
T1C1 10:00 Proceedings of the 2001 IEEE
 Workshop on Information Assurance and Security
 United States Military Academy, West Point, NY, 5-6 June, 2001

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 54

Abstract—As the frequency and complexity Internet attacks
increase, systems administrators need more sophisticated tools to
warn and direct their responses. The foundation for any such
effort is a coherent model of exploits and vulnerabilities that is
rich enough to capture the behavior and composition of multi-
stage attacks. This paper describes an enhanced attack tree
model of Internet attacks, and a companion specification language
for expressing aggregate attack behaviors and modalities. A
distributed attack notification and visualization system is briefly
described that uses the model as a common representation for
incidents captured by Intrusion Detection Systems (IDSs).

Index Terms—attack tree, vulnerability analysis, multi-stage
and coordinated attacks.

I. INTRODUCTION

HE increasing frequency and complexity of Internet
attacks has raised the level of sophistication required by

systems administrators to effectively cope with script kiddies
and more sophisticated hackers. Multi-stage attacks can be
orchestrated to strike highly protected targets, to coordinate
waves of scripted exploits and/or to conceal the true origin of
an attack. Unfortunately, correlating information from such
incidents is a difficult task exacerbated by heterogeneity,
interoperability and policy issues, made impossible by the lack
of a suitable model for Internet attacks.
 Identifying coordinated attacks in progress is still a black art
that relies on luck more than scientific methodology. Linking
one exploit with another, potentially across a global network
of heterogeneous and federated systems, requires
perseverance, cooperation, timeliness and a chain of
recognizable evidence that must survive hacker cover-ups,
purged logfiles and system administrator oversight. Advanced
Intrusion Detection Systems excel at collecting information
across heterogeneous networks [4,6,13,15,16]. Yet most still
regard coordinated attacks as unrelated collections of
intrusions. Next generation IDSs must cooperate with each
other and provide intuitive feedback for users to recognize a
pattern of attack from seemingly unrelated events [2,3,18].
 This paper presents an Internet attack model capable of
capturing composite attacks and briefly describes a distributed
attack notification and visualization system. The model
extends the attack tree concept [14] with parameters,
precondition and postcondition assertions, and other features
inspired by modern programming languages. Dual
specification languages are used to express exploits and
network characteristics. Together, they permit systematic
visualization, vulnerability assessment and attack prediction by

*To whom correspondence should be addressed (email: john-

hale@utulsa.edu).

a centralized monitor observing activity in a network.

II. BACKGROUND AND RELATED WORK
To this point, most of the research in the area of attack

modeling has focused on classifying and categorizing exploits
and vulnerabilities [1,7,8,9,10]. [5] proposes a comprehensive
taxonomy of Internet attacks based on effect and intent, and
presents statistics relating the frequency of incidents in each
category as reported to CERT from 1989-1995. Mitre’s CVE
database creates a common namespace for all vulnerabilities
and exploits [11]. The NIST I-cat project provides a database
interface over the web that allows users to browse and search
for exploits by platform, intent and other criteria [12]. Such
taxonomies and characterizations provide useful insights into
the nature of computer attacks, but fail to formally express
their composable properties.

In terms of modeling the behavior and effect of exploits,
attack trees offer a goal-oriented perspective that facilitates
expression of multi-stage attacks [14]. Attack trees in their
simplest form assert subgoals for achieving the goal set forth
by an attack node. Attack nodes can be grouped into ‘AND’
or ‘OR’ sequences to capture conjunctive and disjunctive
attack conditions, respectively. Nodes can be weighted to

reflect the likelihood of successfully mounting an attack.

Fig. 1 Web Server Attack Tree

In Figure 1 an attacker is seeking to gain root access to a

web server. There are 3 possible methods presented for
obtaining root access to this particular machine; 1) poor
configuration of the web server, 2) stealing the root password,
or 3) executing a sendmail exploit. The ‘AND’ nodes in this
example express that stealing a password may be
accomplished if a sniffer is in place during a root telnet
session. Attack tree nodes can be weighted to represent the
likelihood of success in achieving a goal. The tree in Figure 1
uses a likelihood scale of 1 (least likely) to 10 (most likely).

