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Abstract—As the frequency and complexity Internet attacks 
increase, systems administrators need more sophisticated tools to 
warn and direct their responses.  The foundation for any such 
effort is a coherent model of exploits and vulnerabilities that is 
rich enough to capture the behavior and composition of multi-
stage attacks.  This paper describes an enhanced attack tree 
model of Internet attacks, and a companion specification language 
for expressing aggregate attack behaviors and modalities.  A 
distributed attack notification and visualization system is briefly 
described that uses the model as a common representation for 
incidents captured by Intrusion Detection Systems (IDSs).  
 

Index Terms—attack tree, vulnerability analysis, multi-stage 
and coordinated attacks.  

I. INTRODUCTION 

HE increasing frequency and complexity of Internet 
attacks has raised the level of sophistication required by 

systems administrators to effectively cope with script kiddies 
and more sophisticated hackers.  Multi-stage attacks can be 
orchestrated to strike highly protected targets, to coordinate 
waves of scripted exploits and/or to conceal the true origin of 
an attack.  Unfortunately, correlating information from such 
incidents is a difficult task exacerbated by heterogeneity, 
interoperability and policy issues, made impossible by the lack 
of a suitable model for Internet attacks. 
 Identifying coordinated attacks in progress is still a black art 
that relies on luck more than scientific methodology.  Linking 
one exploit with another, potentially across a global network 
of heterogeneous and federated systems, requires 
perseverance, cooperation, timeliness and a chain of 
recognizable evidence that must survive hacker cover-ups, 
purged logfiles and system administrator oversight.  Advanced 
Intrusion Detection Systems excel at collecting information 
across heterogeneous networks [4,6,13,15,16].  Yet most still 
regard coordinated attacks as unrelated collections of 
intrusions.   Next generation IDSs must cooperate with each 
other and provide intuitive feedback for users to recognize a 
pattern of attack from seemingly unrelated events [2,3,18].     
 This paper presents an Internet attack model capable of 
capturing composite attacks and briefly describes a distributed 
attack notification and visualization system.  The model 
extends the attack tree concept [14] with parameters, 
precondition and postcondition assertions, and other features 
inspired by modern programming languages.  Dual 
specification languages  are used to express exploits and 
network characteristics.  Together, they permit systematic 
visualization, vulnerability assessment and attack prediction by 
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a centralized monitor observing activity in a network.  

II. BACKGROUND AND RELATED WORK 
To this point, most of the research in the area of attack 

modeling has focused on classifying and categorizing exploits 
and vulnerabilities [1,7,8,9,10]. [5] proposes a comprehensive 
taxonomy of Internet attacks based on effect and intent, and 
presents statistics relating the frequency of incidents in each 
category as reported to CERT from 1989-1995.  Mitre’s CVE 
database creates a common namespace for all vulnerabilities 
and exploits [11].  The NIST I-cat project provides a database 
interface over the web that allows users to browse and search 
for exploits by platform, intent and other criteria [12].   Such 
taxonomies and characterizations provide useful insights into 
the nature of computer attacks, but fail to formally express 
their composable properties. 

In terms of modeling the behavior and effect of exploits, 
attack trees offer a goal-oriented perspective that facilitates 
expression of multi-stage attacks [14].  Attack trees in their 
simplest form assert subgoals for achieving the goal set forth 
by an attack node.  Attack nodes can be grouped into ‘AND’ 
or ‘OR’ sequences to capture conjunctive and disjunctive 
attack conditions, respectively.  Nodes can be weighted to 

reflect the likelihood of successfully mounting an attack.  
 

Fig. 1 Web Server Attack Tree 
 
In Figure 1 an attacker is seeking to gain root access to a 

web server.   There are 3 possible methods presented for 
obtaining root access to this particular machine; 1) poor 
configuration of the web server, 2) stealing the root password, 
or 3) executing a sendmail exploit.  The ‘AND’ nodes in this 
example express that stealing a password may be 
accomplished if a sniffer is in place during a root telnet 
session.  Attack tree nodes can be weighted to represent the 
likelihood of success in achieving a goal.  The tree in Figure 1 
uses a likelihood scale of 1 (least likely) to 10 (most likely).  
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Leaf node weights can be computed or hand-specified, while 
internal branch weights are derived from the leaf node weights.  
(Poor configuration is rated at a 2 as an unlikely occurrence.) 

