

Copyright © The PAM Forum 2000-2001

PAM Specification
Document

Version: 1.0
Date: Sept 11, 2001

This is a public release of the Presence and Availability Management Specification from the
PAMforum.

Any feedback or comments can be sent to feedback@pamforum.org

For more information about the PAMforum, please visit http://www.pamforum.org

Page 2 of 155

 Copyright © The PAM Forum 2000-2001

Copyright Notice
Copyright (C) The PAM Forum 2000-2001. All Rights Reserved. This document and translations of it may
be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist
in its implementation may be prepared, copied, published and distributed, in whole or in part, without
restriction of any kind, provided that the above copyright notice and this paragraph are included on all
such copies and derivative works. However, this document itself may not be modified in any way, such as
by removing the copyright notice or references to the PAMforum or other Internet organizations, except
as needed for the purpose of developing PAM specifications, or as required to translate it into languages
other than English. The limited permissions granted above are perpetual and will not be revoked by the
PAM Forum or its successors or assigns. This document and the information contained herein is provided
on an "AS IS" basis and THE PAMFORUM DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION
HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property Rights statement
The PAMforum takes no position regarding the validity or scope of any intellectual property or other rights
that might be claimed to pertain to the implementation or use of the technology described in this
document or the extent to which any license under such rights might or might not be available; neither
does it represent that it has made any effort to identify any such rights. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt
made to obtain a general license or permission for the use of such proprietary rights by implementers or
users of this specification can be obtained from the PAMforum Executive Director.

Page 3 of 155

Copyright © The PAM Forum 2000-2001

1 INTRODUCTION..9

1.1 MOTIVATION..9
1.2 GOALS..9
1.3 CONCEPTS..10

1.3.1 Identity ...10
1.3.2 Agent..11
1.3.3 Presence..11
1.3.4 Availability ..12
1.3.5 Events ..13

1.4 SCOPE..13
2 MODEL ..14

2.1 ARCHITECTURE ...14
2.2 SECURITY AND PRIVACY...16
2.3 ACCESS FRAMEWORK..17
2.4 LEVELS OF ACCESS ...17

2.4.1 Application ...18
2.4.2 Service ...18
2.4.3 Thin client...18

2.5 USE CASES ...18
2.5.1 Identity Management ...18
2.5.2 Agent Management ...19
2.5.3 Agent Assignment..19
2.5.4 Agent Presence ...19
2.5.5 Identity Presence ...20
2.5.6 Availability ..20

3 PAM INTERFACES ...21

3.1 IDENTITY MANAGEMENT...21
3.1.1 Summary..21

PAM_IM_addAlias ... 23
PAM_IM_addToGroup... 24
PAM_IM_associateTypes.. 25
PAM_IM_createGroupIdentity ... 26
PAM_IM_createIdentity ... 27
PAM_IM_deleteGroupIdentity.. 28
PAM_IM_deleteIdentity.. 29
PAM_IM_disassociateTypes ... 30
PAM_IM_getIdentityAttributes ... 31

Page 4 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_hasType ... 32
PAM_IM_isGroupIdentity... 33
PAM_IM_isIdentity... 34
PAM_IM_listAliases... 35
PAM_IM_listGroupMembership... 36
PAM_IM_listMembers ... 37
PAM_IM_listTypesOfIdentity ... 38
PAM_IM_lookupByAlias .. 39
PAM_IM_removeAlias ... 40
PAM_IM_removeFromGroup... 41
PAM_IM_setIdentityAttributes ... 42

3.2 AGENT MANAGEMENT..43
3.2.1 Summary..43

PAM_AM_associateTypes... 44
PAM_AM_createAgent .. 45
PAM_AM_deleteAgent .. 46
PAM_AM_disableCapabilities.. 47
PAM_AM_disassociateTypes .. 48
PAM_AM_enableCapabilities .. 49
PAM_AM_getAgentAttributes.. 50
PAM_AM_isAgent ... 51
PAM_AM_isCapableOf.. 52
PAM_AM_hasType.. 53
PAM_AM_listAllCapabilities... 54
PAM_AM_listEnabledCapabilities ... 55
PAM_AM_listTypesOfAgent .. 56
PAM_AM_setAgentAttributes .. 57

3.3 AGENT ASSIGNMENT ...58
3.3.1 Summary..58

PAM_AA_assignAgent .. 59
PAM_AA_isIdentityCapableOf... 60
PAM_AA_listAssignedAgents.. 61
PAM_AA_listAssignedAgentsByCapability .. 62
PAM_AA_listAssociatedIdentitiesOfAgents... 63
PAM_AA_listCapabilitiesOfIdentity.. 64
PAM_AA_unassignAgent .. 65

3.4 AGENT PRESENCE...66
3.4.1 Summary..66

PAM_AP_setAgentPresence... 67
PAM_AP_setCapabilityPresence .. 68
PAM_AP_setAgentPresenceExpiration... 69

Page 5 of 155

Copyright © The PAM Forum 2000-2001

PAM_AP_setCapabilityPresenceExpiration... 70
PAM_AP_getAgentPresence... 71
PAM_AP_getCapabilityPresence .. 72

3.5 IDENTITY PRESENCE..73
3.5.1 Summary..73

PAM_IP_getIdentityPresence.. 74
PAM_IP_setIdentityPresence.. 75
PAM_IP_setIdentityPresenceExpiration .. 76

3.6 AVAILABILITY...77
3.6.1 Summary..77

PAM_AV_getAvailability .. 78
PAM_AV_getPreference.. 79
PAM_AV_setPreference.. 80

3.7 EVENTS ..81
3.7.1 Summary..81

PAM_EV_deregisterAppInterface.. 82
PAM_EV_deregisterFromEvent... 83
PAM_EV_isRegistered .. 84
PAM_EV_registerAppInterface.. 85
PAM_EV_registerForEvent.. 86

3.7.2 Application Notification Interface ...87
PAM_EA_eventNotify .. 88

3.8 FRAMEWORK...89
3.8.1 Summary..89

PAM_FM_initiateAuthentication... 90
PAM_FM_getAccess ... 91
PAM_FM_getAuthToken ... 92
PAM_FM_getDefaultAgentNamespace... 93
PAM_FM_getDefaultIdentityNamespace... 94
PAM_FM_listServices ... 95

3.8.2 Authenticate Interface..96
PAM_FM_abortAuthentication... 97
PAM_FM_authenticate .. 98
PAM_FM_selectAuthMethod ... 99

4 AUXILIARY INTERFACES..100

4.1 IDENTITY AND AGENT TYPES..100
4.1.1 Summary..100

PAM_TX_addAgentTypeAttributes.. 101
PAM_TX_addIdentityTypeAttributes.. 102
PAM_TX_createAgentAttribute.. 103

Page 6 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_createAgentType ... 104
PAM_TX_createIdentityAttribute ... 105
PAM_TX_createIdentityType... 106
PAM_TX_deleteAgentAttribute.. 107
PAM_TX_deleteAgentType ... 108
PAM_TX_deleteIdentityAttribute.. 109
PAM_TX_deleteIdentityType ... 110
PAM_TX_getAgentAttributeDefinition.. 111
PAM_TX_getIdentityAttributeDefinition ... 112
PAM_TX_listAgentTypeAttributes ... 113
PAM_TX_listAgentTypes... 114
PAM_TX_listAllAgentAttributes ... 115
PAM_TX_listAllIdentityAttributes ... 116
PAM_TX_listIdentityTypeAttributes ... 117
PAM_TX_listIdentityTypes... 118
PAM_TX_removeAgentTypeAttributes.. 119
PAM_TX_removeIdentityTypeAttributes.. 120

4.2 CAPABILITIES ..121
4.2.1 Summary..121

PAM_CX_addCapabilityAttributes ... 122
PAM_CX_assignCapabilityToType.. 123
PAM_CX_createCapability .. 124
PAM_CX_createCapabilityAttribute... 125
PAM_CX_deleteCapability .. 126
PAM_CX_deleteCapabilityAttribute ... 127
PAM_CX_getCapabilityAttributeDefinition... 128
PAM_CX_listCapabilities... 129
PAM_CX_listCapabilitiesOfType ... 130
PAM_CX_listAllCapabilityAttributes... 131
PAM_CX_listCapabilityAttributes... 132
PAM_CX_removeCapabilityAttributes ... 133
PAM_CX_unassignCapabilityFromType ... 134

5 PAM PRE-DEFINED OBJECTS..135

5.1 PRE-DEFINED CONSTANTS...135
5.1.1 Communication modes ..135
5.1.2 PAM interface codes..135
5.1.3 Context names...135
5.1.4 Information privacy codes..135

5.2 PRE-DEFINED CONTEXTS...136
5.2.1 Communication..136

Page 7 of 155

Copyright © The PAM Forum 2000-2001

5.2.2 Location ...136
5.3 PRE-DEFINED EVENTS ...137

5.3.1 Summary:...137
PAM_CE_IDENTITY_CREATED .. 138
PAM_CE_IDENTITY_DELETED ... 139
PAM_CE_GROUP_MEMBERSHIP_CHANGED... 140
PAM_CE_AGENT_CREATED .. 141
PAM_CE_AGENT_DELETED ... 142
PAM_CE_AGENT_ASSIGNED... 143
PAM_CE_AGENT_UNASSIGNED.. 144
PAM_CE_CAPABILITY_CHANGED ... 145
PAM_CE_AGENT_CAPABILITY_PRESENCE_SET .. 146
PAM_CE_AGENT_PRESENCE_SET... 147
PAM_CE_IDENTITY_PRESENCE_SET... 148
PAM_CE_AVAILABILITY_CHANGED .. 149

6 PAM DATATYPES...150

6.1 PAM_T_ATTRIBUTE..150
6.2 PAM_T_ATTRIBUTEDEF ...150
6.3 PAM_T_AUTHENTICATIONHANDLE ..150
6.4 PAM_T_AVAILABILITYPROFILE..150
6.5 PAM_T_BOOLEAN..150
6.6 PAM_T_BYTE ..151
6.7 PAM_T_CAPABILITY...151
6.8 PAM_T_CONTEXT..151
6.9 PAM_T_CREDENTIAL ...151
6.10 PAM_T_DATA ..151
6.11 PAM_T_EVENT ..151
6.12 PAM_T_EVENTINFO ...152
6.13 PAM_T_FQNAME...152
6.14 PAM_T_INTEGER ...152
6.15 PAM_T_INTERFACEHANDLE..152
6.16 PAM_T_LONGINTEGER...152
6.17 PAM_T_PREFERENCE ..152
6.18 PAM_T_SHORTINTEGER...152
6.19 PAM_T_STRING ...153
6.20 PAM_T_TIMEINTERVAL...153
6.21 PAM_T_VALUE...153

7 APPENDIX A: UML MODELS...154

7.1 IDENTITY...154

Page 8 of 155

 Copyright © The PAM Forum 2000-2001

7.2 AGENT..155

Page 9 of 155

Copyright © The PAM Forum 2000-2001

1 Introduction
This document defines and proposes, for industry adoption, a set of specifications for Presence and
Availability Management (PAM). The goal is to establish, through industry consensus and adoption, a
standard for maintaining and publishing information about

• Digital identities,

• Characteristics and presence status of agents (representing capabilities for communication and
content delivery),

• Capabilities and state of entities (such as location), and

• Availability of entities for various forms of communication and the contexts in which they are
available.

Establishing such a standard in the industry will facilitate creation of many inter-operable services over
multiple network technologies and, in addition, allow end users greater flexibility in managing their
services and communication capabilities while addressing their privacy concerns.

1.1 Motivation
Consider the following simple but desirable scenario for a communication service: An end-user wishes to
receive instant messages from her management at any time on her mobile phone, from co-workers only
on her desktop computer, and in certain cases for the messages to be forwarded to e-mail or even a fax
machine/printer. The senders may know her availability for various forms of communication in the way
she chooses to reveal it or alternatively the senders may never know how she will be receiving their
messages. This scenario spans over multiple services and protocols and can only be solved currently by
a proprietary solution that maintains the required information in an ad-hoc fashion within the application.

PAM is not a replacement for the protocols being standardized for various communication and network
services. PAM attempts to standardize the management and sharing of presence and availability
information across multiple services and networks.

The PAM specification is motivated by the observations that

• The notions of Identity, Presence and Availability are common to but independent of the various
communication technologies, protocols and applications that provide services using these
technologies.

• Presence does not necessarily imply availability. End-users or organizations require greater control
over making themselves available through various communication devices.

• Presence based services need to address privacy concerns on who can access presence information
and under what conditions.

• Management of availability will span over multiple communication services and service providers.

1.2 Goals
The main goal of Presence and Availability Management is to facilitate the development of a rich set of
applications and services that span over multiple communication systems (instant messaging, e-mail, fax,
telephony, etc.) and to provide the end user greater flexibility and control in managing their
communications. A standardized platform allows software developers to create communication
management applications that are independent of the underlying technologies and protocols.

As the next step in the evolution of directory and database enabled applications and services, separation
of the management of identities and availability of users or organizations from specific applications
enables uniform and centralized administration of data and creates the potential to bring control over
communication services to the user’s desktops.

Page 10 of 155

 Copyright © The PAM Forum 2000-2001

The purpose of this document is to publish the first release of a Presence and Availability Management
interface specification created by an industry consortium, PAMforum, established for this purpose.

With a desired goal of rapid acceptance and usage, the specification has been deliberately designed to
be as simple as possible with an attempt to include a minimal set of functionality that is sufficient for use
in non-trivial applications. Often, this has been at the cost of some useful features, which would have
made the specification baroque and cumbersome if not controversial.

1.3 Concepts
This chapter briefly describes the various concepts involved in this specification to serve as the context
for the rest of the document. An UML data model of the PAM specs is provided in Appendix A.

1.3.1 Identity
Identity, for purposes of the PAM specification, is a limited electronic representation of an entity (i.e., an
individual or an organization) that participates in PAM-enabled applications and services.

The main characteristic of an entity that is central to PAM specifications is the name (or handle) by which
entities are identified by applications and services. Entities may have multiple names, login ids, account
names, etc., by which they are identified. As PAM attempts to abstract over multiple networks and
services, it does not assume that a single name will necessarily identify entities across all application
domains.

Names exist in the context of a namespace. Typically, a namespace is established implicitly or explicitly
by an entity (or an organization) to uniquely identify people within the domain of interest for the entity. For
example, a portal provider may establish a namespace for the login names created for services within
that portal. A name is assumed to be unique within a namespace. Two entities can have the same name
as long as they are in different namespaces. For example, two entities may be registered under the same
name in two different portal sites. A namespace is the largest set of names within which those names are
uniquely assigned to identities. The PAM specification itself does not define a namespace for identities.
Some PAM implementations may generate names for entities and thereby create a namespace within
which they operate.

Namespaces are distinct from domains as used in some well-known naming conventions. For example,
an e-mail (or SIP) handle joe@joescompany.com has joescompany.com as a domain. If entities in PAM-
enabled applications and services are identified by their e-mail handles, then the entire e-mail handle is
the name of a PAM identity in the global namespace of e-mail (or SIP) handles.

In some cases, the names by which people are identified are derived from their communication
capabilities (e.g., e-mail address or a telephone number). Although, a device may exist with that handle,
PAM distinguishes between the uses of such an address to identify an entity and the use of that address
to identify an agent for communication. For example, an e-mail address can be used as an entity identifier
for a travel website even if the e-mail capability is not always used for that purpose.