Modeling Internet Attacks
T. Tidwell, R. Larson, K. Fitch and J. Hale*

T

Root on Web
Server

Steal Password Sendmail Exploit
(6)

Poor
Configuration (2)

Sniff Network (8) Root Telnet (3)

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 55

Leaf node weights can be computed or hand-specified, while
internal branch weights are derived from the leaf node weights.
(Poor configuration is rated at a 2 as an unlikely occurrence.)

Fig. 2 Attack Specification Language BNF.

III. ATTACK MODELING
Parametric extensions to attack trees yield a flexible model

for capturing coordinated and multi-stage attacks. Each attack
tree specification template is defined with a unique identifier,
and a list of system element parameters. Templates contain
descriptive properties, preconditions, subgoals and
postconditions. Abstract and concrete goal-oriented attack
behavior can be expressed within the model; system element
parameters link attack specification templates to references in
subgoals, preconditions and postconditions. Figure 2 contains
the BNF specification for the parametric attack tree modeling
language.

Properties in the specification language perform an auxiliary
function in the model, and can be used to express arbitrary
exploit characteristics. For example, a common property is
description, which can be bound to a string literal that textually
describes the exploit. CVElink and version are also common
properties that link attack specifications to the Mitre CVE
database [11] and express the version of the attack
specification, respectively. Impact and likelihood of success

weights may also be stored as attack properties for use by
vulnerability assessment algorithms and heuristics.

Preconditions express system environment or configuration
properties that may facilitate or inhibit the successful
execution of an attack. Arbitrarily complex first order
predicate logic and boolean phrases may be articulated to
precisely describe enabling conditions for system compromise.
Precondition expressions may contain references to local
system variables or parameters.

Subgoals differ from preconditions in that they represent
antecedent objectives of system intrusions or compromises.
I.e., hackers search for favorable preconditions conducive to
the execution of particular exploits, while they must actively
fulfill attack subgoals in the pursuit of their ultimate goals.
Moreover, subgoal references must be attack node references
applied to system arguments within a strict “AND/OR”
hierarchical framework.

The format of a subgoal reference closely resembles a
function call in a conventional programming language (the
subgoal identifier applied to a list of arguments). As in a
function, the argument values are bound to formal parameters
in the subgoal definition (specification) upon evaluation.

Postconditions identify state changes in systems and
environments. These may alter the characteristics of network
and host elements (e.g. effecting a version rollback attack or
the placement of a logic bomb within software) or they may
express the viability or satisfaction of concrete or abstract
attack nodes, respectively.

Specifiers may use parameters to model attacks applicable
to a class of devices or systems. System element and attack
values and variables are bound to parameters in attack
templates producing attack nodes representing intrusion
events. The parametric attack modeling language uses a
hierarchical namespace for system elements comprising the
model’s type system. The namespace reflects a taxonomical
organization of network, system and host elements. For
example, System.OS.Linux.Version is an element of the
namespace tree that maps to all legal version numbers of the
operating system Linux. These elements can be used in the
left hand side of an assignment or comparison expression or to
type or cast a literal value.

Boolean operators use the namespace to create ownership
and inheritance relationships between system elements. The
contains operator checks to see if an element contains a field
with a given name, while the instanceof operator checks if an
element is an instance of a given type. Operands can be
literals, parameters or locally declared variables.