Fig. 2 Attack Specification Language BNF. 

III. ATTACK MODELING 
Parametric extensions to attack trees yield a flexible model 

for capturing coordinated and multi-stage attacks.  Each attack 
tree specification template is defined with a unique identifier, 
and a list of system element parameters.  Templates contain 
descriptive properties, preconditions, subgoals and 
postconditions.  Abstract and concrete goal-oriented attack 
behavior can be expressed within the model; system element 
parameters link attack specification templates to references in 
subgoals, preconditions and postconditions.  Figure 2 contains 
the BNF specification for the parametric attack tree modeling 
language. 

Properties in the specification language perform an auxiliary 
function in the model, and can be used to express arbitrary 
exploit characteristics.  For example, a common property is 
description, which can be bound to a string literal that textually 
describes the exploit.  CVElink and version are also common 
properties that link attack specifications to the Mitre CVE 
database [11] and express the version of the attack 
specification, respectively.  Impact and likelihood of success 

weights may also be stored as attack properties for use by 
vulnerability assessment algorithms and heuristics. 

Preconditions express system environment or configuration 
properties that may facilitate or inhibit the successful 
execution of an attack.  Arbitrarily complex first order 
predicate logic and boolean phrases may be articulated to 
precisely describe enabling conditions for system compromise.  
Precondition expressions may contain references to local 
system variables or parameters. 

Subgoals differ from preconditions in that they represent 
antecedent objectives of system intrusions or compromises.  
I.e., hackers search for favorable preconditions conducive to 
the execution of particular exploits, while they must actively 
fulfill attack subgoals in the pursuit of their ultimate goals.  
Moreover, subgoal references must be attack node references 
applied to system arguments within a strict “AND/OR” 
hierarchical framework. 

The format of a subgoal reference closely resembles a 
function call in a conventional programming language (the 
subgoal identifier applied to a list of arguments).   As in a 
function, the argument values are bound to formal parameters 
in the subgoal definition (specification) upon evaluation. 

Postconditions identify state changes in systems and 
environments.  These may alter the characteristics of network 
and host elements (e.g. effecting a version rollback attack or 
the placement of a logic bomb within software) or they may 
express the viability or satisfaction of concrete or abstract 
attack nodes, respectively.   

Specifiers may use parameters to model attacks applicable 
to a class of devices or systems.  System element and attack 
values and variables are bound to parameters in attack 
templates producing attack nodes representing intrusion 
events.  The parametric attack modeling language uses a 
hierarchical namespace for system elements comprising the 
model’s type system.  The namespace reflects a taxonomical 
organization of network, system and host elements.  For 
example, System.OS.Linux.Version is an element of the 
namespace tree that maps to all legal version numbers of the 
operating system Linux.  These elements can be used in the 
left hand side of an assignment or comparison expression or to 
type or cast a literal value. 

Boolean operators use the namespace to create ownership 
and inheritance relationships between system elements.  The 
contains operator checks to see if an element contains a field 
with a given name, while the instanceof operator checks if an 
element is an instance of a given type.  Operands can be 
literals, parameters or locally declared variables.  

Abstraction plays a critical role in modeling composite 
attacks.  While concrete nodes are identified with specific 
exploits, abstract nodes are used to serve as placeholders in an 
attack tree for conceptual objectives such as execute_arbitrary() 
or halt_system().  Abstract nodes may be linked to concrete 
nodes or to each other to express the general effect of an attack 
node. 
 The principal use of the attack modeling language described 
here is to systematically express compositional modes of 
computer and network attack. In practice, a complete attack 
tree defined for a host would include specific techniques and 

 
goal ::= attack name (params)  