To enable entities to be identified by any of the names associated with them, PAM identities can be
assigned aliases. A name and a namespace pair can be defined as an alias of another name and
namespace pair. It is important to note that aliases are just synonyms and hence have limited semantics.
In particular, they are not powerful enough to model personas each with their own capabilities and privacy
requirements.

An identity can represent a single entity or a group of identities. Group identities have similar semantics to
non-group identities but, in addition, maintain a list of identities that constitute the group. As an example,
a sales department may be modeled as a group identity with the identities of the members of the
department being member identities of the group. Group identities and their member identities do not
inherit anything from each other.

No other relationships between identities are within the scope of the PAM specifications.

For flexibility and extensibility, attribute lists are used to associate additional data with identities. Identities
are typed to provide a way to manage such attribute lists. An identity type may be associated with a
specific set of attributes and all identities of that type inherit instances of such attributes.

Page 11 of 155

Copyright © The PAM Forum 2000-2001

PAM does not specify any pre-defined attributes or types. Applications may define and use their own
identity types.

PAM implementations may map certain existing directory and database data to one or more types to
allow access via PAM interfaces. PAM specifications do not specify how the data within the profiles are to
be stored. They may be stored within the PAM implementation or mapped to data stored on external
directories and databases.

1.3.2 Agent
An agent, for PAM purposes, is a limited electronic representation of a software or hardware device
through which identities manifest themselves or make themselves available to applications and services.

An important characteristic of an agent is a list of one or more capabilities associated with it. A capability
is what makes an agent useful. A capability either represents the ability of an agent to participate in
communications and content delivery (e.g., instant messaging, SMS, WAP, voice) or it represents the
ability of an agent to report useful information (e.g., location, velocity, temperature, mood) of the
environment around it.

PAM does not specify any pre-defined capabilities. Applications may define and use their own
capabilities.

Agent instances are identified by names (or handles). As for identities, names exist in the context of a
namespace. Within a namespace, a name is assumed to be unique. Two agent instances can have the
same name as long as they are in different namespaces. For example, a mobile phone and a PDA
manufactured by two different manufacturers may coincidentally have the same serial number by which
they are identified. As PAM attempts to unify services over multiple technologies, it does not assume that
a name uniquely identifies agent instances across all technologies or across all manufacturers. They can
be disambiguated through the use of namespaces.

No relationships between agents are within the scope of the PAM specifications.

For flexibility and extensibility, attribute lists are used to associate additional data with agents. Agents are
typed to provide a way to manage such attribute lists. An agent type may be associated with a specific set
of attributes and all agents of that type inherit instances of such attributes.

PAM does not specify any pre-defined attributes or types. Applications may define and use their own
agent types.

PAM implementations may map certain existing directory and database data to one or more types to
allow access via PAM interfaces. PAM specifications do not specify how the data within the profiles are to
be stored. They may be stored within the PAM implementation or mapped to data stored on external
directories and databases.

Agent instances are associated with one or more identities. This association results in the inheritance of
associated agents’ capabilities by the identities.

1.3.3 Presence
The concept of presence has been used in several application areas, being most explicit in Instant
Messaging. Starting from a simple notion of online/offline status, it has expanded to include other context
information around the status such as disposition (out to lunch, away from the computer, etc.) and activity
status (on the phone, idle, etc.). Location information, on the other hand, has largely been kept separate
from what has been traditionally considered presence information. PAM specifications broaden the
concepts of presence recognizing that all such information, including location, describes different contexts
of an entity’s existence. The unifying property is that the presence information is continually changing and
that there is value in knowing the current information at different points in time for services and
applications.

For the purposes of PAM specifications, presence is an extensible set of characteristics that captures the
dynamic context in which an identity or an agent exists at any point in time. In contrast to the relatively
static information about identities or agents (e.g., names, addresses, capabilities), presence refers to

Page 12 of 155

 Copyright © The PAM Forum 2000-2001

dynamic information such as location, status, disposition, etc. Registrations of presence and location
information in existing applications are covered by this definition.

Presence information is differentiated from the more static information associated with identities and
agents that are stored in attributes. The rationalization for this design is that the presence information is
dynamic and has implications on the implementation. Some of the presence information is too dynamic to
be maintained in static data stores such as directories and without this hint about the data characteristics,
PAM implementers may make sub-optimal decisions on the way the data is stored. Second, presence
information typically has expiration data that needs to be understood by the implementation.

The PAM specification recognizes that devices that provide presence information are not necessarily
devices that communicate. Certain agents may report presence information but not be capable of
communication. Certain agents may be communication devices but may not be able to provide presence
information. In general, the presence of an identity is computed from presence information provided by
one or more agents and the ability to communicate is derived from one or more communication-capable
agents available to the identity.

The PAM specification does not specify the methods by which the presence information is derived. An
agent may explicitly register its own presence information or the information may be derived from other
network elements. For example, an instant messaging client on a desktop computer can register its status
based on when a user is logged in. A mobile phone may do an explicit registration on a WAP server for
instant messaging. The phone’s presence for voice calls, on the other hand, may be inferred implicitly by
querying the cellular network for the device being on when requested. The presence of an identity, on the
other hand, may be computed using presence information from one or more agents.

Finally, the PAM specification does not require that the presence information be stored explicitly (i.e., in a
materialized fashion) in a PAM implementation. An implementation may infer the presence information on
demand from the underlying services or networks.

1.3.4 Availability
Availability is a property of an identity denoting its ability and willingness to share information about itself
or to communicate with another identity based on factors such as the type of communication requested,
the identity of the calling entity and the preferences and policies that are associated with the recipient.
This is the primary means by which the current PAM specification enables controls for privacy. While
presence is, in most applications, a necessity for availability, presence does not necessarily imply
availability to all.

Availability is always with respect to a context. A context in PAM specifications is a set of attributes
defining the state in which the availability is requested. For example, the query “Is Jane available for IM
for Rob?” identifies the type of communication and the identity of the asker as the context. PAM allows for
availability to be differentiated based on any attribute of a context. Two contexts, “Communication” and
“Location” are pre-defined in PAM.

Most queries for presence in existing applications can be mapped into PAM availability queries to control
the information being given out. Alternatively, queries can be mapped directly into PAM presence queries
in situations where privacy controls and policies are not required or all presence data is open to the entity
querying. This allows PAM specifications to be consistent with existing presence servers and to serve as
the basis for presence services across multiple protocols while providing uniform and flexible privacy
controls.

PAM specification does not specify whether the availability is computed on demand or stored explicitly. In
some applications, the availability may be pre-computed and stored explicitly while in some, it may be
computed at each request for availability.

While the PAM specification provides a mechanism to associate preferences with an Identity to control
availability, it neither specifies the syntax and semantics of the preferences nor the process by which the
availability is computed. These aspects are left to the implementation.

For example, a particular implementation may provide the facility to store preferences as rules such as “I
prefer to receive my instant messages on my computer rather than my cell phone unless the message is
from my boss or the computer is off, etc.”.

Page 13 of 155

Copyright © The PAM Forum 2000-2001

As an example, a computation of availability for communication may consist of the following algorithm:

1. Find all agents of the identity being called that are capable of the specified form of
communication AND have registered their presence status as available.

2. Evaluate the rules associated with the identity being called to select the preferred agent(s) from
the set of present agents determined in Step 1.

3. If there are any agents available satisfying Step 2, indicate the availability of the identity being
called via the available agents.

An implementation can chose to provide one or more means to specify preferences. It is expected that if
there is industry standardization on the specification of preferences, the implementations will support
such a standard. This is currently outside the scope of PAM.

1.3.5 Events
Events are representations of certain identified occurrences related to the concepts described above. The
PAM specification provides for registering interest (i.e., callbacks) in being notified of such occurrences.
An implementation is expected to provide such notifications.

Examples of events include,

• Creation/deletion of an identity

• Association of an agent instance with an identity

• Change in presence status or location of an agent instance

• Change in availability of an identity for a particular form of communication

PAM specifications contain a set of pre-defined events. Each event is defined by a name of the event, a
set of input attribute value pairs that must be provided when an event is registered for and a set of
attribute value pairs that are included in the notifications sent out when the event of interest occurs.

1.4 Scope
Presence and Availability Management has the following types of information in its scope:

• Identities, which consist of names and aliases of entities participating in communications.

• Agent information, which consists of names and communication capabilities of software and/or
hardware devices.

• Agent provisioning, which consists of associations between instances of agents and identities.

• Presence information, which consists of an identity’s or an agent’s dynamic characteristics such as
status and geographical location.

• Availability information, which consists of preferences associated with identities and computation of
availability, based on the devices present and the current preferences.

• Notification of changes to the above pieces of information.

• Security issues for access to this information.

The PAM specification consists of interfaces to manage or access the above information.

The specification purposefully does not include

• Storage design or storage requirements for any of the presence and availability information.

• Protocol specification to access the interfaces.

These are to be decided by specific implementations of the PAM specification.

Page 14 of 155

 Copyright © The PAM Forum 2000-2001

2 Model
This Chapter describes the model for Presence and Availability Management that has influenced the
design of the specifications. The model embodies assumptions about the architecture in typical usage,
the security and privacy issues, the types of clients or applications that will access PAM implementations,
and the framework in which they do so.

Presence and Availability Management has dual roles. In one role, it acts as an abstraction layer (Fig. 1)
that sits between

• The end-users who will manage their communication identities and availability,

• The communication services that will behave according to the wishes of the end-user, and

• The communication networks to which the end-user’s devices are attached and from which their
status is to be obtained or inferred.

Here the goal is to “keep the end-user in the loop” i.e., to let the end-users manage their communication
services as much as the service providers manage their subscribers. This role primarily determines the
functionality of the specifications.

PAM

End-users

Communication
Services

Communication
Networks

Fig.1 “Keeping end-users in the loop”

In the second role, Presence and Availability Management provides the means for multiple administrative
domains to share information about identity, presence and availability in controlled ways (Fig. 2). This
sharing may occur for the purposes of allowing communications between end-users in multiple domains
and/or for the purposes of allowing the information to be federated into a merged global address space. In
either case, this role determines the security and privacy aspects of the specification design.

Enterprise #1 Enterprise #2

Network A
Network B

PAM
PAM

PAM PAM

Fig.2 Information sharing via PAM interfaces

2.1 Architecture
There are several architectural scenarios for use of PAM depending on the participants being legacy
systems or future systems or a combination of both. The least intrusive use of PAM is through an

Page 15 of 155

Copyright © The PAM Forum 2000-2001

implementation of an abstraction layer over existing legacy systems to allow some limited management
control for the end-user (Fig. 3). The limited benefits come from being able to use third-party end-user
management software written for the standard specification. The legacy systems themselves are unaware
of the PAM layer. Example applications include number translation schemes in telephony systems
enhanced through PAM interfaces, LDAP enabled e-mail systems extended through PAM layer to provide
dynamic and/or customized address information, etc.

Legacy Communication
System

PAM abstraction layer

Management
client

Fig.3 Abstraction over legacy systems

The next level of adoption comes from communication services or networks that already have some
notion of identity, presence and/or availability, exporting this information through the PAM interface (Fig.
4). This allows third-party end-user management software written for the standard specification to
manage across multiple communication systems on behalf of the user. As the communication services
are already designed to take some of these notions into account, the end-user is able to customize the
services to a larger extent than the previous scenario. Example applications include Instant Messaging,
Email, etc.

Communication
Service A Communication

Service B
Instant messaging,

E-mail, etc.

Management
client

PAM
PAM

Fig.4 Exporting from communication services

Maximum benefits from Presence and Availability Management comes in a scenario (Fig. 5) in which

• Communication networks export relevant information and device status through PAM interface,

• Communication services are written to consult PAM servers to affect communication handling, and

• End-user management systems written to PAM specifications allow end-users to specify policies and
preferences for their communication capabilities.

Any of the communication services (voice telephony, fax, e-mail, instant messaging, etc.) can potentially
use this architecture.

Page 16 of 155

 Copyright © The PAM Forum 2000-2001

Communication
network

Communication
service

Presence and Availability
Server

Management
client

Fig.5 PAM enabled communications

2.2 Security and privacy
As the Presence and Availability Management interface is designed to share information across
administrative domains and to facilitate availability computation based on the identity of the entity desiring
communication, security and privacy issues are addressed in the design. The issues considered to be
within the scope of PAM are:

• Access control to an implementation of the PAM specification.

• Use of an authenticated entity’s credentials by methods in the specification.

• Mandated fields in information supplied by a PAM implementation to describe the expected degree of
privacy under which the information is provided.

To understand the distinction between the first two issues, consider, for example, an end-user that logs
on to an Instant Messaging client and wishes to send a message. The client (or a gateway to which the
client talks to) may access a PAM implementation to determine the availability of the destination for the
message. The client (or the gateway) will need to be authorized for access to the PAM implementation
independent of the user that logs in. A gateway may, in fact, do this access on behalf of a number of
clients and, for performance reasons, wish to authenticate itself just once on start up rather than at each
invocation. Second, each invocation of a particular method to check for the availability will need to contain
the credentials of the end-user that logged into the client so that the computation of the availability can
take that into account when necessary for privacy issues.

It should be noted that the PAM specification allows for the possibility that the authentication of the end-
users is not necessarily done within the PAM implementation itself. As long as the authenticated
credentials supplied by the client (or gateway) are acceptable for validation and the client (or the
gateway) itself is authenticated by the implementation, the authentication of end-users can occur
anywhere outside the PAM implementation. A deployment scenario for a particular application is that one
or more authentication services are provided as external services over PAM implementations.

This design does not preclude the possibility that the client (or the gateway) cannot be authenticated.
Therefore, the credentials supplied by the client (or the gateway) may be held to stronger authentication
criterion than credentials supplied by a trusted client (or gateway).

Finally, the PAM specification does not mandate the use of authentication within an implementation if the
environment in which it is used does not require it.

Privacy issues are addressed primarily by providing a mechanism to control the information flowing out of
a PAM implementation based on whatever criterion the end user may choose to specify in the availability
preferences and independent of any particular application.

Once the information flows out a PAM implementation, its distribution is outside the control of the end
user. However, to specify an expectation of the degree of privacy under which the information is provided,
PAM mandates a field within the information profiles provided. This field can state privacy conditions such
as “Not for further distribution”, “One time use only”, etc. The enforcement of these restrictions is beyond
the scope of PAM.

Page 17 of 155

Copyright © The PAM Forum 2000-2001

The following security issues were considered to be outside the scope of PAM:

• Authentication of the identity of the end-users or entities. As explained above, this authentication may
be provided by a third-party authentication service or it may occur through an authentication service
written over the PAM platform. The only requirement is that the type of credentials supplied by the
authentication service be acceptable to the PAM platform implementation being accessed.

• Encryption of the flow of information between a PAM platform implementation and clients of this
implementation. This is dependent on the method of access to the interface which is outside the
scope of the PAM specification and hence to be determined by the implementation.