Abstraction plays a critical role in modeling composite
attacks. While concrete nodes are identified with specific
exploits, abstract nodes are used to serve as placeholders in an
attack tree for conceptual objectives such as execute_arbitrary()
or halt_system(). Abstract nodes may be linked to concrete
nodes or to each other to express the general effect of an attack
node.
 The principal use of the attack modeling language described
here is to systematically express compositional modes of
computer and network attack. In practice, a complete attack
tree defined for a host would include specific techniques and

goal ::= attack name (params)

{props vars preconds subgoals postconds}
params ::= param (, param)*
param ::= type ID
props ::= (prop)*
prop ::= property type ID = val ;
vars ::= (var)*
var ::= declare type ID ;
preconds ::= preconditions { orExpr }
orExpr ::= andExpr (| andExpr)*
andExpr ::= notExpr (& notExpr)*
notExpr ::= grpExpr | ~ grpExpr
grpExpr ::= atomicRule | (orExpr)
atomicRule ::= val boolOp val
boolOp ::= contains | instanceof | = | > | >=
 | < | <= | !=
subgoals ::= subgoals { (andSubgoals)* }
andSubgoals ::= (subgoal (, subgoal)*)
subgoal ::= name (args)
args ::= val (, val)*
postconds ::= postconditions { (stmt)* }
stmt ::= name := val ;
val ::= literal | name
name ::= ID (. ID)*
literal ::= version_literal | integer_literal
 | boolean_literal | date_literal
 | string_literal
type ::= version | integer | boolean

| date | string | name

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 56

vulnerabilities that would regard potential exploits satisfied by
system and subsystem properties. E.g., an attack template
might only apply to a machine running a specific version of
Linux or a Windows NT server configured in a particular
manner. Thus, networks, hosts and their relevant
characteristics must also be modeled faithfully to provide the
backdrop for vulnerability assessment. A network model and
specification language has been designed for this purpose.
Network specifications can be used to guide the use of attack
trees in vulnerability assessment. I.e., attack trees must be
constructed and then pruned to model precisely those exploits
associated with a particular system.
 System specifications represent concrete structures such as
computer networks or hosts. Figure 3 contains a BNF
grammar for a system specification language, which consists of
two parts: a type definition and an instance. The type definition
is a set of entity type declarations, similar to complex data
types in modern programming languages. Each type represents
a class of entity in a given domain, such as hardware (e.g. a
router), software (e.g. an operating system or application), or
even human (e.g. employees) and paper (e.g. files). (As a
result the model facilitates the analysis of social engineering
threats as well as those from cyber attack.)
 Each type definition consists of a name and a list of
declared properties. Properties can be primitive types; version,
integer, date, etc. They can also be references to other entities
(entity types), lists of a given type, or internal entities.
Properties describe the defined entity. Default property values
can be specified in type definitions.
 The system specification language uses a hierarchical type
system. Thus types can inherent properties of other type
definitions by using the extends keyword. Properties of the
parent type are implicitly bestowed upon the child type but can
be overridden. Type names consist of an identifier and a
namespace.

declUnit ::= (typeDecl | objDecl)*
typeDecl ::= type name { propDecl* }
propDecl ::= type ID (= val)opt ;
name ::= ID (. ID)*
type ::= primType | listType | refType
primType ::= version | integer | boolean |

date | string
listType ::= type list
objDecl ::= name name { propAssign* }
propAssign ::= ID = val ;
val ::= literal | name
literal ::= primLiteral | listLiteral | objLiteral
primLiteral ::= boolean_literal | integer_literal

| version_literal | string_literal
| date_literal

listLiteral ::= { val (, val)* }
objLiteral ::= name objBody

Fig. 3 System Specification Language BNF.

Namespaces are used to aid in the organization and

separation of entity classes. Namespace elements are

syntactically similar to Java packages. Entity class standard
names such as ‘Machine’ and ‘Application’ are defined to provide
a common naming convention for system specifications.
 The second part of the system specification language, the
instance, uses declared types to model an actual system,
network or host. Entities are declared with a type and optional
name, much like a variable. The body of the entity declaration
establishes properties of the entity defined in the type
declaration. Properties can be entities themselves, allowing
complex systems and subsystems to be modeled.

IV. EXAMPLE
This section presents a simple attack scenario modeled with

the attack and system specification languages, respectively.
As shown in Figure 4, the system modeled is a simple network
containing two hosts of particular interest; dante.utulsa.edu
and virgil.utulsa.edu.

dante.utulsa.edu

Workstation 1

Workstation 2

Workstation 3

router.utulsa.edu

Hub

virgil.utulsa.edu

Fig. 4 Network Topology.