{props vars preconds subgoals postconds} 
params ::= param (, param)* 
param ::= type ID 
props ::=    (prop)* 
prop ::=    property type ID = val ;
vars ::=  (var)* 
var ::=     declare type ID ;
preconds ::= preconditions { orExpr } 
orExpr ::= andExpr ( | andExpr )* 
andExpr ::= notExpr ( & notExpr )* 
notExpr ::=  grpExpr | ~ grpExpr 
grpExpr ::=  atomicRule | ( orExpr ) 
atomicRule ::= val boolOp val 
boolOp ::=  contains | instanceof | = | > | >=  
                   | < | <= | !=
subgoals ::= subgoals { ( andSubgoals )* } 
andSubgoals ::=  (subgoal ( , subgoal )*) 
subgoal ::=    name ( args ) 
args ::=     val ( , val )* 
postconds ::= postconditions { (stmt )* } 
stmt ::=  name := val ; 
val ::=   literal | name 
name ::=  ID ( . ID )* 
literal ::=  version_literal | integer_literal  
         | boolean_literal  | date_literal  
         | string_literal 
type ::= version | integer | boolean  

| date | string | name 
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vulnerabilities that would regard potential exploits satisfied by 
system and subsystem properties. E.g., an attack template 
might only apply to a machine running a specific version of 
Linux or a Windows NT server configured in a particular 
manner.  Thus, networks, hosts and their relevant 
characteristics must also be modeled faithfully to provide the 
backdrop for vulnerability assessment.  A network model and 
specification language has been designed for this purpose.  
Network specifications can be used to guide the use of attack 
trees in vulnerability assessment.  I.e., attack trees must be 
constructed and then pruned to model precisely those exploits 
associated with a particular system. 
 System specifications represent concrete structures such as 
computer networks or hosts.  Figure 3 contains a BNF 
grammar for a system specification language, which consists of 
two parts: a type definition and an instance. The type definition 
is a set of entity type declarations, similar to complex data 
types in modern programming languages. Each type represents 
a class of entity in a given domain, such as hardware (e.g. a 
router), software (e.g. an operating system or application), or 
even human (e.g. employees) and paper (e.g. files).  (As a 
result the model facilitates the analysis of social engineering 
threats as well as those from cyber attack.) 
 Each type definition consists of a name and a list of 
declared properties. Properties can be primitive types; version, 
integer, date, etc.  They can also be references to other entities 
(entity types), lists of a given type, or internal entities. 
Properties describe the defined entity. Default property values 
can be specified in type definitions. 
 The system specification language uses a hierarchical type 
system.  Thus types can inherent properties of other type 
definitions by using the extends keyword. Properties of the 
parent type are implicitly bestowed upon the child type but can 
be overridden.  Type names consist of an identifier and a 
namespace.  
 

 
declUnit ::=  (typeDecl | objDecl )* 
typeDecl ::= type  name { propDecl* } 
propDecl ::= type ID ( = val )opt ;  
name ::= ID ( . ID )* 
type ::=  primType | listType | refType 
primType ::= version | integer | boolean |  

date | string  
listType ::= type list 
objDecl ::= name name { propAssign* } 
propAssign ::= ID = val ; 
val ::=  literal | name 
literal ::= primLiteral | listLiteral | objLiteral 
primLiteral ::= boolean_literal | integer_literal  

| version_literal | string_literal 
| date_literal 

listLiteral ::= { val ( , val )* } 
objLiteral ::= name objBody 
 

Fig. 3 System Specification Language BNF. 
 
Namespaces are used to aid in the organization and 

separation of entity classes.  Namespace elements are 

syntactically similar to Java packages.   Entity class standard 
names such as ‘Machine’ and ‘Application’ are defined to provide 
a common naming convention for system specifications. 
 The second part of the system specification language, the 
instance, uses declared types to model an actual system, 
network or host. Entities are declared with a type and optional 
name, much like a variable. The body of the entity declaration 
establishes properties of the entity defined in the type 
declaration.  Properties can be entities themselves, allowing 
complex systems and subsystems to be modeled. 

IV. EXAMPLE 
This section presents a simple attack scenario modeled with 

the attack and system specification languages, respectively.   
As shown in Figure 4, the system modeled is a simple network 
containing two hosts of particular interest; dante.utulsa.edu 
and virgil.utulsa.edu.   

dante.utulsa.edu

Workstation 1

Workstation 2

Workstation 3

router.utulsa.edu

Hub

virgil.utulsa.edu

 
Fig. 4 Network Topology. 