2.3 Access framework
The purpose of the access framework is to provide the interface for the features independent of the
Presence and Availability Management functions but necessary for the use of a PAM platform
implementation. These features cover

• Initial contact

• Authentication

• Access to the PAM interfaces

• Discovery methods

Rather than “re-invent the wheel”, the design of the access framework has been fashioned after the
Parlay [www.parlay.org] framework design but simplified considerably to be commensurate with the
simpler scope of these specifications. In particular, we assume that the interfaces defined in these
specifications are the only services provided by the platform and services written on top of the PAM
platform have their own detection, authentication and access mechanisms. A second departure from the
Parlay framework is that the authentication is optional and an implementation may provide access to its
interfaces even without any authentication if it wishes to do so.

In addition, depending on the access protocols used in a particular implementation, the platform
implementation may provide direct access to the interfaces (perhaps as messages to a port) without
requiring the initial contact or authentication. As we will see in the next section, a simple client application
that wishes to check for availability of an end-user before attempting communication should not have to
necessarily go through the initial contact and authentication steps (akin to an implicit bind in LDAP
queries). The framework exists to direct those implementations that wish to expose the interfaces under
much tighter control. An implementation can also provide a more restricted interface for clients with no
authentication compared to those that authenticate themselves.

The PAM specification does not specify the authentication mechanism to be used as this is left to the
implementation, which may support one or more authentication mechanisms.

The discovery methods allow the applications to discover the implementation-dependent features and
capabilities of the PAM implementation such as interfaces supported, authentication methods supported,
events supported, etc.

2.4 Levels of access
As described in earlier sections, the Presence and Availability Management platform can be used for a
variety of purposes including

• Platform for third-party communication management software for end-users.

• Single-point privacy administration for enterprises.

• Federating namespaces across multiple communication services and networks.

• Exporting enterprise-managed identity, presence and/or availability data for use by external
communication services/devices.

• Exporting status and/or location data of devices from networks for use by communication services.

Page 18 of 155

 Copyright © The PAM Forum 2000-2001

Not all methods in every interface are likely to be used in every context. For example, a simple
communication device such as an instant messaging client can check for availability of an end-user using
the availability interface but may not need the preference management methods. Communication
management software for the end-user may manage the preferences for the user but would not require
the user identity creation methods. Enterprise administration software or services installed on top of the
platform may require access to all the methods in every interface.

While the interfaces defined in this specification are a minimal union of all the potential types of accesses,
it is useful to recognize three categories of platform access primarily differentiated by the authentication
and security requirements as described below. Unlike Parlay specifications, PAM specification does not
partition the methods and interfaces into views for each type of access. Platform implementations that
implement the access framework or define the access protocols are encouraged to define views for the
three types of accesses and decide on the subset of methods supported in each view. PAM specification
does not require that every method be supported in implementations. Consequently, software written for
the platform must take into account the possibility that any method may return with a “not supported”
status.

Briefly described below are the characteristics of the three major levels of accesses:

2.4.1 Application
Applications are independent, stand-alone software systems that access PAM implementations on a
continuous basis possibly on behalf of multiple clients. Examples include PAM-compliant gateways,
switches, messaging servers, address translation systems, enterprise management systems, etc. These
applications are likely to be “always-on” and must be allowed to authenticate themselves only at startup of
the applications. The applications are typically expected to be non-trivial and running on computing
platforms that allow for heavyweight frameworks such as CORBA to be used for access to the interfaces.

2.4.2 Service
Services are software modules that extend or provide additional functionality to PAM implementations.
They may run in the same process space as the PAM platform or may run remotely. It is up to the
implementations to provide implementation-specific mechanisms for adding, using or managing such
services. Examples of services include “buddy list” systems, identity authentication systems, etc.

2.4.3 Thin client
Independent software differentiated from applications in being relatively lightweight and potentially
running on devices with minimal computing capabilities such as cellular phones or palm devices. The use
of the PAM implementation by a thin client is expected to be infrequent and transitory. Consequently,
authentication, when required, may need to happen as often as an individual method access. The PAM
implementations need to provide lightweight, preferably message based access for such clients. The thin
client access may not be limited to checks for presence and/or availability alone. They may provide some
limited end-user preference management capabilities as well.

2.5 Use cases
This section gives some illustrative use cases of the different interfaces in this document. This list is not
meant to be an exhaustive listing of all the possible use cases but rather an aid in understanding possible
uses of the PAM interfaces.

2.5.1 Identity Management
1. Create an identity for John Smith (identity name) of type subscriber (identity type) with the

following address information (a specific named profile for addresses).

2. Delete the identity for John Smith

Page 19 of 155

Copyright © The PAM Forum 2000-2001

3. Create an alias of Jsmith@company.com under the namespace of "myISP" (namespace created
by the ISP with whom John has an acoount)

4. Delete the alias of Jsmith@company.com for John Smith

5. Create a group named “Project Manhattan” (group identity name) of type projects (identity type)
with the following people in it – John, ... (group members)

6. Delete the group called “Project Manhattan”

7. Add John Smith to “Project Manhattan” Group

8. Remove John Smith from “Project Manhattan” Group

9. Is there a John Smith in the default namespace?

10. What is the address information for John Smith?

11. What are John Smith's aliases?

12. What groups does John Smith belong to?

13. Whose alias is Jsmith@myISP.com under the name space of "myISP"?

14. Who are the members of “Project Manhattan”?

2.5.2 Agent Management
1. Create an agent of type “mobile phone” with the ID 123456789 (agent name) and the following

capabilities - WAP, Voice, SMS

2. Delete the agent with the ID 123456789

3. Add the capability "video conferencing" to the agent with id 123456789

4. Disable the capability "WAP" for the agent with id 123456789

5. Associate the agent with ID 123456789 with the agent type "GSM phone".

6. Is there an agent with ID 123456789?

7. What agent types are associated with the agent ID 123456789?

8. What is Agent with ID 123456789 capable of?

9. Is Agent with ID 123456789 capable of SMS?

2.5.3 Agent Assignment
1. John Smith now has the phone with ID 123456789

2. John Smith no longer has the phone with ID 123456789

3. What agents does John Smith have for instant messaging (capability)?

4. Is John Smith able to receive instant messages (capability)?

5. What all means can John Smith be communicated with?

6. Who is currently assigned to the phone with ID 123456789?

2.5.4 Agent Presence
1. Set agent status information (dynamic attributes) for mobile phone 123456789 for Instant

Messaging with the following location information valid until removed.

2. Set the expiration time for the location information (dynamic attribute) for mobile phone
123456789

3. Update status information (a specific presence profile) of mobile phone 123456789 for Instant
Messaging.

Page 20 of 155

 Copyright © The PAM Forum 2000-2001

4. What is the call status of phone 123456789 for voice calls?

5. What is the location information about phone 123456789 for SMS?

6. What is the motion information of phone 123456789 for SMS?

2.5.5 Identity Presence
1. Set status information for John Smith for Instant Messaging valid until removed.

2. Set call status information of John Smith for voice calls.

3. Set location information of John Smith for Instant Messaging.

4. What is the call status of John Smith for voice calls?

5. What is the location information about John Smith for SMS?

6. What is the motion information of John Smith for SMS?

2.5.6 Availability
1. Store these preferences for John Smith for his voice calls.

2. Delete John Smith's preferences for voice calls.

3. What are John Smith's preferences for voice calls?

4. Is John Smith available to talk to Jane Doe on the phone?

5. How can Jane Doe contact John Smith via Instant Messaging?

6. What is John Smith's location information for Jane Doe?

Page 21 of 155

Copyright © The PAM Forum 2000-2001

3 PAM Interfaces

3.1 Identity Management
This section describes the programmatic interface to Identity Management. The purpose of this interface
is to manage end-user or entity names, aliases, groups and sets of attributes associated with identities.
An implementation may map these methods to operations on existing directories or databases. Some
implementations may choose to provide a read-only access to the identity information.

The names of identities within a namespace must be unique. Each implementation exports an identifier
as the default namespace that it serves. The identity name and the namespace may be used as an alias
to another identity in a different namespace.

Aliases are associated with a given identity or group identity. Aliases must be uniquely assigned. In other
words, two identities may not share the same alias.

This interface is meant for use by provisioning applications that establish and maintain identity names.

3.1.1 Summary
Identity methods:

PAM_IM_createIdentity create a new identity

PAM_IM_deleteIdentity delete an existing identity

PAM_IM_isIdentity check if an identity exists with the specified name

Group identity methods:

PAM_IM_createGroupIdentity create a new group identity

PAM_IM_deleteGroupIdentity delete an existing group identity

PAM_IM_addToGroup add an identity to a group identity

PAM_IM_removeFromGroup remove an identity from a group identity

PAM_IM_listMembers list member identities of group

PAM_IM_isGroupIdentity check if an identity is a group identity

PAM_IM_listGroupMembership list groups an identity is member of

Alias methods:

PAM_IM_addAlias add an alias to an identity

PAM_IM_removeAlias remove an alias for an identity

PAM_IM_listAliases list all aliases of an identity

PAM_IM_lookupByAlias lookup identities that have the specified alias

Type association and attribute methods

PAM_IM_associateTypes associate an identity instance with the specified types

PAM_IM_disassociateTypes remove the association of a type with an identity instance.

PAM_IM_listTypesOfIdentity list the types associated with an identity

PAM_IM_hasType check if the identity has the specified type

Page 22 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_getIdentityAttributes retrieve attributes associated with the identity

PAM_IM_setIdentityAttributes modify the attributes associated with the identity.

Page 23 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_addAlias

Add an alias in the specified namespace to an existing Identity.

Inputs

• identity PAM_T_FQName specifies the Identity to which the alias will be added.

• alias PAM_T_FQName specifies the alias to be added.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_ALIAS_EXISTS indicates that the specified alias is already associated to the
Identity.

• PAM_ALIAS_NOT_UNIQUE indicates that the alias has already been assigned to
another identity

• PAM_UNKNOWN_IDENTITY indicates that specified Identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The alias domain name must be specified in Alias parameter.

The identity can be a group identity.

Page 24 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_addToGroup

Add an existing identity to a group identity.

Inputs:

• group PAM_T_FQName specifies the group Identity to which the member will
be added.

• member PAM_T_FQName specifies the identity to be added as a member of the
group.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_MEMBER_EXISTS indicates that the specified member is already in the group.

• PAM_UNKNOWN_GROUP indicates that the specified group identity does not exist.

• PAM_UNKNOWN_MEMBER indicates that the specified member identity does not exist.

• PAM_IS_CYCLIC indicates that the requested operation will create cyclic relationship

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Both the group identity and the member identity to be added must have been created
before this operation can be invoked.

A member identity can be a group identity. Implementation must not allow cycles in
memberships.

Page 25 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_associateTypes

Associate an identity instance with the specified types.

Inputs:

• identity PAM_T_FQName specifies the name of the identity

• identityTypes PAM_T_String[] specifies the names of the type to be associated.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that specified Identity does not exist.

• PAM_UNKNOWN_TYPE indicates that a specified type has not been defined.

• PAM_TYPE_ASSOCIATED indicates that a named type has already been associated
with the identity.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

The identity will be associated with instances of any attributes defined with each type.
The initial values of the attributes will be as specified in the definition of the type
attributes.

Page 26 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_createGroupIdentity

Create a new Group Identity with the specified name.

Inputs:

• identity PAM_T_FQName specifies the group Identity to be created.

• identityTypes PAM_T_String[] specifies the group’s associated types. Can be an
empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_IDENTITY_EXISTS indicates that the specified Identity already exists.

• PAM_UNKNOWN_TYPE indicates that one of the specified types has not been defined.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Name must be unique across both group identities and non-group identities.

Names must be unique across the same types.

Page 27 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_createIdentity

Create a new non-group Identity with the specified name.

Inputs:

• identity PAM_T_FQName specifies the Identity to be created.

• identityTypes PAM_T_String[] specifies the identity’s associated types. Can be an
empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_IDENTITY_EXISTS indicates that the specified Identity already exists.

• PAM_UNKNOWN_TYPE indicates that one of the specified types has not been defined.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Names must be unique across both group identities and non-group identities.

Names must be unique across types within a namespace.

Page 28 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_deleteGroupIdentity

Delete the specified group identity and all its related data.

Inputs:

• identity PAM_T_FQName specifies the group identity to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified group identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Upon successful completion, associated aliases and attribute instances are deleted from
the system.

The identity is also removed from all groups of which the identity is a member.

The member identities of the group are not deleted.

Page 29 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_deleteIdentity

Delete the specified identity and all its related data.

Inputs:

• identity PAM_T_FQName specifies the Identity to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified non-group identity does not
exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Upon successful completion, associated aliases and attribute instances are deleted from
the system.

The identity is also removed from all groups of which the identity is a member.

Page 30 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_disassociateTypes

Remove the association of a type with an identity instance.

Inputs:

• identity PAM_T_FQName specifies the identity

• identityTypes PAM_T_String[] specifies the names of the types to be removed.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified identity does not exist.

• PAM_DISASSOCIATED_TYPE indicates that one of the specified types is not associated
with the named identity.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The definition of the type itself remains unaffected and the types may continue to be
associated with other identities.

Page 31 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_getIdentityAttributes

Return the attributes associated with the identity.

Inputs:

• identity PAM_T_FQName specifies the identity.

• identityType PAM_T_String specifies the type of the identity with which the required
attributes are associated. Is optional.

• attributeNames PAM_T_String[] list of attributes of interest. Can be an empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_Attribute[] contains the list of specified attributes and their
values. If the attributes parameter is an empty array, all attributes in the
named identity are output.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that specified identity does not exist.

• PAM_UNKNOWN_TYPE indicates that the named identity has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the named attributes is not
part of the specified type.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

If the identity type is not specified, all associated types are assumed to be of interest.

Page 32 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_hasType

Check if the specified identity has the named type associated with it.

Inputs:

• identity PAM_T_FQName specifies the Identity to be checked.

• typeName PAM_T_String specfies the type to be checked for

• authToken PAM_T_Credential of the caller who is making the request.

Output:

• hasType PAM_T_Boolean true if an identity with the specified name has the
named type associated with it, false otherwise.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 33 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_isGroupIdentity

Check if the specified group identity exists.

Inputs:

• identity PAM_T_FQName specifies the Identity to be checked.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• isIdentity PAM_T_Boolean true if a group identity with the specified name exists,
false otherwise.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The method returns false for non-group identities.

Page 34 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_isIdentity

Check if the specified non-group identity exists.

Inputs:

• identity PAM_T_FQName specifies the Identity to be checked.

• authToken PAM_T_Credential of the caller who is making the request.

Output:

• isIdentity PAM_T_Boolean true if an identity with the specified name exists and
false otherwise.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The method returns false for group identities.

Page 35 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_listAliases

List the aliases for the specified Identity.

Inputs:

• identity PAM_T_FQName specifies the Identity to be looked up.

• authToken PAM_T_Credential of the entity who is making the request.

Output:

• aliases PAM_T_FQName[] is an array containing all aliases to the specified
Identity. An array with zero elements is returned if there are no aliases
associated with the identity.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 36 of 155

 Copyright © The PAM Forum 2000-2001

 PAM_IM_listGroupMembership

List the Group Identities the specified Identity is a member of.

Inputs:

• identity PAM_T_FQName specifies the Identity to be looked up.

• authToken PAM_T_Credential of the entity who is making the request.

Output:

• groupIdentities PAM_T_FQName[] is an array containing all groups the specified
Identity is a member of. An array with zero elements is returned if the
specified identity is not a member of any group.

Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 37 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_listMembers

List the members of the specified group Identity.

Inputs:

• identity PAM_T_FQName specifies the group Identity whose members are
required.

• authToken PAM_T_Credential of the entity who is making the request.

Output:

• members PAM_T_FQName[] is an array containing all members of the specified
group Identity. An array with zero elements is returned is there are no
members.

 Return Status:

• PAM_UNKNOWN_GROUP indicates that the specified group identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 38 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_listTypesOfIdentity

List the types associated with the specified Identity.

Inputs:

• identity PAM_T_FQName specifies the Identity to be looked up.

• authToken PAM_T_Credential of the entity who is making the request.

Output:

• typeNames PAM_T_String[] is an array containing all types associated with the
specified Identity. An array with zero elements is returned if there are no
types associated with the identity.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 39 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_lookupByAlias

Find the identity with the specified alias in the specified alias domain.

Inputs:

• alias PAM_T_FQName specifies the alias to be looked up.

• authToken PAM_T_Credential of the entity who is making the request.

Output:

• identity PAM_T_FQName is the identity that has the specified alias. Returns null
if the alias is not assigned to any identity

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 40 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_removeAlias

Remove the specified alias from an existing Identity.

Inputs:

• identity PAM_T_FQName specifies the Identity from which the alias will be
deleted.

• alias PAM_T_FQName specifies the alias to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified identity does not exist.

• PAM_UNASSIGNED_ALIAS indicates that the specified alias was not an alias of the
named identity.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

If the alias is not uniquely assigned, this method does not affect other identities which
may have the same alias.

Page 41 of 155

Copyright © The PAM Forum 2000-2001

PAM_IM_removeFromGroup

Remove an existing identity from the membership of a group identity.

Inputs:

• group PAM_T_FQName specifies the group Identity from which the member
will be removed.

• identity PAM_T_FQName specifies the identity to be removed as a member of
the group.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_NOT_MEMBER indicates that the specified member is not a member of the group.

• PAM_UNKNOWN_GROUP indicates that the specified group does not exist.

• PAM_UNKNOWN_MEMBER indicates that the specified member identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Upon successful completion, the specified group identity will not contain the member
identity in its group.

Page 42 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IM_setIdentityAttributes

Modify the attributes associated with the named Identity.

Inputs:

• identity PAM_T_FQName specifies the Identity.

• identityType PAM_T_String specifies the type of the identity for the operation. Is
optional.

• attributes PAM_T_Attribute[] contains the list of attributes and their values.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that specified identity does not exist.

• PAM_UNKNOWN_TYPE indicates that the named identity has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTES indicates that the specified attribute list contains
attributes not part of the named type.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

The input may contain a subset of the attributes of the named type. Only the specified
attributes will be modified and the rest will remain unchanged.

If the type is unspecified, any associated type will be assumed.

Page 43 of 155

Copyright © The PAM Forum 2000-2001

3.2 Agent Management
This section describes the programmatic interface to Agent Management. The purpose of this interface is
to manage agent (that models a hardware or software device) names, communication capabilities and
sets of attributes associated with agents. An implementation may map these methods to operations on
existing directories or databases. Some implementations may choose to provide a read-only access to
the agent information.

Data associated with an agent is captured in attributes associated with types. An implementation may
map different type attributes to different underlying stores or directories.

The names of agents within a namespace must be unique.

This interface is meant for use by provisioning applications that establish and maintain agent names.

3.2.1 Summary
Agent methods:

PAM_AM_createAgent create a new agent

PAM_AM_deleteAgent delete an existing agent

 PAM_AM_isAgent check if an agent exists with the specified name

Agent capability methods:

PAM_AM_enableCapabilities enable specified capabilities of agent

 PAM_AM_disableCapabilities disable specified capabilities of agent

PAM_AM_listEnabledCapabilities list enabled capabilities of agent

PAM_AM_listAllCapabilities list all capabilities of agent

PAM_AM_isCapableOf check if agent has specified capabilities

Type association and attribute methods

PAM_AM_associateTypes associate an agent instance with the specified types

PAM_AM_disassociateTypes remove the association of a type with an agent instance.

PAM_AM_listTypesOfAgent list the types associated with an agent

PAM_AM_hasType check if the agent has the specified type

PAM_AM_getAgentAttributes retrieve attributes associated with the agent

PAM_AM_setAgentAttributes modify the attributes associated with the agent.

Page 44 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AM_associateTypes

Associate an agent instance with the specified types.

Inputs:

• agent PAM_T_FQName specifies the name of the agent

• agentTypes PAM_T_String[] specifies the names of the type to be associated.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_AGENT indicates that specified agent does not exist.

• PAM_UNKNOWN_TYPE indicates that a specified type has not been defined.

• PAM_TYPE_ASSOCIATED indicates that a named type has already been associated
with the agent.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

The agent will be associated with instances of any attributes defined with each type. The
initial values of the attributes will be as specified in the definition of the type attributes.

Page 45 of 155

Copyright © The PAM Forum 2000-2001

PAM_AM_createAgent

Create an agent initialized with the specified capabilities.

Inputs:

• agentName PAM_T_FQName specifies the name of Agent to be created.

• agentTypes PAM_T_String[] specifies the types of the Agent to be created. Can be
an empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_AGENT_EXISTS indicates that an Agent with the agentName already exists.

• PAM_UNKNOWN_TYPE indicates that a specified type name has not been defined as an
agent type.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 46 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AM_deleteAgent

Delete the specified Agent and all related data from the system.

Inputs:

• agentName PAM_T_FQName specifies the Agent to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_AGENT indicates that the Agent with the specified name does not
exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 47 of 155

Copyright © The PAM Forum 2000-2001

PAM_AM_disableCapabilities

Disable the specified capability of the Agent.

 Inputs:

• agentName PAM_T_FQName specifies the Agent.

• capabilities PAM_T_Capability[] specifies the capability to be disabled.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Outputs:

• None

 Return Status:

• PAM_UNKNOWN_AGENT indicates that the Agent with the specified identifier does not
exist.

• PAM_NO_CAPABILITY indicates that the specified agent does not have the capability to
be disabled.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 48 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AM_disassociateTypes

Remove the association of a type with an agent instance.

Inputs:

• agent PAM_T_FQName specifies the agent

• agentTypes PAM_T_String[] specifies the names of the types to be removed.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_AGENT indicates that the specified agent does not exist.

• PAM_DISASSOCIATED_TYPE indicates that one of the specified types is not associated
with the named agent.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The definition of the type itself remains unaffected and the types may continue to be
associated with other agents.

Page 49 of 155

Copyright © The PAM Forum 2000-2001

PAM_AM_enableCapabilities

Enable the specified capabilities of the agent.

 Inputs:

• agentName PAM_T_FQName specifies the name of the Agent.

• capabilities PAM_T_Capability[] specifies the capabilities to be enabled.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Outputs:

• None

 Return Status:

• PAM_UNKNOWN_AGENT indicates that the Agent with the specified name does not
exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 50 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AM_getAgentAttributes

Return the attributes associated with the agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• agentType PAM_T_String specifies the type of interest. Is optional.

• attributeNames PAM_T_String[] list of attributes of interest. Can be an empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_Attribute[] contains the list of specified attributes and their
values. If the attributeNames parameter is an empty array, all attributes
in the named agent are output.

 Return Status:

• PAM_UNKNOWN_AGENT indicates that specified identity does not exist.

• PAM_UNKNOWN_TYPE indicates that the named agent has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the named attributes is not
part of the specified type.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

If the type is not specified, all associated types are assumed.

Page 51 of 155

Copyright © The PAM Forum 2000-2001

PAM_AM_isAgent

Check if the specified agent exists.

Inputs:

• agentName PAM_T_FQName specifies the Agent to be checked.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• isAgent PAM_T_Boolean true if an agent with the specified name exists, false
otherwise.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 52 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AM_isCapableOf

Check if an agent has a particular capability that is currently enabled.

Inputs:

• agentName PAM_T_FQName specifies the Agent to be checked.

• capability PAM_T_Capability capability to be checked.

• authToken PAM_T_Credential of the caller who is making the request.

Output:

• isCapable PAM_T_Boolean true if the agent has the specified capability, false
otherwise.

 Return Status:

• PAM_UNKNOWN_AGENT indicates that specified agent does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 53 of 155

Copyright © The PAM Forum 2000-2001

PAM_AM_hasType

Check if the specified agent has the named type associated with it.

Inputs:

• agent PAM_T_FQName specifies the agent to be checked.

• typeName PAM_T_String specfies the type to be checked for

• authToken PAM_T_Credential of the caller who is making the request.

Output:

• hasType PAM_T_Boolean true if an agent with the specified name has the
named type associated with it.

 Return Status:

• PAM_UNKNOWN_AGENT indicates that the specified agent does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 54 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AM_listAllCapabilities

List the capabilities for the specified Agent.

Inputs:

• agentName PAM_T_FQName specifies the Agent whose capabilities are to be listed.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• capabilities PAM_T_Capability[] is the list of capabilities for the Agent. Returns a
zero-length array if no capabilities exist for the agent.

 Return Status:

• PAM_UNKNOWN_AGENT indicates that specified agent does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Both enabled and disabled capabilities are returned.

Page 55 of 155

Copyright © The PAM Forum 2000-2001

PAM_AM_listEnabledCapabilities

List the enabled capabilities for the specified Agent.

Inputs:

• agentName PAM_T_FQName specifies the Agent whose capabilities are to be listed.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• capabilities PAM_T_Capability[] is the list of enabled capabilities for the Agent.
Returns a zero-length array if no enabled capabilities exist for the agent.

 Return Status:

• PAM_UNKNOWN_AGENT indicates that specified agent does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 56 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AM_listTypesOfAgent

List the types associated with the specified agent.

Inputs:

• agent PAM_T_FQName specifies the agent to be looked up.

• authToken PAM_T_Credential of the entity who is making the request.

Output:

• typeNames PAM_T_String[] is an array containing all types associated with the
specified agent. An array with zero elements is returned if there are no
types associated with the agent.

 Return Status:

• PAM_UNKNOWN_AGENT indicates that the specified agent does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 57 of 155

Copyright © The PAM Forum 2000-2001

PAM_AM_setAgentAttributes

Modify the attributes associated with the named agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• agentType PAM_T_String specifies the type of the agent for the operation. Is
optional.

• attributes PAM_T_Attribute[] contains the list of attributes and their values.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_AGENT indicates that specified agent does not exist.

• PAM_UNKNOWN_TYPE indicates that the named agent has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTES indicates that the specified attribute list contains
attributes not part of the named type.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

The input may contain a subset of the attributes of the named type. Only the specified
attributes will be modified and the rest will remain unchanged.

Page 58 of 155

 Copyright © The PAM Forum 2000-2001

3.3 Agent Assignment
This Section describes the programmatic interface to Agent Assignment. The purpose of this interface is
to manage the relationship between identities and the agents assigned to them. The identities inherit
capabilities from the assignments of agents.

The implementation must maintain the integrity of the relationship between identities and agents across
changes to both identities and agents. Implementations may map these methods to operations on
existing directories and databases. Some implementations may provide a read-only access to this
interface.

This interface is meant for use by provisioning applications that establish and maintain association of
agents with identities.

3.3.1 Summary
Assignment methods:

PAM_AA_assignAgent assign an agent to an identity

PAM_AA_unassignAgent unassign agent from an identity

PAM_AA_listAssignedAgent list agents assigned to an identity

PAM_AA_listAssociatedIdentitiesOfAgent list all identities that have the specified agent
associated with them

Inherited capability search methods:

 PAM_AA_listAssignedAgentsByCapability list associated agents with specified capability

 PAM_AA_listCapabilitiesOfIdentity list capabilities of an identity

 PAM_AA_isIdentityCapableOf check if an identity has the specified capability

Page 59 of 155

Copyright © The PAM Forum 2000-2001

PAM_AA_assignAgent

Assign an existing agent to an existing identity.

Inputs:

• identity PAM_T_FQName specifies the identity to assign the agent to.

• agentName PAM_T_FQName specifies the Agent.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the specified identity does not exist.

• PAM_UNKNOWN_AGENT indicates that the specified agent does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 60 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AA_isIdentityCapableOf

Check if an identity has the specified capability derived from one or more agents assigned to it.

Inputs:

• identity PAM_T_FQName specifies the identity of interest.

• capability PAM_T_Capability identifies the capability to check for.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• isCapable PAM_T_Boolean returns true if the identity has this capability, false
otherwise.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

 None.

Page 61 of 155

Copyright © The PAM Forum 2000-2001

PAM_AA_listAssignedAgents

List the Agents assigned to an identity.

Inputs:

• identity PAM_T_FQName specifies the identity.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• agentNames PAM_T_FQName[] the list of agent names assigned to the identity. An
array with zero elements is returned if no agents are assigned to the
identity.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 62 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AA_listAssignedAgentsByCapability

List the Agents assigned to an identity that match the specified capability.

Inputs:

• identity PAM_T_FQName specifies the identity.

• capability PAM_T_Capability is the capability of interest.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• agentNames PAM_T_FQName[] the list of agent names with the specified capability.
An array of zero elements is returned no agents are found.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 63 of 155

Copyright © The PAM Forum 2000-2001

PAM_AA_listAssociatedIdentitiesOfAgents

List the identities that have the specified agent assigned to them.

Inputs:

• agentName PAM_T_FQName specifies the agent.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• identityNames PAM_T_FQName[] the list of identities that have been assigned the
specified agent. An array with zero elements is returned if no identities
have been assigned this agent.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 64 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AA_listCapabilitiesOfIdentity

List the capabilities of an identity that it derives from its assigned Agents.

Inputs:

• identity PAM_T_FQName specifies the identity of interest.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• capabilities PAM_T_Capability[] the list of the identity’s capabilities. Returns an
array of zero elements if no capabilities exist.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

 None.

Page 65 of 155

Copyright © The PAM Forum 2000-2001

PAM_AA_unassignAgent

Unassign an agent from an existing identity. In effect, this deletes an existing relationship between an
agent and an identity.

Inputs:

• identity PAM_T_FQName specifies the identity of interest.

• agentName PAM_T_FQName specifies the agent.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_ UNKNOWN_ASSIGNMENT a warning indicating that no assignment exists for this
identity and agent.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

 None.

Page 66 of 155

 Copyright © The PAM Forum 2000-2001

3.4 Agent Presence
This Section describes the programmatic interface to Agent Presence. The purpose of this interface is to
maintain the dynamic presence information of agents.

The underlying implementations may optimize the storage for this dynamic data rather than rely on a
general-purpose directory or database when performance is an issue. Agents may explicitly register the
presence information or the presence information may be implicitly derived from the underlying networks.

The presence information is modeled through dynamic attributes. Sets of dynamic attributes can be
defined per agent type (e.g., agent location, power status) or per agent capability (e.g., agent status for
voice/messaging, communication address).

This interface is meant for use by applications that query and update agent presence information directly
regardless of the identities to which the agent is assigned.

3.4.1 Summary
Agent presence methods:

PAM_AP_setAgentPresence Set presence attribute values for an agent.

PAM_AP_setCapabilityPresence Set presence attribute values for a set of
capabilities of an agent.

PAM_AP_setAgentPresenceExpiration Set or reset the expiration of named presence
attributes for an agent.