The multi-stage exploit modeled in this scenario affects two

hosts (dante and virgil), using one to attack the other. Figure 5
presents a thumbnail sketch of the hosts involved in the attack.

dante.utulsa.edu (240.1.1.1)
OS: Sun Solaris 7.0 x86
Services: MySQL 3.23.9
 in.telnetd

virgil.utulsa.edu (240.1.1.1)
OS: Redhat Linux 6.1 i386
Services: BIND (named) version 8.2

Fig. 5 Host Profiles.

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 57

The attack scenario on this network plays out as follows:

1. The attacker first identifies virgil.utulsa.edu as a linux

system running a vulnerable version of named. She
performs a buffer overflow exploiting the ‘nxt bug’
vulnerability (CVE-1999-0833 – Bugtraq ID 788) to
obtain access to virgil’s root account.

2. Next the attacker sets up a packet sniffer on virgil in order

to capture all traffic on the local (un-switched) network.
Eventually, she is able to capture a clear-text telnet login
session from a local workstation to dante and extracts
username and password information from it. She now has
access to a valid user account on dante.

3. The attacker then logs onto dante with the username and

password she sniffed. From the account, she utilizes a
vulnerability in MySQL (SELECT statement local buffer
overflow exploit - Bugtraq ID 2262) to obtain root access
on dante.

 This attack sequence employs a local buffer overflow in
MySQL, and a BIND vulnerability – one of the most prevalent
network vulnerabilities as recognized by the SANS Institute
[17]. Abbreviated profiles of both the BIND_nxt and the
MySQL_SELECT vulnerabilities are given in Figure 6.

BIND nxt Vulnerability
[http://www.securityfocus.com/bid/788]
 Date: November 10, 1999
 Bugtraq ID: 788
 CVE name: CVE-1999-0833

MySQL SELECT Vulnerability
[http://www.securityfocus.com/bid/2262]
 Date: January 18, 2001
 Bugtraq ID: 2262
 CVE name: CVE-MAP-NOMATCH

Fig. 6 Attack Profiles.

Each of these vulnerabilities is modeled as an attack template
with the attack specification language. Figures 7 and 8 show
attack specifications expressed as templates and stored within
the files ExploitBIND_nxt_Vulnerability.atk and
ExploitMySQL_SELECT_Vulnerability.atk, respectively.

The attack specification for the BIND_nxt exploit is
parameterized by Service and expresses preconditions on that
service identifying it as named and constraining the version to
between v8.2 and v8.2.2. The single subgoal for this exploit is
gaining access to port 53.

The attack specification for the mySQL exploit is
parameterized by Application and its preconditions express the
requirement that the application be an instance of MySQL,
constraining the version to between v3.22.26 and v3.23.9. The
only subgoal here is being able to execute the application.

 Fig. 7 ExploitBIND_nxt_Vulnerability.atk

Stylistically, liberal use of property fields and comments
makes the specification much more readable (and in the
specific case of properties, searchable). Postconditions in
these specifications have been omitted: They are not needed
to construct the attack tree, but may be useful and even
necessary to perform vulnerability assessment and attack
prediction.

/* ExploitMySQL_SELECT_Vulnerability
* Author: Kenneth Fitch
* Date: 2001 March 22
* Src: http://www.securityfocus.com/bid/2262
*/

attack
application.mysql.ExploitMySQL_SELECT_Vulnerabilit
y
(Application a)
{

property string CVE_ID = "CVE-MAP-NOMATCH";
property string BugTraqID = "2262";

preconditions
{ a instanceof MySQL_Application &

a.version >= v3.22.26 & a.version <= v3.23.9
}

postconditions {}

subgoals
{ (ExecuteProgram(a)) }

}
Fig. 8 ExploitMySQL_SELECT_Vulnerability.atk.

