2

Operation 1

Operation 2

Action 4