PAM_AP_setCapabilityPresenceExpiration Set or reset the expiration of named presence
attributes for a set of capabilities of an agent.

PAM_AP_getAgentPresence Retrieve named presence attributes for an
agent.

PAM_AP_getCapabilityPresence Retrieve named presence attributes for a
capability of an agent.

Page 67 of 155

Copyright © The PAM Forum 2000-2001

PAM_AP_setAgentPresence

Set presence attribute values for an agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• agentType PAM_T_String specifies the type of the agent.

• attributes PAM_T_Attribute[] specifies the dynamic attributes to set.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

Return Status:

• PAM_UNKNOWN_AGENT indicates that the requested agent does not exist.

• PAM_UNKNOWN_TYPE indicates that the named agent has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that a supplied attribute is not a dynamic
attribute of the specified agent. May be returned if either the name and/or type of a
supplied attribute does not match any dynamic attribute of the specified agent. No
attributes are affected.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 68 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AP_setCapabilityPresence

Set presence attribute values for a set of capabilities of an agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• capability PAM_T_Capability specifies which capability of the agent to set.

• attributes PAM_T_Attribute[] specifies the dynamic attributes to set.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

Return Status:

• PAM_UNKNOWN_AGENT indicates that the requested agent does not exist.

• PAM_UNKNOWN_CAPABILITY indicates that a supplied capability is not a capability of
the requested agent. No attributes are affected.

• PAM_UNKNOWN_ATTRIBUTE indicates that a supplied attribute is not a dynamic
attribute of the specified capability. May be returned if either the name and/or type of a
supplied attribute do not match any dynamic attribute of the specified capability. No
attributes are affected.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 69 of 155

Copyright © The PAM Forum 2000-2001

PAM_AP_setAgentPresenceExpiration

Set or reset the expiration of named presence attributes for an agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• agentType PAM_T_String specifies the type of the agent.

• attributeNames PAM_T_String[] specifies the names of the dynamic attributes. May be
an empty array to indicate all dynamic attributes are to be affected.

• expiresIn PAM_T_TimeInterval specifies the number of seconds until the
attributes expire. A value of –1 indicates no expiration. A value of 0
indicates immediate expiration.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

Return Status:

• PAM_UNKNOWN_AGENT indicates that the requested agent does not exist.

• PAM_UNKNOWN_TYPE indicates that the named agent has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that a supplied attribute name is not a dynamic
attribute of the specified agent. No attributes are affected.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 70 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AP_setCapabilityPresenceExpiration

Set or reset the expiration of named presence attributes for a set of capabilities of an agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• capability PAM_T_Capability specifies which capability of the agent to affect.

• attributeNames PAM_T_String[] specifies the names of the dynamic attributes. May be
an empty array to indicate all dynamic attributes are to be affected.

• expiresIn PAM_T_TimeInterval specifies the number of seconds until the
attributes expire. A value of –1 indicates no expiration. A value of 0
indicates immediate expiration.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

Return Status:

• PAM_UNKNOWN_AGENT indicates that the requested agent does not exist.

• PAM_NO_CAPABILITY indicates that a supplied capability is not a capability of the
requested agent. No attributes are affected.

• PAM_UNKNOWN_ATTRIBUTE indicates that a supplied attribute name is not a dynamic
attribute of the specified agent. No attributes are affected.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 71 of 155

Copyright © The PAM Forum 2000-2001

PAM_AP_getAgentPresence

Retrieve named presence attributes for an agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• agentType PAM_T_String specifies the type of the agent.

• attributeNames PAM_T_String[] specifies the dynamic attributes of interest. Can be an
empty array to indicate all dynamic attributes are to be retrieved.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_Attribute[] contains the requested dynamic attributes
associated with the specified agent. If the attributeNames parameter is
an empty array, all dynamic attributes of the specified agent are
included.

Return Status:

• PAM_UNKNOWN_AGENT indicates that the requested agent does not exist.

• PAM_UNKNOWN_TYPE indicates that the named agent has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that one of the named attributes is not
associated with the specified agent.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 72 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AP_getCapabilityPresence

Retrieve named presence attributes for a capability of an agent.

Inputs:

• agent PAM_T_FQName specifies the agent.

• capability PAM_T_Capability specifies which capability of the agent for which
attributes are desired.

• attributeNames PAM_T_String[] specifies the dynamic attributes of interest. Can be an
empty array to indicate all dynamic attributes are to be retrieved.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_Attribute[] contains the requested dynamic attributes
associated with the specified agent. If the attributeNames parameter is
an empty array, all dynamic attributes of the specified agent are
included.

Return Status:

• PAM_UNKNOWN_AGENT indicates that the requested agent does not exist.

• PAM_UNKNOWN_CAPABILITY indicates the requested agent does not have the
requested capability.

• PAM_UNKNOWN_ATTRIBUTE indicates that one of the named attributes is not
associated with the specified agent.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 73 of 155

Copyright © The PAM Forum 2000-2001

3.5 Identity Presence
This Section describes the programmatic interface to Identity Presence. The purpose of this interface is to
maintain the dynamic presence information of identity.

The underlying implementations may optimize the storage for this dynamic data rather than rely on a
general-purpose directory or database when performance is an issue. Presence information for identities
may be explicitly registered are may be implicitly derived from the underlying networks or presence
information from agents associated with the identity.

This interface is meant for use by applications that register and/or maintain dynamic presence information
associated with identities and accessible without the privacy or other controls established by availability
preferences. These applications may not be aware of the name and the types of agents associated with
the identity.

The presence information can be explicitly registered using the interface or the presence may come from
information implicitly derived (e.g., using presence information of agents associated with the identity).

3.5.1 Summary
Identity presence methods:

PAM_IP_setIdentityPresence Set presence attribute values for an identity.

PAM_IP_setIdentityPresenceExpiration Set or reset the expiration of named presence attributes
for an identity.

PAM_IP_getIdentityPresence Retrieve named presence attributes for an identity.

Page 74 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IP_getIdentityPresence

Retrieve presence attributes associated with an identity.

Inputs:

• identity PAM_T_FQName specifies the identity.

• identityType PAM_T_String specifies the identity type.

• attributeNames PAM_T_String[] specifies the attributes of interest. Can be an empty
array

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_Attribute[] contains the requested attributes of the named
capability. If the attributes parameter is an empty array, all attributes of
the named profile are included.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the requested identity does not exist.

• PAM_UNKNOWN_TYPE indicates that the named identity has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that one of the named attributes is not
associated with the named capability.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 75 of 155

Copyright © The PAM Forum 2000-2001

PAM_IP_setIdentityPresence

Set identity’s dynamic attributes.

Inputs:

• identity PAM_T_FQName specifies the identity.

• identityType PAM_T_String specifies the type of the identity.

• attributes PAM_T_Attribute[] specifies the attributes to set.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the requested identity does not exist.

• PAM_UNKNOWN_TYPE indicates that the named identity has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that a supplied attribute is not associated with
the named capability.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Page 76 of 155

 Copyright © The PAM Forum 2000-2001

PAM_IP_setIdentityPresenceExpiration

Set or reset the expiration of an identity’s named presence attributes.

Inputs:

• identity PAM_T_FQName specifies the identity.

• identityType PAM_T_String specifies the type of the identity.

• attributeNames PAM_T_String[] specifies the names of the attributes. Can be an empty
array.

• expiresIn PAM_T_TimeInterval specifies the number of seconds until the
attributes expire. A value of –1 indicates no expiration.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that the requested identity does not exist.

• PAM_UNKNOWN_TYPE indicates that the named identity has not been associated with
the named type.

• PAM_UNKNOWN_ATTRIBUTE indicates that a named attribute is not associated with
the named capability.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

If the attributeNames parameter is an empty array, the expiration time of all attributes
defined for the capability will have their expiration time changed.

Page 77 of 155

Copyright © The PAM Forum 2000-2001

3.6 Availability
This Section describes the programmatic interface to Availability Management. The purpose of the
interface is to

• Manage the preferences specified for the availability of an identity and, to

• Query for the availability of identities for specific capabilities.

• Query for information about identities.

Simple implementations may equate the availability of identities to presence of their agents with available
status. More complex implementations may consider, in addition, the preferences specified for availability
as well as the attributes of the entity asking for availability.

The queries for availability are done for a specified context. A context is a set of attributes describing the
situation for which availability is requested. PAM specifies two pre-defined contexts – Communication and
Location. The latter is used for the availability of the location information. The former is used for
availability for a specific mode of communication. Applications and PAM implementations may extend and
provide additional contexts such as availability at a particular location, availability for a specific mode of
communication at a given location, etc. The context information also includes any information about the
asker as may be provided by the asker.

The specification does not define the type and format of preferences. Implementations will decide what
type of preference engines/computations to use and hence specify the types of preferences they can
handle. Some, for example, may allow rules in some specific language, while some may allow for
program fragments with certain interfaces to be deposited as individual preference computations.

In other words, the algorithm for availability computations is entirely up to the implementation and is
transparent to the entities checking for availability.

3.6.1 Summary
Availability Query methods:

 PAM_AV_getAvailability Get the availability of an identity

Preference Management methods:

 PAM_AV_getPreference Get preferences associated with an identity

 PAM_AV_setPreference Set preferences for an identity

Page 78 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AV_getAvailability

Get the availability for an identity for a given context.

Inputs:

• identity PAM_T_FQName specifies the identity for which the availability is being
requested.

• context PAM_T_Context specifies the context for which the availability is
requested.

• attributes PAM_T_String[] specifies the attributes of interest. Can be empty array
to indicate all attributes.

• authToken PAM_T_Credential of the entity who wishes to do this operation.
Output:

• availability PAM_T_AvailabilityProfile[] containing a list of attributes as available to
the asker in the requested context. If no information is available to the
asker an array containing zero elements is returned.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that specified identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

All contexts may optionally include an asker profile. Although PAM applications may
decide what attributes to include in an asker profile, PAM implementations should not
require such attributes to be present. The implementations should leave it to the
availability computations to decide the availability based on the (partial) information
provided.

It is also up to the availability computation to decide on the trustworthiness of the asker
profile information based on the application, the credentials of the entity asking for
availability and/or the credentials, if any, of the entity accessing the interface.

Page 79 of 155

Copyright © The PAM Forum 2000-2001

PAM_AV_getPreference

Get the availability preferences of an identity for the specified communication mode.

Inputs:

• identity PAM_T_FQName specifies the identity of interest.

• context PAM_T_Context specifies the context for which the preferences are
requested.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• preference PAM_T_Preference the preference for the named capability if previously
specified for the identity. Is null if there are no preferences associated.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that specified identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

This method should be used in conjunction with the PAM_AV_setPreference method. It is
not intended for the caller to implement preference-handling capabilities outside of the
server with this method. Rather, this method is provided to query an existing preference
value, for use in updating the same preferences with the setPreference method.

Page 80 of 155

 Copyright © The PAM Forum 2000-2001

PAM_AV_setPreference

Set the availability preferences for the specified identity for the specified capability.

Inputs:

• identity PAM_T_FQName specifies the identity with which the preference will be
associated.

• context PAM_T_Context specifies the capability to which this preference
applies.

• newPreference PAM_T_Preference specifies the availability preference to add.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_IDENTITY indicates that specified identity does not exist.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

Any existing preference for the same capability for the identity will be overwritten. No
indication about the earlier existence of a preference is provided. To determine existing
preferences when setting new preferences, use the PAM_AV_getPreference method.

If the new preference is specified as Null, any existing preferences will be removed.

Page 81 of 155

Copyright © The PAM Forum 2000-2001

3.7 Events
This Section describes the programmatic interface to Event notification service. The purpose of this
interface is to manage the registrations of interest in events and the registration of client interfaces for
subsequent notification.

All notifications in this specification are to be sent after the corresponding event has occurred and are
asynchronous.

An application must first register a notification interface with the service. It can then register interest in
one or more events for this interface.

A failure or a reset of a PAM implementation may result in a loss of all prior event and interface
registrations. It is the responsibility of the client application to confirm the continued registration of the
notification interface at regular intervals and re-register if necessary.

For security and privacy purposes, a registration for an event is allowed if and only if the supplied
credentials during registration is sufficient to have allowed access to the information related to the event
through one or more of the PAM interface methods.

Some implementations may choose not to implement the Event notification service.

3.7.1 Summary
Event registration methods:

 PAM_EV_registerForEvent register interest in an event

 PAM_EV_deregisterFromEvent deregister interest from an event

Notification interface registration methods:

 PAM_EV_registerAppInterface register the notification interface for an application

 PAM_EV_deregisterAppInterface deregister the notification interface of an application

 PAM_EV_isRegistered check if an interface is registered

Page 82 of 155

 Copyright © The PAM Forum 2000-2001

PAM_EV_deregisterAppInterface

Deregister a client application’s notification interface.

Inputs:

• clientID PAM_T_LongInteger specifies the registration ID provided at
registration.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

Return Status:

• PAM_NOT_REGISTERED a warning indicating that the interface was not previously
registered.

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

All registrations for events for this client registration are also removed.

Page 83 of 155

Copyright © The PAM Forum 2000-2001

PAM_EV_deregisterFromEvent

Deregister a client application’s interest in an event.

Inputs:

• eventID PAM_T_LongInteger specifies a prior event registration ID.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

Return Status:

• PAM_NOT_REGISTERED indicates that there was no registration corresponding to the
supplied ID

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 84 of 155

 Copyright © The PAM Forum 2000-2001

PAM_EV_isRegistered

Check if a client application interface is registered.

Inputs:

• clientID PAM_T_LongInteger specifies the registration ID provided at
registration.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• isRegistered PAM_T_Boolean is True if the registration ID is still valid, False
otherwise.

 Return Status:

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 85 of 155

Copyright © The PAM Forum 2000-2001

PAM_EV_registerAppInterface

Register a client application’s notification interface.

Inputs:

• appInterface PAM_T_Notification specifies an implementation dependent handle to a
client notification interface.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• clientID PAM_T_LongInteger is an ID returned by the service that uniquely
identifies this registration.

Return Status:

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

See Section 3.7.2 for the notification interface that the client application needs to provide.

Page 86 of 155

 Copyright © The PAM Forum 2000-2001

PAM_EV_registerForEvent

Register a client application’s interest in an event.

Inputs:

• clientID PAM_T_LongInteger specifies the notification interface registration.

• event PAM_T_Event specifies the event of interest.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• eventID PAM_T_LongInteger is an ID returned by the service that uniquely
identifies this registration for the event.

Return Status:

• PAM_NOT_REGISTERED a warning indicating that a notification interface was not
previously registered.

• PAM_INVALID_EVENT indicates that either the event is not defined or an attribute for the
event is specified incorrectly.

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 87 of 155

Copyright © The PAM Forum 2000-2001

3.7.2 Application Notification Interface
This Section describes the interface that a client application must implement and register with the Event
Service in order to be notified of events.

Page 88 of 155

 Copyright © The PAM Forum 2000-2001

PAM_EA_eventNotify

Notify the occurrence of an event.

Inputs:

• eventID PAM_T_LongInteger specifies the event registration ID.

• eventInfo PAM_T_EventInfo contains the data about the event that occurred.

• authToken PAM_T_Credential of the PAM implementation.

Output:

• None.