Figure 9 illustrates the full attack tree for compromising

dante via virgil. The tree can be divided into two subtrees; one
that models the attack on virgil (contained in the lower box in
Figure 9) and one that models the attack on dante (contained in
the upper box in Figure 9). The tree exhibits a uniform chain
structure except for the subgoals of

/* ExploitBIND_nxt_Vulnerability
* Author: Kenneth Fitch
* Date: 2001 March 22
* Src: SANS Top 10, www.securityfocus.com,
* www.cert.org/advisories/CA-1999-14.html
* Notes:
* BIND weaknesses #1 Internet security
* threat according to SANS
* www.sans.org/topten.htm>
*/

attack service.bind.ExploitBIND_nxt_Vulnerability
(Service s)
{

property string CVE_ID = "CVE-1999-0833";
property string CERT_advisory = "CA-1999-14
Multiple Vulnerabilities in BIND";
property string BugTraqID = "788";

preconditions
{ s instanceof named_Service &

s.version >= v8.2 & s.version < v8.2.2
}

postconditions{}

subgoals
{ (ConnectToHost(s.host, 53)) }

}

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 58

ExploitMySQL_Select_Vulnerability(dante), which comprise
two ‘AND’ nodes – CompromiseAccount(dante) and
ExecuteProgram(dante.MySQL) – both of which are required
to trigger the exploit. Note the use of abstract nodes as mortar
to connect concrete nodes in the tree. This is a common
technique, as is layering abstract nodes to manage complexity
and to model non-exploit (authorized) behavior.

CompromiseRootAccount (dante)

ExecuteArbitraryCode (dante)

CompromiseAccount (dante)

ObtainAccountPassword (dante)

ExploitMySQL_SELECT_Vulnerability (dante)

ExecuteProgram (dante.MySQL)

CaptureNetworkPackets (virgil)

CompromiseRootAccount (virgil)

ExecuteArbitraryCode (virgil)

ExploitBIND_nxt_Vulnerability (virgil)

CaptureLoginSession (dante)

ConnectToHost (virgil, 53)

Attack Tree for
dante

Attack
Tree for
virgil

Fig. 9 MYSQL_SELECT Attack Tree.

V. ATTACK NOTIFICATION SYSTEM
The Attack Visualization System derives its functionality

through the interaction of four distinct entities: the Network
and Attack Model Databases, the Attack Notification Service,
and the Attack Monitor. Each component plays an integral
role in helping systems administrators and ISSOs identify and
extinguish multi-stage network attacks.

The Network and Attack Model Databases are populated
from the system and attack specification languages,
respectively. Special compilers parse expressions of each
language, generating the database update commands necessary
to map the model into a relational structure. The Attack
Model Database serves as a centralized repository of exploit
knowledge remotely accessible by a large population of
network administrators and ISSOs. This database contains a
relational view of individual “templates” that are self-
contained goal-oriented descriptions of an attack. On the other
hand, the Network Specification Database is intended to
provide an integrated view of an individual enterprise network,
and as such may only be accessible by a handful of
administrators and staff within a single enterprise. Individual
network elements and their properties will be stored to provide

easily accessible information about the current network state.
To further allow the Network Specification Database to
represent current network conditions it can be updated on-the-
fly by network scanning or attack monitoring software.

NetSpec DB
(SQL)

Attack DB
(SQL)

Intrusion DetectionAttack Notification
Service

Attack Visualization
System

Network
Specifications

Attack
Specifications

NetSpec Parser Attack Parser

.nsp

SQL

.atk

SQL

attack

signatures

attack event
(node id +

parameters)

query

signature/attack
id

 crosscheck

query

this.os.winnt.v1.0.2.3
1.1comprimise sys.
 2.1 comprimise trusted
sys.
 2.2 gain root
 3.1 run arbitrary code
 3.2 acquire password
 4.1 social engineering
 4.2 sniff

this

Attack Visualization
System Architecture

Fig. 10 Attack Visualization System and Notification Architecture.