 
The multi-stage exploit modeled in this scenario affects two 

hosts (dante and virgil), using one to attack the other.  Figure 5 
presents a thumbnail sketch of the hosts involved in the attack. 
 

dante.utulsa.edu (240.1.1.1) 
OS:  Sun Solaris 7.0 x86 
Services: MySQL 3.23.9 
  in.telnetd 
 
virgil.utulsa.edu (240.1.1.1) 
OS:  Redhat Linux 6.1 i386 
Services: BIND (named) version 8.2 

Fig. 5 Host Profiles. 
 

 
 



 

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE  57 

The attack scenario on this network plays out as follows: 
 
1. The attacker first identifies virgil.utulsa.edu as a linux 

system running a vulnerable version of named. She 
performs a buffer overflow exploiting the ‘nxt bug’ 
vulnerability (CVE-1999-0833 – Bugtraq ID 788) to 
obtain access to virgil’s root account. 

 
2.    Next the attacker sets up a packet sniffer on virgil in order 

to capture all traffic on the local (un-switched) network. 
Eventually, she is able to capture a clear-text telnet login 
session from a local workstation to dante and extracts 
username and password information from it. She now has  
access to a valid user account on dante. 

 
3. The attacker then logs onto dante with the username and 

password she sniffed. From the account, she utilizes a 
vulnerability in MySQL (SELECT statement local buffer 
overflow exploit - Bugtraq ID 2262) to obtain root access 
on dante. 

 
 This attack sequence employs a local buffer overflow in 
MySQL, and a BIND vulnerability – one of the most prevalent 
network vulnerabilities as recognized by the SANS Institute 
[17].  Abbreviated profiles of both the BIND_nxt and the 
MySQL_SELECT vulnerabilities are given in Figure 6. 
 
 
BIND nxt Vulnerability 
[http://www.securityfocus.com/bid/788] 
 Date:  November 10, 1999 
   Bugtraq ID: 788 
 CVE name: CVE-1999-0833 

 
MySQL SELECT Vulnerability 
[http://www.securityfocus.com/bid/2262] 
 Date:  January 18, 2001 
   Bugtraq ID: 2262 
 CVE name: CVE-MAP-NOMATCH 
 

Fig. 6 Attack Profiles. 
 
Each of these vulnerabilities is modeled as an attack template 
with the attack specification language.  Figures 7 and 8 show 
attack specifications expressed as templates and stored within 
the files ExploitBIND_nxt_Vulnerability.atk and 
ExploitMySQL_SELECT_Vulnerability.atk, respectively.   

The attack specification for the BIND_nxt exploit is 
parameterized by Service and expresses preconditions on that 
service identifying it as named and constraining the version to 
between v8.2 and v8.2.2.  The single subgoal for this exploit is 
gaining access to port 53.   

The attack specification for the mySQL exploit is 
parameterized by Application and its preconditions express the 
requirement that the application be an instance of MySQL, 
constraining the version to between v3.22.26 and v3.23.9.  The 
only subgoal here is being able to execute the application. 
 

 Fig. 7 ExploitBIND_nxt_Vulnerability.atk 
 

Stylistically, liberal use of property fields and comments 
makes the specification much more readable (and in the 
specific case of properties, searchable).  Postconditions in 
these specifications have been omitted:  They are not needed 
to construct the attack tree, but may be useful and even 
necessary to perform vulnerability assessment and attack 
prediction. 
 

/* ExploitMySQL_SELECT_Vulnerability
* Author: Kenneth Fitch
* Date: 2001 March 22
* Src: http://www.securityfocus.com/bid/2262
*/

attack
application.mysql.ExploitMySQL_SELECT_Vulnerabilit
y
(Application a)
{

property string CVE_ID = "CVE-MAP-NOMATCH";
property string BugTraqID = "2262";

preconditions
{ a instanceof MySQL_Application &

a.version >= v3.22.26 & a.version <= v3.23.9
}

postconditions {}

subgoals
{ ( ExecuteProgram(a) ) }

}
Fig. 8 ExploitMySQL_SELECT_Vulnerability.atk. 