Return Status:

• PAM_SUCCESS indicates that the notification was successful.

• PAM_FAILURE indicates that the notification failed for unspecified reasons.

Remarks:

The PAM implementations will not attempt to re-notify on failure.

Page 89 of 155

Copyright © The PAM Forum 2000-2001

3.8 Framework
The programmatic interface to framework services. The purpose of this interface is to provide the
methods for initial contact and authentication of the client application prior to obtaining the PAM
interfaces.

The method by which a client application gets access to the framework is implementation dependent. It
could be through an URL, application brokers, etc.

Once the initial contact is possible, an application calls the PAM_FM_initAuthentication method to swap
each other’s authentication interfaces. The authentication interface is used to authenticate each other
using a mutually agreeable authentication method.

Once authenticated, the application can call the PAM_FM_getAccess to get the handles to all of the PAM
interface implementations.

All PAM methods use an authentication token as a parameter since the outcome of the operations may
depend on the entity requesting the operation. To enable this, the PAM_FM_getAuthToken is used to
obtain an implementation dependent token. An application that has authenticated itself with the
framework, can get an authentication token for itself. Alternatively, if the application is requesting PAM
operations on behalf of multiple entities, authentication tokens may be requested for each such entity
after providing any available data about the asker. These tokens can then be used repeatedly for
operations within a session without further need to identify the asker. Implementations may provide
expiration times for the authentication tokens.

3.8.1 Summary
Authentication and access methods:

PAM_FM_initAuthentication Swap authentication interfaces

PAM_FM_getAccess Get PAM interface handles after authentication

PAM_FM_getAuthToken Get the credentials for a given askerData

Discovery methods:

PAM_FM_listServices List available services

Identity namespace methods:

PAM_FM_getDefaultIdentityNamespace return the namespace used for unique naming of
identities in this PAM domain

PAM_FM_getDefaultAgentNamespace return the namespace used

Page 90 of 155

 Copyright © The PAM Forum 2000-2001

PAM_FM_initiateAuthentication

Swap authentication interfaces between the client and PAM implementation.

Inputs:

• clientID PAM_T_String specifies the identifier of the client. The framework may
use this identifier to retrieve the public key for the client.

• clientAuthenticate PAM_T_AuthenticationHandle is an implementation-dependent
handle to the client implementation of Authenticate interface.

Output:

• pamAuthenticate PAM_T_AuthenticationHandle is an implementation-dependent
handle to the server implementation of Authenticate interface.

 Return Status:

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_UNAVAILABLE indicates that the PAM implementation is unavailable at this time.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

 None.

Page 91 of 155

Copyright © The PAM Forum 2000-2001

PAM_FM_getAccess

Get access to the PAM implementation interfaces.

Inputs:

• serviceName PAM_T_String specifies the name of the service for which the access is
requested.

• authToken PAM_T_Credential of the entity who wishes to do this operation.
Output:

• pamInterface PAM_T_InterfaceHandle is a implementation-dependent PAM service
interface handle that all services extend.

 Return Status:

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 92 of 155

 Copyright © The PAM Forum 2000-2001

PAM_FM_getAuthToken

Get an authentication token for access to the interfaces.

Inputs:

• askerData PAM_T_Data[] specifies information about the asker. Can be an empty
array.

Output:

• authToken PAM_T_Credential is an implementation-dependent authentication
credential that can be verified.

 Return Status:

• PAM_SUCCESS indicates that the operation was successful.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

If the askerData information is not specified, the token corresponds to the entity that has
authenticated to the framework is returned.

This method can be called any number of times for different asker profiles.

Page 93 of 155

Copyright © The PAM Forum 2000-2001

PAM_FM_getDefaultAgentNamespace

Get the namespace used for unique naming of agents in this PAM domain.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• defaultNamespace PAM_T_String contains name of the default

namespace for agents in this PAM domain.

Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

If the namespace is not specified in any of the fully qualified names passed as
parameters to the methods in this interface, the implementation assumes the default
namespace.

Page 94 of 155

 Copyright © The PAM Forum 2000-2001

PAM_FM_getDefaultIdentityNamespace

Get the namespace used for unique naming of identities in this PAM domain.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• defaultNamespace PAM_T_String contains name of the default

namespace for identities in this PAM domain.

Return Status:

• PAM_SUCCESS indicates that the operation completed successfully..

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

If the namespace is not specified in any of the fully qualified names passed as
parameters to the methods in this interface, the implementation assumes this default
namespace.

Page 95 of 155

Copyright © The PAM Forum 2000-2001

PAM_FM_listServices

Get the list of service names supported by the server.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• services PAM_T_String[] contains the list of services supported by the server

Return Status:

• PAM_SUCCESS indicates that the operation completed successfully..

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

The strings returned correspond to the two letter codes used in the interface naming
scheme (IM, AM, AA, AP, etc.)

Page 96 of 155

 Copyright © The PAM Forum 2000-2001

3.8.2 Authenticate Interface
This Section describes the programmatic interface to the Authentication interface that PAM
implementations and client applications implement to mutually authenticate each other.

Summary
 PAM_FM_selectAuthMethod select an authentication method from the list offered

 PAM_FM_authenticate authenticate using the selected method

 PAM_FM_abortAuthentication terminate authentication in progress

Page 97 of 155

Copyright © The PAM Forum 2000-2001

PAM_FM_abortAuthentication

Abort any authentication in progress.

Inputs:

• None.
Output:

• None.

 Return Status:

• PAM_SUCCESS indicates that the authentication was aborted.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

 None.

Page 98 of 155

 Copyright © The PAM Forum 2000-2001

PAM_FM_authenticate

Authenticates the server to the client.

Inputs:

• prescribedMethod PAM_T_String specifying the selected method of authentication.

• challenge PAM_T_String containing the challenge offered by the caller.

Output:

• response PAM_T_String containing a response to the challenge. May be
encrypted by the mechanism used by the authentication method.

 Return Status:

• PAM_SUCCESS indicates that the operation was successful.

• PAM_UNABLE indicates that the callee is unable to send a response to the challenge in
the selected method.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

None.

Page 99 of 155

Copyright © The PAM Forum 2000-2001

PAM_FM_selectAuthMethod

Select authentication method from the list of offered authentication capabilities.

Inputs:

• authCapabilities PAM_T_String[] specifies the list of authentication methods, the
caller is capable of.

Output:

• prescribedMethod PAM_T_String containing the method selected by the callee
from the list above.

 Return Status:

• PAM_SUCCESS indicates that the selection was successful.

• PAM_INCOMPATIBLE indicates that the offered list of authentication method was not
acceptable to the callee.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

Remarks:

 None.

Page 100 of 155

 Copyright © The PAM Forum 2000-2001

4 Auxiliary Interfaces

4.1 Identity and Agent Types
This Section describes the programmatic interface to define the type schema for identities and agents
specifying the attributes associated with the type. These types can then be assigned to agents and
identities. PAM implementations may provide a set of pre-defined types. Identity type names and agent
type names are in the same namespace and hence must be uniquely defined across both identities and
agents. The attributes for identity types and agent types are in two different namespaces and hence an
attribute name may be re-used with different characteristics for identities and agents.

4.1.1 Summary
Identity Type methods:

PAM_TX_createIdentityAttribute define an identity attribute

PAM_TX_deleteIdentityAttribute remove an identity attribute definition

PAM_TX_getIdentityAttributeDefinition get the identity attribute definition

PAM_TX_listAllIdentityAttributes list all known identity attributes

PAM_TX_createIdentityType create an identity type label

PAM_TX_deleteIdentityType delete an identity type label

PAM_TX_listIdentityTypes list all known identity types

PAM_TX_addIdentityTypeAttributes add attributes to the identity type schema

PAM_TX_removeIdentityTypeAttributes delete attributes from the identity type schema

PAM_TX_listIdentityTypeAttributes list attributes in the identity type schema

Agent Type methods:

PAM_TX_createAgentAttribute define an agent attribute

PAM_TX_deleteAgentAttribute remove an agent attribute definition

PAM_TX_getAgentAttributeDefinition get the agent attribute definition

PAM_TX_listAllAgentAttributes list all known agent attributes

PAM_TX_createAgentType create an agent type label

PAM_TX_deleteAgentType delete an agent type label

PAM_TX_listAgentTypes list all known agent types

PAM_TX_addAgentTypeAttributes add attributes to the agent type schema

PAM_TX_removeAgentTypeAttributes delete attributes from the agent type schema

PAM_TX_listAgentTypeAttributes list attributes in the agent type schema

Page 101 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_addAgentTypeAttributes

Add attribute definitions to the schema of an agent type that has already been defined.

Inputs:

• typeName PAM_T_String specifies the name of the type.

• attributeNames PAM_T_String[] list of attributes to be added to this type

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type does not exist.

• PAM_ATTRIBUTE_EXISTS indicates that at least one of the named attributes already
exists

• PAM_UNKNOWN_ATTRIBUTE indicates that the at least one of the attributes specified
has not been defined before

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 102 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_addIdentityTypeAttributes

Add attribute definitions to the schema of an identity type that has already been defined.

Inputs:

• typeName PAM_T_String specifies the name of the type.

• attributeNames PAM_T_String[] list of attributes to be added to this type

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type does not exist.

• PAM_ATTRIBUTE_EXISTS indicates that at least one of the named attributes already
exists

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the specified attributes has
not been defined

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 103 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_createAgentAttribute

Create a definition of an agent attribute to specify its name and type.

Inputs:

• attribute PAM_T_AttributeDef specifies the attribute to be created.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_ATTRIBUTE_EXISTS indicates that the named attribute already exists.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 104 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_createAgentType

Specify a label as the name of an agent type.

Inputs:

• typeName PAM_T_String specifies the name of the type.

• attributeNames PAM_T_String[] list of attributes associated with this type. Can be an
empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_TYPE_EXISTS indicates that the named type already exists.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the named attributes has
not been defined

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 105 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_createIdentityAttribute

Create a definition of an identity attribute to specify its name and type.

Inputs:

• attribute PAM_T_AttributeDef specifies the attribute to be created.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_ATTRIBUTE_EXISTS indicates that the named attribute already exists.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 106 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_createIdentityType

Specify a label as the name of an identity type.

Inputs:

• typeName PAM_T_String specifies the name of the type

• attributeNames PAM_T_String[] list of attributes associated with this type. Can be an
empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_TYPE_EXISTS indicates that the named type already exists.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the specified attributes has
not been defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 107 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_deleteAgentAttribute

Delete the definition of an agent attribute.

Inputs:

• attributeName PAM_T_String specifies the attribute to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_ATTRIBUTE indicates that the named attribute does not exist.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The removed attribute is no longer available as part of any agent type.

Page 108 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_deleteAgentType

Delete a label as the name of an agent type.

Inputs:

• typeName PAM_T_String specifies the name of the type to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type has not been defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

All agents that have this type are no longer associated with this type and consequently
will no longer will have any attributes associated with this type.

Page 109 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_deleteIdentityAttribute

Delete the definition of an identity attribute.

Inputs:

• attributeName PAM_T_String specifies the attribute to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_ATTRIBUTE indicates that the named attribute does not exist.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The removed attribute is no longer available as part of any identity type.

Page 110 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_deleteIdentityType

Delete a label as the name of an identity type.

Inputs:

• typeName PAM_T_String specifies the name of the type to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type has not been defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

All identities that have this type are no longer associated with this type and consequently
will no longer will have any attributes associated with this type.

Page 111 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_getAgentAttributeDefinition

Get the definition for the specified agent attribute.

Inputs:

• attributeName PAM_T_String specifies the attribute

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributeDef PAM_T_AttributeDef containing the definition of the attribute.

 Return Status:

• PAM_UNKNOWN_ATTRIBUTE indicates that no definition exists for the named attribute.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 112 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_getIdentityAttributeDefinition

Get the definition for the specified identity attribute.

Inputs:

• attributeName PAM_T_String specifies the attribute

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributeDef PAM_T_AttributeDef containing the definition of the attribute.

 Return Status:

• PAM_UNKNOWN_ATTRIBUTE indicates that no definition exists for the named attribute.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 113 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_listAgentTypeAttributes

List all attributes of an agent type.

Inputs:

• typeName PAM_T_String specifies the name of the type.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_AttributeDef[] containing the list of attribute definitions for the
named type. An empty array if no attributes have been defined for this
type.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type has not been defined.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 114 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_listAgentTypes

List all known agent types.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• typeNames PAM_T_String[] containing the list of known agent types. An empty
array if no agent types have been defined.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 115 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_listAllAgentAttributes

List all known agent attributes.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributeNames PAM_T_String[] containing the list of attribute names defined so far. An
empty array if no attributes have been defined.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 116 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_listAllIdentityAttributes

List all known identity attributes.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributeNames PAM_T_String[] containing the list of attribute names defined so far. An
empty array if no attributes have been defined.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 117 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_listIdentityTypeAttributes

List all attributes of an identity type.

Inputs:

• typeName PAM_T_String specifies the name of the type.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_AttributeDef[] containing the list of attribute definitions for the
named type. An empty array if no attributes have been defined for this
type.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type has not been defined.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 118 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_listIdentityTypes

List all known identity types.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• typeNames PAM_T_String[] containing the list of known identity types. An empty
array if no identity types have been defined.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 119 of 155

Copyright © The PAM Forum 2000-2001

PAM_TX_removeAgentTypeAttributes

Delete attribute definitions from the schema of an agent type that has already been defined.

Inputs:

• typeName PAM_T_String specifies the name of the type.

• attributeNames PAM_T_String[] list of attribute names to be deleted from this type

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type does not exist.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the named attributes is not
currently associated with the type.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

All agent instances of this type are no longer associated with attributes that have been
deleted.

Page 120 of 155

 Copyright © The PAM Forum 2000-2001

PAM_TX_removeIdentityTypeAttributes

Delete attribute definitions from the schema of an identity type that has already been defined.

Inputs:

• typeName PAM_T_String specifies the name of the type.

• attributeNames PAM_T_String[] list of attribute names to be deleted from this type

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the named type does not exist.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the named attributes is not
currently associated with the type.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

All identity instances of this type are no longer associated with attributes that have been
deleted.

Page 121 of 155

Copyright © The PAM Forum 2000-2001

4.2 Capabilities
This Section describes the programmatic interface to define capability names.

Capabilities are names that define a property of an agent for which presence data may exist. Examples
are voice, IM, SMS, WAP, etc. Agents can be assigned capabilities. Identities inherit capabilities from
agents but cannot be directly assigned capabilities. Each capability is defined with an associated set of
attributes. The attributes for each capability exist in their own namespace and hence an attribute name
may be re-used with different characteristics across capabilities.

4.2.1 Summary
Capability methods:

PAM_CX_createCapabilityAttribute define a capability attribute

PAM_CX_deleteCapabilityAttribute remove a capability attribute definition

PAM_CX_getCapabilityAttributeDefinition get the capability attribute definition

PAM_CX_listAllCapabilityAttributes list all known capability attributes

PAM_CX_createCapability create a capability label

PAM_CX_deleteCapability delete a capability label

PAM_CX_listCapabilities list all known capabilities

PAM_CX_addCapabilityAttributes add attributes to the capability schema

PAM_CX_removeCapabilityAttributes remove attributes from the capability schema

PAM_CX_listCapabilityAttributes list attributes in the capability schema

PAM_CX_assignCapabilitiesToType assign a list of capabilities to an agent type

PAM_CX_unassignCapabilitiesFromType unassign capabilities from an agent type

PAM_CX_listCapabilitiesOfType list capabilities assigned to an agent type

Page 122 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CX_addCapabilityAttributes

Add attribute definitions to the schema of a capability that has already been defined.