While one of the primary uses of the models and

visualization system is to conduct vulnerability assessments,
the architecture can be extended to provide real-time attack
notification and monitoring services. By strategically placing
Attack Notification Service software on hosts in a network, the
central monitor can be informed of hostile activities, rendering
them in real-time on a graphic overlay of the network under
attack. Attack Notification Service software must be linked
with an Intrusion Detection System to correlate audit data with
attack signatures. Once an attack is discovered and identified
by an IDS, the Attack Notification Service retrieves the correct
attack template from the Attack Model Database and uses it to
instantiate an attack node, binding formal parameters to
arguments along the way. The attack node is then shipped to
the centralized monitor where it can be analyzed and
potentially placed within an attack tree to capture its role in a
multi-stage or coordinated attack.

The Attack Monitor contains the visualization and analytical
functions that implement and render vulnerability assessment,
attack predication and real-time attack notification. It derives
its functionality from interaction with the other components in
the system. The Network Specification Database provides a
model of the system under observation. The Attack
Notification Service provides warnings and data regarding
attacks in-progress. The monitor can update the Network
Specification Database as events (hostile or not) effect state
changes on hosts and networks.

The visualization component of the monitor’s software
architecture leans heavily on the object-oriented representation
of system and exploit elements. Adopting a ‘model/view’
approach to graphical representation, the visualization system
consists of intelligent rendering methods placed within each
model element class. These methods must be able to
intuitively display current network information and attacks,
and visually distinguish between contrasting logical states.
They must also be aware of their context to provide a suitable

ISBN 0-7803-9814-9/$10.00 © 2001 IEEE 59

graphical representation that is appropriately scaled and
located within the current view. Moreover, graphical elements
in the system must be interactive so that when users wish to
focus their attention on particular objects, they can easily
manipulate the view to accommodate their interests.

Analytical functions within the monitor serve several
purposes; vulnerability assessment, tree construction and
attack prediction. Each of these functions executes in either
online or offline mode. Online mode engages the Attack
Notification Services to observe and evaluate incidents in real-
time over a network. Offline mode disengages the Attack
Notification Service so that simulations and hypothetical
analyses may be conducted.

Vulnerability assessment functions construct an attack tree
with a root objective targeting a specific system element in a
network specification. The attack tree is constructed in a top-
down fashion by chaining attack templates that match
vulnerabilities found within the active network specification.
Weights reflecting likelihood of attempt or success may be
used to prune branches that do not rise above a minimum
threat threshold.

Tree construction functions model on-going attacks. Attack
Notification Services transmit attack nodes representing actual
attacks discovered by IDSs. Attack trees may also be
constructed from a simulation mode that replaces the Attack
Notification Service with a local attack node generation
software component. In either case, the monitor collects attack
nodes and uses heuristic methods and abstract nodes to
construct a forest of attack trees linking recent and on-going
attacks within a network. Attack tree nodes are linked to the
system elements they affect, creating an intuitive navigation
scheme for user inspection.

Disconnected attack trees may be the result of unrelated
hostilities, or undiscovered incidents. Analytical functions
within the monitor can query the Attack Model Database in
search of attack templates (and corresponding arguments) that
can connect attack trees. Such functions may help
administrators locate previously undiscovered attacks. In
addition, analytical functions may search the Attack Model
Database for attack templates that accept the roots of
constructed attack trees as subgoals, thereby enabling attack
prediction.

VI. CONCLUSIONS AND FUTURE WORK
Internet attack models must capture aggregate behavior to

provide a realistic view of system exploits. Parametric attack
trees offer a flexible framework for expressing exploits and
multi-stage attacks. The attack visualization system described
in this paper combines parametric attack trees with a system
specification language to support vulnerability assessment and
attack visualization. Moreover, remote attack notification
services communicating with a centralized monitor allow
network administrators and ISSOs to observe and respond to
intrusions in real-time. Advanced functions within the monitor
assist in attack prediction and can help network administrators
and ISSOs identify and isolate as of yet undiscovered
intrusions.