 
Figure 9 illustrates the full attack tree for compromising 

dante via virgil.  The tree can be divided into two subtrees; one 
that models the attack on virgil (contained in the lower box in 
Figure 9) and one that models the attack on dante (contained in 
the upper box in Figure 9).  The tree exhibits a uniform chain 
structure except for the subgoals of 

/* ExploitBIND_nxt_Vulnerability
* Author: Kenneth Fitch
* Date: 2001 March 22
* Src: SANS Top 10, www.securityfocus.com,
* www.cert.org/advisories/CA-1999-14.html
* Notes:
* BIND weaknesses #1 Internet security
* threat according to SANS
* www.sans.org/topten.htm>
*/

attack service.bind.ExploitBIND_nxt_Vulnerability
(Service s)
{

property string CVE_ID = "CVE-1999-0833";
property string CERT_advisory = "CA-1999-14
Multiple Vulnerabilities in BIND";
property string BugTraqID = "788";

preconditions
{ s instanceof named_Service &

s.version >= v8.2 & s.version < v8.2.2
}

postconditions{}

subgoals
{ ( ConnectToHost( s.host, 53 ) ) }

}
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ExploitMySQL_Select_Vulnerability(dante), which comprise 
two ‘AND’ nodes – CompromiseAccount(dante) and 
ExecuteProgram(dante.MySQL) – both of which are required 
to trigger the exploit.  Note the use of abstract nodes as mortar 
to connect concrete nodes in the tree.  This is a common 
technique, as is layering abstract nodes to manage complexity  
and to model non-exploit (authorized) behavior. 

CompromiseRootAccount ( dante )

ExecuteArbitraryCode ( dante )

CompromiseAccount ( dante )

ObtainAccountPassword ( dante )

ExploitMySQL_SELECT_Vulnerability ( dante )

ExecuteProgram ( dante.MySQL )

CaptureNetworkPackets ( virgil )

CompromiseRootAccount ( virgil )

ExecuteArbitraryCode ( virgil )

ExploitBIND_nxt_Vulnerability ( virgil )

CaptureLoginSession ( dante )

ConnectToHost ( virgil, 53 )

Attack Tree for
dante

Attack
Tree for
virgil

 
Fig. 9 MYSQL_SELECT Attack Tree. 

V. ATTACK NOTIFICATION SYSTEM 
The Attack Visualization System derives its functionality 

through the interaction of four distinct entities: the Network 
and Attack Model Databases, the Attack Notification Service, 
and the Attack Monitor.  Each component plays an integral 
role in helping systems administrators and ISSOs identify and 
extinguish multi-stage network attacks. 

The Network and Attack Model Databases are populated 
from the system and attack specification languages, 
respectively.  Special compilers parse expressions of each 
language, generating the database update commands necessary 
to map the model into a relational structure.  The Attack 
Model Database serves as a centralized repository of exploit 
knowledge remotely accessible by a large population of 
network administrators and ISSOs.  This database contains a 
relational view of individual “templates” that are self-
contained goal-oriented descriptions of an attack.  On the other 
hand, the Network Specification Database is intended to 
provide an integrated view of an individual enterprise network, 
and as such may only be accessible by a handful of 
administrators and staff within a single enterprise.  Individual 
network elements and their properties will be stored to provide 

easily accessible information about the current network state.  
To further allow the Network Specification Database to 
represent current network conditions it can be updated on-the-
fly by network scanning or attack monitoring software. 

NetSpec DB
(SQL)

Attack DB
(SQL)

Intrusion DetectionAttack Notification
Service

Attack Visualization
System

Network
Specifications

Attack
Specifications

NetSpec Parser Attack Parser

.nsp

SQL

.atk

SQL

attack

signatures

attack event
(node id +

parameters)

query

signature/attack
id

 crosscheck

query

this.os.winnt.v1.0.2.3
1.1comprimise sys.
 2.1 comprimise trusted
sys.
 2.2 gain root
  3.1 run arbitrary code
  3.2 acquire password
   4.1 social engineering
   4.2 sniff

this

Attack Visualization
System Architecture

 
Fig. 10 Attack Visualization System and Notification Architecture. 