Inputs:

• capability PAM_T_Capability specifies the name of the capability.

• attributeNames PAM_T_String[] list of attributes to be added to this capability

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_CAPABILITY indicates that the named capability does not exist.

• PAM_ATTRIBUTE_EXISTS indicates that at least one of the named attributes already
exists

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the specified attributes has
not been defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 123 of 155

Copyright © The PAM Forum 2000-2001

PAM_CX_assignCapabilityToType

Assign capabilities to agent type.

Inputs:

• agentType PAM_T_String name of an agent type

• capability PAM_T_Capability[] specifies the list of capabilities to be associated.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the specified type does not exist.

• PAM_UNKNOWN_CAPABILITY indicates that at least one of the specified capabilities
has not been defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 124 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CX_createCapability

Specify a label as the name of a capability.

Inputs:

• capability PAM_T_Capability specifies the name of the capability.

• attributeNames PAM_T_String[] list of attributes associated with this capability. Can be
an empty array.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_CAPABILITY_EXISTS indicates that the named capability already exists.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the specified attributes has
not been defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 125 of 155

Copyright © The PAM Forum 2000-2001

PAM_CX_createCapabilityAttribute

Create a definition of a capability attribute to specify its name and type.

Inputs:

• attribute PAM_T_AttributeDef specifies the attribute to be created.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_ATTRIBUTE_EXISTS indicates that the named attribute already exists.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 126 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CX_deleteCapability

Delete a label as the name of a capability.

Inputs:

• capability PAM_T_Capability specifies the name of the capability to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_CAPABILITY indicates that the named capability has not been
defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

All agents that have this capability are no longer associated with this capability and
consequently will no longer will have any attributes associated with this capability.

Page 127 of 155

Copyright © The PAM Forum 2000-2001

PAM_CX_deleteCapabilityAttribute

Delete the definition of a capability attribute.

Inputs:

• attributeName PAM_T_String specifies the attribute to be deleted.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_ATTRIBUTE indicates that the named attribute does not exist.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

The removed attribute is no longer available as part of any capability type.

Page 128 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CX_getCapabilityAttributeDefinition

Get the definition for the specified capability attribute.

Inputs:

• attributeName PAM_T_String specifies the attribute

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributeDef PAM_T_AttributeDef containing the definition of the attribute.

 Return Status:

• PAM_UNKNOWN_ATTRIBUTE indicates that no definition exists for the named attribute.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 129 of 155

Copyright © The PAM Forum 2000-2001

PAM_CX_listCapabilities

List all known capabilities.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• capabilities PAM_T_Capability[] containing the list of known capability. An empty
array if no capabilities have been defined.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 130 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CX_listCapabilitiesOfType

List capabilities assigned to an agent type.

Inputs:

• agentType PAM_T_String name of an agent type

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• capabilities PAM_T_Capability[] containing the list of capabilities assigned to the
agent type

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the specified type does not exist.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 131 of 155

Copyright © The PAM Forum 2000-2001

PAM_CX_listAllCapabilityAttributes

List all known capability attributes.

Inputs:

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributeNames PAM_T_String[] containing the list of attribute names defined so far. An
empty array if no attributes have been defined.

 Return Status:

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 132 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CX_listCapabilityAttributes

List all attributes of a capability.

Inputs:

• capability PAM_T_Capability specifies the name of the capability.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• attributes PAM_T_AttributeDef[] containing the list of attribute definitions for the
named capability. An empty array if no attributes have been defined for
this capability.

 Return Status:

• PAM_UNKNOWN_CAPABILITY indicates that the named capability has not been
defined.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 133 of 155

Copyright © The PAM Forum 2000-2001

PAM_CX_removeCapabilityAttributes

Remove attribute definitions from the schema of capability that has already been defined.

Inputs:

• capability PAM_T_Capability specifies the name of the capability.

• attributeNames PAM_T_String[] list of attribute names to be deleted from this capability

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_CAPABILITY indicates that the named capability does not exist.

• PAM_UNKNOWN_ATTRIBUTE indicates that at least one of the named attributes is not
currently associated with the capability.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

All agent instances with this capability are no longer associated with attributes that have
been removed.

Page 134 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CX_unassignCapabilityFromType

Unassign capabilities from an agent type.

Inputs:

• agentType PAM_T_String name of an agent type

• capability PAM_T_Capability[] specifies the list of capabilities to be disassociated.

• authToken PAM_T_Credential of the entity who wishes to do this operation.

Output:

• None.

 Return Status:

• PAM_UNKNOWN_TYPE indicates that the specified type does not exist.

• PAM_UNKNOWN_CAPABILITY indicates that at least one of the specified capabilities
has not been defined.

.

• PAM_SUCCESS indicates that the operation completed successfully.

• PAM_FAILURE indicates that the operation failed for unspecified reasons.

• PAM_INVALID_CREDENTIAL indicates that the credential presented is not recognized
or insufficient for the operation.

• PAM_NOT_SUPPORTED implementation dependent status that indicates that this
method is not supported by the implementation.

 Remarks:

None.

Page 135 of 155

Copyright © The PAM Forum 2000-2001

5 PAM pre-defined objects

5.1 Pre-defined Constants

5.1.1 Communication modes
These are the constants to be used as values of the communication mode attributes. Currently, only the
following are pre-defined as part of the PAM spec.

PAM_CM_IM Instant Messaging

PAM_CM_VOICE Voice calls

PAM_CM_SMS SMS messaging

5.1.2 PAM interface codes
These are the constants to be used for getting access to PAM defined interfaces via the framework.

PAM_CI_IM Identity Management

PAM_CI_AM Agent Management

PAM_CI_AA Agent Association

PAM_CI_AP Agent Presence

PAM_CI_IP Identity Presence

PAM_CI_AV Availability Management

PAM_CI_EV Event Management

PAM_CI_AX Attribute Management

PAM_CI_CX Capability Management

PAM_CI_TX Type Management

5.1.3 Context names
These are constants used as names of contexts in availability queries.

PAM_CC_Communication Communication context

PAM_CC_Location Location context

5.1.4 Information privacy codes
These are the constants used as values of the privacy code attributes provided with the availability
information.

PAM_CP_ASKER_ONLY The information is for use by asker only.

PAM_CP_AUTHORIZED The information can be propagated to authorized users only

PAM_CP_UNLIMITED The information can be propagated to anyone.

Page 136 of 155

 Copyright © The PAM Forum 2000-2001

5.2 Pre-defined Contexts
The contexts below are pre-defined for use with availability queries.

A context of type PAM_T_Context, in general, is a structure with the following attributes:

contextName PAM_T_String contains the name of the context

contextData PAM_T_Data[] contains a set of attributes based on the context

askerData PAM_T_Data[] contains a set of attributes describing the asker

An availability computation may use some or all of the data provided in the context to determine the
availability information to be provided in response to a query. Except as may be specified in the context
definitions below, all data provided in the context is optional.

5.2.1 Communication
This is a context for querying availability for communication.

contextName = PAM_T_Communication

contextData
 communicationMode: PAM_T_String (see 5.1.1)

 optional data…

askerData

askerIdentity; PAM_T_FQName Identity of the asker, if known in some namespace

name: PAM_T_String Any other identifying name of asker if identity is not
known

optional asker data…

5.2.2 Location
This is a context for querying location availability.

contextName = PAM_T_Location

contextData
 optional context data…

askerData

askerIdentity; PAM_T_FQName Identity of the asker, if known in some namespace

name: PAM_T_String Any other identifying name of asker if identity is not
known

optional asker data…

Page 137 of 155

Copyright © The PAM Forum 2000-2001

5.3 Pre-defined Events
This section describes the events that are pre-defined by the PAM specifications as necessary to be
supported by implementations.

5.3.1 Summary:
PAM_CE_IDENTITY_CREATED Notify if an identity is deleted

PAM_CE_IDENTITY_DELETED Notify if an identity is deleted

PAM_CE_ GROUP_MEMBERSHIP_CHANGED Notify if the member list of a group changes

PAM_CE_AGENT_CREATED Notify if a new agent has been created

PAM_CE_AGENT_DELETED Notify if an agent is deleted

PAM_CE_AGENT_ASSIGNED Notify if an agent is assigned to an identity

PAM_CE_AGENT_UNASSIGNED Notify if an agent is unassigned from an identity

PAM_CE_CAPABILITY_CHANGED Notify if an identity’s capability changes

PAM_CE_IDENTITY_PRESENCE_CHANGED Notify if an identity’s presence data changes

PAM_CE_AGENT_PRESENCE_CHANGED Notify if an agent’s presence data changes

PAM_CE_AVAILABILITY_CHANGED Notify if an identity’s availability data changed

Page 138 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CE_IDENTITY_CREATED

Notify if a new identity has been created.

Required input attributes in the PAM_T_Event structure:

• identityType PAM_T_String[] specifies the type of the identity for which this
notification is requested. Can be an empty array if notification required
for identities of all types.

Output attributes in the PAM_T_EventInfo structure:

• identity PAM_T_FQName[] contains the names of the identities that have been
created.

Remarks:

Notifications for creation of multiple identities are bunched into a single notification
whenever possible.

A notification of this event is NOT sent for new association of types with an existing
identity.

Page 139 of 155

Copyright © The PAM Forum 2000-2001

PAM_CE_IDENTITY_DELETED

Notify if an identity has been deleted.

Required input attributes in the PAM_T_Event structure:

• identityName PAM_T_FQName[] specifies the name of the identity for which the
deletion is to be notified. Can be an empty array.

• identityType PAM_T_String[] specifies the types of the identity for which this
notification is requested if the identityName is specified as an empty
array. Can be an empty array if notification required for identities of any
type.

Output attributes in the PAM_T_EventInfo structure:

• identity PAM_T_FQName[] contains the names of the identities that have been
deleted.

Remarks:

Notifications for deletion of multiple identities are bunched into a single notification
whenever possible.

A notification of this event is NOT sent for removing association of types with an existing
identity.

Page 140 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CE_GROUP_MEMBERSHIP_CHANGED

Notify if the membership of a group changes.

Required input attributes in the PAM_T_Event structure:

• groupName PAM_T_FQName[] specifies the name of the group for which the
change is to be notified. Can be an empty array if notifications are
required for any group.

• groupType PAM_T_String[] specifies the type of the group for which this notification
is requested if the groupName is specified as an empty array. Can be an
empty array if notification required for groups of any type.

Output attributes in the PAM_T_EventInfo structure:

• group PAM_T_FQName[] contains the names of the groups that have been
changed.

Remarks:

Notifications for changes to multiple groups are bunched into a single notification
whenever possible.

Page 141 of 155

Copyright © The PAM Forum 2000-2001

PAM_CE_AGENT_CREATED

Notify if a new agent has been created.

Required input attributes in the PAM_T_Event structure:

• agentType PAM_T_String[] specifies the type of the agent for which this notification
is requested. Can be an empty array if notification required for agents of
any type.

Output attributes in the PAM_T_EventInfo structure:

• agents PAM_T_FQName[] contains the names of the agents that have been
created.

Remarks:

Notifications for creation of multiple agents are bunched into a single notification
whenever possible.

The notification for this event is NOT sent for new associations of types with agents.

Page 142 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CE_AGENT_DELETED

Notify if an agent has been deleted.

Required input attributes in the PAM_T_Event structure:

• agentName PAM_T_FQName[] specifies the name of the agent for which the
deletion is to be notified. Can be an empty array.

• agentType PAM_T_String[] specifies the type of the agent for which this notification
is requested if the agentName is specified as an empty array. Can be an
empty array if notification required for agents of any type.

Output attributes in the PAM_T_EventInfo structure:

• agents PAM_T_FQName[] contains the names of the agents that have been
deleted.

Remarks:

Notifications for deletion of multiple agents are bunched into a single notification
whenever possible.

This event notification is NOT sent for disassociating a type from an agent.

Page 143 of 155

Copyright © The PAM Forum 2000-2001

PAM_CE_AGENT_ASSIGNED

Notify if an agent is assigned to an identity.

Required input attributes in the PAM_T_Event structure:

• identityName PAM_T_FQName[] specifies the name of the identity for which the
assignment is to be notified. Can be an empty array if notification is
required for any identity instance.

• identityType PAM_T_String[] specifies the type of the identity for which this
notification is requested if the identityName is specified as an empty
array. Can be an empty array if notification required for identities of any
type.

• agentName PAM_T_FQName[] specifies the name of the agent for which the
deletion is to be notified. Can be an empty array.

• agentType PAM_T_String[] specifies the type of the agent for which this notification
is requested if agentName is specified as an empty array. Can be an
empty array if notification required for agents of any type

Output attributes in the PAM_T_EventInfo structure:

• identity PAM_T_FQName contains the name of the identity to whom an agent
has been assigned.

• agent PAM_T_FQName contains the name of the agent that has been
assigned.

Remarks:

None.

Page 144 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CE_AGENT_UNASSIGNED

Notify if an agent has been unassigned from an identity.

Required input attributes in the PAM_T_Event structure:

• identityName PAM_T_FQName[] specifies the name of the identity for which the
assignment is to be notified. Can be an empty array if notification is
required for any identity instance.

• identityType PAM_T_String[] specifies the type of the identity for which this
notification is requested if the identityName is specified as an empty
array. Can be an empty array if notification required for identities of any
type.

• agentName PAM_T_FQName[] specifies the name of the agent for which the
deletion is to be notified. Can be an empty array.

• agentType PAM_T_String[] specifies the type of the agent for which this notification
is requested if agentName is an empty array. Can be an empty array if
notification required for agents of any type

Output attributes in the PAM_T_EventInfo structure:

• identity PAM_T_FQName contains the name of the identity to whom an agent
has been assigned.

• agent PAM_T_FQName contains the name of the agent that has been
assigned.

Remarks:

None.

Page 145 of 155

Copyright © The PAM Forum 2000-2001

PAM_CE_CAPABILITY_CHANGED

Notify if the capability of an identity changes.

Required input attributes in the PAM_T_Event structure:

• identityName PAM_T_FQName[] specifies the name of the identity for which the
assignment is to be notified. Can be an empty array if notification is
required for any identity instance.

• identityType PAM_T_String[] specifies the type of the identity for which this
notification is requested if the identityName is specified as an empty
array. Can be an empty array if notification required for identities of any
type.

• capabilities PAM_T_Capability[] specifies capabilities of interest. Can be an empty
array.

Output attributes in the PAM_T_EventInfo structure:

• identity PAM_T_FQName contains the name of the identity whose capability has
changed.

• capabilities PAM_T_Capability[] contains the capabilities that have changed (i.e.,
added or removed).

Remarks:

None.

Page 146 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CE_AGENT_CAPABILITY_PRESENCE_SET

Notify if the value of capability presence attributes of an agent is explicitly set.

Required input attributes in the PAM_T_Event structure:

• agentName PAM_T_FQName[] specifies the name of the agent for which the
assignment is to be notified. Can be an empty array if notification is
required for any agent instance.