REFERENCES
[1] Aslam, T., Krsul, I. and Spafford, E. Use of a Taxonomy of Security

Faults, Proceedings of the 19th NIST-NCSC National Information
Systems Security Conference, pp. 551 – 560, 1996.

[2] Feiertag, R., Kahn, C., Porras, P., Schnackenberg, D., Staniford-Chen,
S. and Tung, B., Common Intrusion Specification Language (CISL),
Technical Report, CIDF Working Group, 1998.

[3] Frincke, D., Tobin, D., McConnell, J., Marconi, J. and Polla, D. A
Framework for Cooperative Intrusion Detection, Proceedings of the 21st
NIST-NCSC National Information Systems Security Conference, pp.
361-373, 1998.

[4] Heberlein, L., Dias, G., Levitt, K., Mukherjee, B., Wood, J. and Wolber,
D. A Network Security Monitor, Proceedings of the IEEE Symposium
on Security and Privacy, pp. 296-394, 1990.

[5] Howard J. “An Analysis of Security Incidents on the Internet, 1989-
1995,” PhD Dissertation, Department of Engineering and Public Policy,
Carnegie Mellon University, Pittsburgh, Pennsylvania, 1997.

[6] Javitz, H., Valdes, A. The SRI IDES Statistical Anomaly Detector.
Proceedings of the IEEE Symposium on Security and Privacy, pp. 316-
326, 1991.

[7] Kumar, S. “Classification and Detection of Computer Intrusions,” PhD
Dissertation, Department of Computer Science, Purdue University, West
Lafayette, Indiana, 1995.

[8] Lackey, R. Penetration of computer systems: An overview. Honeywell
Computing Journal, 8(2), pp. 81-85, 1974.

[9] Landwehr, C., Bull, A. McDermott, J. and Choi, W. A taxonomy of
computer program security flaws. ACM Computing Surveys, 26(3), pp.
211-254, 1994.

[10] Lindqvist, U. and Jonsson, E. “How to Systematically Classify
Computer Security Intrusions,” Proceedings of the IEEE Symposium on
Security and Privacy, pp. 154-163, 1997.

[11] http://cve.mitre.org, “Common Vulnerabilities and Exposures.” The
MITRE Corporation, Bedford Massachusetts, 2001.

[12] http://icat.nist.gov, “ICAT Metabase.” The National Institute of
Standards and Technology, Gaithersburg, Maryland, 2001.

[13] Porras, P. and Neumann, P., EMERALD: Event Monitoring Enabling
Responses to Anomalous Live Disturbances, Proceedings of the 20th
NIST-NCSC National Information Systems Security Conference, pp.
353-365, 1997.

[14] Schneier, B., “Attack Trees,” Secrets and Lies. pp. 318-333, John Wiley
and Sons, New York, 2000.

[15] Snapp, S., Brentano, J., Dias, G., Goan, T., Heberlein, L., Ho, C., Levitt
, Mukherjee, B., Smaha, S., Grance, T., Teal, D., and Mansur, D. DIDS
(Distributed Intrusion Detection System) -- Motivation, Architecture,
and an Early Prototype, Proceedings of the 14th NIST-NCSC National
Computer Security Conference, pp. 167-176, 1991.

[16] Staniford-Chen, S., Cheung, S., Crawford, R., Dilger, M., Frank, J.,
Hoagland, J., Levitt, K., Wee, C., Yip, R. and Zerkle, D. GrIDS – A
Graph-Based Intrusion Detection System for Large Networks.
Proceedings of the 19th NIST-NCSC National Information Systems
Security Conference, pp. 361-370, 1996.

[17] http://www.sans.org/topten.html “How to Eliminate the Ten Most
Critical Internet Security Threats: The Experts’ Consensus, Version
1.32.” SANS Institute, 2001.

[18] Vert, G., D. Frincke and McConnell, J. A Visual Mathematical Model
for Intrusion Detection, Proceedings of the 21st NIST-NCSC National
Information Systems Security Conference, pp. 329-337, 1998.