 
While one of the primary uses of the models and 

visualization system is to conduct vulnerability assessments, 
the architecture can be extended to provide real-time attack 
notification and monitoring services.  By strategically placing 
Attack Notification Service software on hosts in a network, the 
central monitor can be informed of hostile activities, rendering 
them in real-time on a graphic overlay of the network under 
attack.  Attack Notification Service software must be linked 
with an Intrusion Detection System to correlate audit data with 
attack signatures.  Once an attack is discovered and identified 
by an IDS, the Attack Notification Service retrieves the correct 
attack template from the Attack Model Database and uses it to 
instantiate an attack node, binding formal parameters to 
arguments along the way.  The attack node is then shipped to 
the centralized monitor where it can be analyzed and 
potentially placed within an attack tree to capture its role in a 
multi-stage or coordinated attack. 

The Attack Monitor contains the visualization and analytical 
functions that implement and render vulnerability assessment, 
attack predication and real-time attack notification.  It derives 
its functionality from interaction with the other components in 
the system.  The Network Specification Database provides a 
model of the system under observation.  The Attack 
Notification Service provides warnings and data regarding 
attacks in-progress.  The monitor can update the Network 
Specification Database as events (hostile or not) effect state 
changes on hosts and networks. 

The visualization component of the monitor’s software 
architecture leans heavily on the object-oriented representation 
of system and exploit elements.  Adopting a  ‘model/view’ 
approach to graphical representation, the visualization system 
consists of intelligent rendering methods placed within each 
model element class.  These methods must be able to 
intuitively display current network information and attacks, 
and visually distinguish between contrasting logical states.  
They must also be aware of their context to provide a suitable 
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graphical representation that is appropriately scaled and 
located within the current view.  Moreover, graphical elements 
in the system must be interactive so that when users wish to 
focus their attention on particular objects, they can easily 
manipulate the view to accommodate their interests. 

Analytical functions within the monitor serve several 
purposes; vulnerability assessment, tree construction and 
attack prediction.  Each of these functions executes in either 
online or offline mode.  Online mode engages the Attack 
Notification Services to observe and evaluate incidents in real-
time over a network.  Offline mode disengages the Attack 
Notification Service so that simulations and hypothetical 
analyses may be conducted. 

Vulnerability assessment functions construct an attack tree 
with a root objective targeting a specific system element in a 
network specification.  The attack tree is constructed in a top-
down fashion by chaining attack templates that match 
vulnerabilities found within the active network specification.  
Weights reflecting likelihood of attempt or success may be 
used to prune branches that do not rise above a minimum 
threat threshold. 

Tree construction functions model on-going attacks.  Attack 
Notification Services transmit attack nodes representing actual 
attacks discovered by IDSs.  Attack trees may also be 
constructed from a simulation mode that replaces the Attack 
Notification Service with a local attack node generation 
software component.  In either case, the monitor collects attack 
nodes and uses heuristic methods and abstract nodes to 
construct a forest of attack trees linking recent and on-going 
attacks within a network.   Attack tree nodes are linked to the 
system elements they affect, creating an intuitive navigation 
scheme for user inspection. 

Disconnected attack trees may be the result of unrelated 
hostilities, or undiscovered incidents.  Analytical functions 
within the monitor can query the Attack Model Database in 
search of attack templates (and corresponding arguments) that 
can connect attack trees.  Such functions may help 
administrators locate previously undiscovered attacks.  In 
addition, analytical functions may search the Attack Model 
Database for attack templates that accept the roots of 
constructed attack trees as subgoals, thereby enabling attack 
prediction. 

VI. CONCLUSIONS AND FUTURE WORK 
Internet attack models must capture aggregate behavior to 

provide a realistic view of system exploits.  Parametric attack 
trees offer a flexible framework for expressing exploits and 
multi-stage attacks.  The attack visualization system described 
in this paper combines parametric attack trees with a system 
specification language to support vulnerability assessment and 
attack visualization.  Moreover, remote attack notification 
services communicating with a centralized monitor allow 
network administrators and ISSOs to observe and respond to 
intrusions in real-time.  Advanced functions within the monitor 
assist in attack prediction and can help network administrators 
and ISSOs identify and isolate as of yet undiscovered 
intrusions.  
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