• agentType PAM_T_String[] specifies the type of the agent for which this notification
is requested if the agentName is specified as an empty array. Can be an
empty array if notification required for agents of any type.

• capabilities PAM_T_Capability[] specifies the capabilities of interest. Can be an
empty array if notifications are required for any capability.

• attributeNames PAM_T_String[] specifies attributes of interest. Can be an empty array.

Output attributes in the PAM_T_EventInfo structure:

• agent PAM_T_FQName contains the name of the agent whose capability has
changed.

• capability PAM_T_Capability contains the capability for which the attributes were
set.

• attributeNames PAM_T_String[] contains the attribute names that have changed in
value.

Remarks:

Expiration of the dynamic attributes does not trigger this notification.

Page 147 of 155

Copyright © The PAM Forum 2000-2001

PAM_CE_AGENT_PRESENCE_SET

Notify if the value of presence attributes of an agent is explicitly set.

Required input attributes in the PAM_T_Event structure:

• agentName PAM_T_FQName[] specifies the name of the agent for which the
assignment is to be notified. Can be an empty array if notification is
required for any agent instance.

• agentType PAM_T_String[] specifies the type of the agent for which this notification
is requested if the agentName is specified as an empty array. Can be an
empty array if notification required for agents of any type.

• attributeNames PAM_T_String[] specifies attributes of interest. Can be an empty array.

Output attributes in the PAM_T_EventInfo structure:

• agent PAM_T_FQName contains the name of the agent whose capability has
changed.

• attributeNames PAM_T_String[] contains the attribute names that have changed in
value.

Remarks:

Expiration of the dynamic attributes does not trigger this notification.

Page 148 of 155

 Copyright © The PAM Forum 2000-2001

PAM_CE_IDENTITY_PRESENCE_SET

Notify if the value of presence attributes of an identity is explicitly set.

Required input attributes in the PAM_T_Event structure:

• identityName PAM_T_FQName[] specifies the name of the identity for which the
assignment is to be notified. Can be an empty array if notification is
required for any identity instance.

• identityType PAM_T_String[] specifies the type of the identity for which this
notification is requested if the identityName is specified as an empty
array. Can be an empty array if notification required for identities of any
type.

• attributeNames PAM_T_String[] specifies attributes of interest. Can be an empty array.

Output attributes in the PAM_T_EventInfo structure:

• identity PAM_T_FQName contains the name of the identity whose capability has
changed.

• attributeNames PAM_T_String[] contains the attribute names that have changed in
value.

Remarks:

Expiration of the dynamic attributes do not trigger this notification.

Page 149 of 155

Copyright © The PAM Forum 2000-2001

PAM_CE_AVAILABILITY_CHANGED

Notify if the availability of an identity changes.

Required input attributes in the PAM_T_Event structure:

• identityName PAM_T_FQName[] specifies the name of the identity for which the
assignment is to be notified. Can be an empty array if notification is
required for any identity instance.

• identityType PAM_T_String[] specifies the type of the identity for which this
notification is requested if the identityName is specified as an empty
array. Can be an empty array if notification required for identities of any
type.

• context PAM_T_Context[] specified the context in which the availability is to be
monitored. Cannot be an empty array.

• attributeNames PAM_T_String[] specifies attributes of interest. Can be an empty array.

Output attributes in the PAM_T_EventInfo structure:

• identity PAM_T_FQName contains the name of the identity whose capability has
changed.

• availability PAM_T_AvailabilityInfo[] contains the availability information that has
changed.

Remarks:

None.

Page 150 of 155

 Copyright © The PAM Forum 2000-2001

6 PAM datatypes

6.1 PAM_T_Attribute
A structure that represents an attribute.

Fields:
 name PAM_T_String The Attribute’s name.

 type PAM_T_String The Attribute’s type.

expiresIn PAM_T_TimeInterval The interval in milliseconds in which the attribute values
are valid. A time interval of 0 indicates an expired attribute value. A time interval
of PAM_MAX_LONGINT indicates static attribute values that never expire.
Negative values indicate an expired value and the time for which it has expired.

values PAM_T_Value[] The values for the Attribute. This model allows multi-
valued attributes. Cannot be an empty array.

6.2 PAM_T_AttributeDef
A structure to represent the definition of an attribute.

Fields:
name PAM_T_String The Attribute’s name

type PAM_T_String The Attribute’s type

isStatic PAM_T_Boolean True indicates that the attributes is always static and its
values never expire. False indicates that the attribute can be dynamic and may
contain values that expire.

isRevertOnExpiration PAM_T_Boolean True indicates that the attribute reverts to the default
value on expiration. False indicates that the attribute will not revert to the default
value.

defaultValues PAM_T_Value[] An attribute is always initialized with this value. If the
isRevertOnExpiration attribute is set to true, a dynamic attribute that has expired
while stored in a PAM implementation is reset to this value with the expiresIn
interval set to PAM_MAX_LONGINT.

6.3 PAM_T_AuthenticationHandle
Implementation-dependent handle to an implementation of the Authenticate interface.

6.4 PAM_T_AvailabilityProfile
Contains a list of attribute values as determined by the definition of the context for which the
availability is provided.

Fields:
privacyCode PAM_T_String contains the privacy code (See section 5.1.4)

availabilityData PAM_T_Attribute[] The attributes with availability information

6.5 PAM_T_Boolean
Synonymous with Boolean or equivalent data type in the implementation platform.

Page 151 of 155

Copyright © The PAM Forum 2000-2001

6.6 PAM_T_Byte
Mapped to an 8-bit data type in the implementation platform.

6.7 PAM_T_Capability
Synonymous with PAM_T_String.

6.8 PAM_T_Context
A structure to hold the data which defines the context in which an availability is queried. PAM pre-
defines two contexts “Communication” and “Location”.

Fields:
contextName PAM_T_String

 Specifies the name of the context.

contextData PAM_T_Data[]
 Contains the list of attributes that define the context. The attributes to be included

for a given context are specified by the definition of the context.

askerData PAM_T_Data[]
 Contains information about the asker of availability. The exact attributes in this

profile are dependent on the application. PAM reserves the attribute “name” to
contain the identity of the asker if known.

6.9 PAM_T_Credential
Represents credentials passed into the API methods.

Fields:
 type PAM_T_String
 Indicates what kind of authentication method this is.

 credentialData PAM_T_Byte[]
 An opaque octet array containing the credential.

6.10 PAM_T_Data
A structure that contains named data to be used as the value of various parameters in the
interfaces.

Fields:
 name PAM_T_String The name of the data.

 type PAM_T_String The type of the data.

values PAM_T_Value The value for the data.

6.11 PAM_T_Event
Structure to define an event for notification registering.

Fields:

eventCode : PAM_T_ShortInteger
Identifies the event of interest. Whether certain minimal set of events should be pre-
defined in the specification or it should be left entirely up to the implementation, is yet to
be decided based on feedback to this draft.

Page 152 of 155

 Copyright © The PAM Forum 2000-2001

eventData : PAM_T_Data[]
 A list of attribute-value pairs where the attributes are determined by the definition of the
event.

6.12 PAM_T_EventInfo
Structure that holds the data about an event that occurred to be sent in a notification.

Fields:

eventCode : PAM_T_ShortInteger
Identifies the event of interest. Whether certain minimal set of events should be pre-
defined in the specification or it should be left entirely up to the implementation, is yet to
be decided based on feedback to this draft.

eventInfo : PAM_T_Data[]
 A list of attribute-value pairs where the attributes are determined by the definition of the
event.

6.13 PAM_T_FQName
Structure that specifies a fully qualified name i.e., a name and a namespace.

Fields:
 name : PAM_T_String The name.

 namespace : PAM_T_String The namespace in which the name is unique.

6.14 PAM_T_Integer
Mapped to a 32-bit signed integer in the implementation platform.

6.15 PAM_T_InterfaceHandle
A platform-dependent abstract interface that all PAM services extend for their interfaces.

6.16 PAM_T_LongInteger
Mapped to a 64-bit signed integer in the implementation platform. The constant
PAM_MAX_LONGINT stands for the largest positive value that is possible in the platform

6.17 PAM_T_Preference
Structure to specify preference data.

Fields:

format : PAM_T_String
The string specifies the format (or language) in which the preference in this structure is
stored.

data : PAM_T_Byte[]
The data that represents the preference in the format specified.

6.18 PAM_T_ShortInteger
Mapped to a 16-bit signed integer in the implementation platform.

Page 153 of 155

Copyright © The PAM Forum 2000-2001

6.19 PAM_T_String
Synonymous with a String or equivalent data type in the implementation platform.

6.20 PAM_T_TimeInterval
Synonymous with PAM_T_LongInteger.

6.21 PAM_T_Value
The data type of values is a discriminated union of the value types supported by the
implementation.

Page 154 of 155

 Copyright © The PAM Forum 2000-2001

7 Appendix A: UML models

7.1 Identity

Page 155 of 155

Copyright © The PAM Forum 2000-2001

7.2 Agent

	Introduction
	Motivation
	Goals
	Concepts
	Identity
	Agent
	Presence
	Availability
	Events

	Scope

	Model
	Architecture
	Security and privacy
	Access framework
	Levels of access
	Application
	Service
	Thin client

	Use cases
	Identity Management
	Agent Management
	Agent Assignment
	Agent Presence
	Identity Presence
	Availability

	PAM Interfaces
	Identity Management
	Summary
	PAM_IM_addAlias
	PAM_IM_addToGroup
	PAM_IM_associateTypes
	PAM_IM_createGroupIdentity
	PAM_IM_createIdentity
	PAM_IM_deleteGroupIdentity
	PAM_IM_deleteIdentity
	PAM_IM_disassociateTypes
	PAM_IM_getIdentityAttributes
	PAM_IM_hasType
	PAM_IM_isGroupIdentity
	PAM_IM_isIdentity
	PAM_IM_listAliases
	PAM_IM_listGroupMembership
	PAM_IM_listMembers
	PAM_IM_listTypesOfIdentity
	PAM_IM_lookupByAlias
	PAM_IM_removeAlias
	PAM_IM_removeFromGroup
	PAM_IM_setIdentityAttributes

	Agent Management
	Summary
	PAM_AM_setAgentAttributes	modify the attributes associated with the agent.PAM_AM_associateTypes
	PAM_AM_createAgent
	PAM_AM_deleteAgent
	PAM_AM_disableCapabilities
	PAM_AM_disassociateTypes
	PAM_AM_enableCapabilities
	PAM_AM_getAgentAttributes
	PAM_AM_isAgent
	PAM_AM_isCapableOf
	PAM_AM_hasType
	PAM_AM_listAllCapabilities
	PAM_AM_listEnabledCapabilities
	PAM_AM_listTypesOfAgent
	PAM_AM_setAgentAttributes

	Agent Assignment
	Summary
	PAM_AA_assignAgent
	PAM_AA_isIdentityCapableOf
	PAM_AA_listAssignedAgents
	PAM_AA_listAssignedAgentsByCapability
	PAM_AA_listAssociatedIdentitiesOfAgents
	PAM_AA_listCapabilitiesOfIdentity
	PAM_AA_unassignAgent

	Agent Presence
	Summary

	None. Identity Presence
	Summary
	PAM_IP_getIdentityPresence
	PAM_IP_setIdentityPresence
	PAM_IP_setIdentityPresenceExpiration

	Availability
	Summary
	PAM_AV_getAvailability
	PAM_AV_getPreference
	PAM_AV_setPreference

	Events
	Summary
	PAM_EV_deregisterAppInterface
	PAM_EV_deregisterFromEvent
	PAM_EV_isRegistered
	PAM_EV_registerAppInterface
	PAM_EV_registerForEvent

	Application Notification Interface
	PAM_EA_eventNotify

	Framework
	Summary
	PAM_FM_initiateAuthentication
	PAM_FM_getAccess
	PAM_FM_getAuthToken
	PAM_FM_getDefaultAgentNamespace
	PAM_FM_getDefaultIdentityNamespace
	PAM_FM_listServices

	Authenticate Interface
	PAM_FM_abortAuthentication
	PAM_FM_authenticate
	PAM_FM_selectAuthMethod

	Auxiliary Interfaces
	Auxiliary Interfaces
	Identity and Agent Types
	Summary
	PAM_TX_addAgentTypeAttributes
	PAM_TX_addIdentityTypeAttributes
	PAM_TX_createAgentAttribute
	PAM_TX_createAgentType
	PAM_TX_createIdentityAttribute
	PAM_TX_createIdentityType
	PAM_TX_deleteAgentAttribute
	PAM_TX_deleteAgentType
	PAM_TX_deleteIdentityAttribute
	PAM_TX_deleteIdentityType
	PAM_TX_getAgentAttributeDefinition
	PAM_TX_getIdentityAttributeDefinition
	PAM_TX_listAgentTypeAttributes
	PAM_TX_listAgentTypes
	PAM_TX_listAllAgentAttributes
	PAM_TX_listAllIdentityAttributes
	PAM_TX_listIdentityTypeAttributes
	PAM_TX_listIdentityTypes
	PAM_TX_removeAgentTypeAttributes
	PAM_TX_removeIdentityTypeAttributes

	Capabilities
	Summary
	PAM_CX_addCapabilityAttributes
	PAM_CX_assignCapabilityToType
	PAM_CX_createCapability
	PAM_CX_createCapabilityAttribute
	PAM_CX_deleteCapability
	PAM_CX_deleteCapabilityAttribute
	PAM_CX_getCapabilityAttributeDefinition
	PAM_CX_listCapabilities
	PAM_CX_listCapabilitiesOfType
	PAM_CX_listAllCapabilityAttributes
	PAM_CX_listCapabilityAttributes
	PAM_CX_removeCapabilityAttributes
	PAM_CX_unassignCapabilityFromType

	PAM pre-defined objects
	Pre-defined Constants
	Communication modes
	PAM interface codes
	Context names
	Information privacy codes

	Pre-defined Contexts
	Communication
	Location

	Pre-defined Events
	Summary:
	PAM_CE_IDENTITY_CREATED
	PAM_CE_IDENTITY_DELETED
	PAM_CE_GROUP_MEMBERSHIP_CHANGED
	PAM_CE_AGENT_CREATED
	PAM_CE_AGENT_DELETED
	PAM_CE_AGENT_ASSIGNED
	PAM_CE_AGENT_UNASSIGNED
	PAM_CE_CAPABILITY_CHANGED
	PAM_CE_AGENT_CAPABILITY_PRESENCE_SET
	PAM_CE_AGENT_PRESENCE_SET
	PAM_CE_IDENTITY_PRESENCE_SET
	PAM_CE_AVAILABILITY_CHANGED

	PAM datatypes
	PAM_T_Attribute
	PAM_T_AttributeDef
	PAM_T_AuthenticationHandle
	PAM_T_AvailabilityProfile
	PAM_T_Boolean
	PAM_T_Byte
	PAM_T_Capability
	PAM_T_Context
	PAM_T_Credential
	PAM_T_Data
	PAM_T_Event
	PAM_T_EventInfo
	PAM_T_FQName
	PAM_T_Integer
	PAM_T_InterfaceHandle
	PAM_T_LongInteger
	PAM_T_Preference
	PAM_T_ShortInteger
	PAM_T_String
	PAM_T_TimeInterval
	PAM_T_Value

	Appendix A: UML models
	Identity
	Agent

