

Abstract − With the advance of Internet technology and
network bandwidth, Application Service Provider (ASP) mode
of computing is becoming a very attractive target of the next
wave of Internet revolution. However, the ASP model and its
implementation technologies have not been thoroughly
investigated.

In this paper we highlight the essence, benefits, and
importance of the ASP model as the first form of commercial
service-based computing, and the interplay of the ASP model
and component technologies. We survey the main supporting
technologies for ASP, identify major challenges to the
development of ASP applications, and propose solution
approaches. We predict that the ASP model coupled with
service standardization will lead to networked economy in
which cooperative and specialized computing will be realized
at the service level.

Index Terms − application service providers, distributed
components, Internet computing, distributed computing

I. INTRODUCTION

Computer hardware produces computing resources in forms
including processor time, data, and data access bandwidth.
Application software consumes these resources and delivers
services to users. To users, computers and applications are
only means to get computing services.

The separation of resources and application from service
can find analogies in public utilities. For electricity, the
electrical power is the resource, and light bulbs and
electrical heaters, which are examples of electrical
application devices, transform the electrical resource into
light and heat. Comparably, for telecommunications, the
virtual channels are the resource, and telephones and fax
machines, which are examples of telecommunications
application devices, use this resource to deliver phone-call
and faxing services.

Similar analogies can also be made for computing based on
the Internet. For instance, Internet bandwidth as well as
hardware and data on web and application servers are

 The author is with Department of Computer Science, Concordia
University, Montreal, Quebec, Canada, and can be reached at
taol@acm.org

resources; server software and server-based software
embedded in web pages are applications. Users can get
services by accessing server data or running the server
applications, and using the Internet as an “extension cord”
between the server machines and the user I/O devices.
Since processor time cannot be easily delivered on a
network, the computing applications are usually hosted on
servers.

Due to technological limitations, the computing industry
has so far mainly adopted the commercial model of selling
computers, which are computing resource generators, and
licenses of applications. The users are responsible for the
installation and maintenance of computing infrastructure
and applications, which may constitute significant overhead
on the users. For example, such overhead may exclude
small and medium-sized enterprises from the benefits of
advanced enterprise management services. This model also
leads to very low utilization of office and personal
computing resources and applications.

On the contrast, the utility industries have long adopted the
commercial model of selling resources or services. The
resources or services are delivered by comprehensive
delivering infrastructures to the users. Users pay by a fixed
subscription fee, or by actual usage of the resources or
services. For electricity, water, and gas, the corresponding
industries sell resources only. For telecommunications
industry, in addition to the basic bandwidth resource, value-
added services, such as directory service, caller-ID service,
and call-waiting service, are becoming important
components of the services sold to the users. This
commercial model enjoys sharing of resources and
amortization of infrastructure cost, thus achieving
economies of scale; expertise pooling; value-added
services; rich experience in service quality level control;
rich cost models; and standardization of the resources and
main services.

For the computing industry to benefit from the model of
selling services, some basic technological and infrastructure
hurdles must be overcome. First, the computing resources
must be divisible, thus the processor time from a single
computer can be shared by large number of users. Second,
there should be a comprehensive delivering system for
services. Third, the applications must be designed to
support server hosting.

Application Service Provider Model:
Perspectives and Challenges

Lixin Tao , Member IEEE and ACM

 2

As early as 1963, with the success of time-sharing operating
systems and the emergence of larger computers, a group of
engineers from MIT, GE (which later sold its computer
department to Honeywell), and Bell Labs proposed to
design a new operating system called Multics with the
objective of selling computing as services [1]. With the
original plan, large computer systems would be connected
by telephone wires to terminals in offices and homes
throughout a city, and the time-shared operating system
would be running continuously with a vast file system of
shared programs and data. Even though this objective never
materialized, Multics is among the first attempts of
computing industry to sell computing as services.

In the last four decades, a series of technological
breakthroughs made the dream of selling computing as
services closer to reality. Supercomputers and clustering
technologies have made huge computing raw power
available. Time-sharing operating systems have made
computing resources a divisible utility. Personal computers
have educated generations of office and house computing
users. The Internet has become the largest data and
computing service delivery infrastructure, and a new
platform of network-centric computing. The World Wide
Web has enabled the widespread growth of electronic
commerce (e-commerce), and web browsers have become
universal graphical user interfaces (GUI) for Internet-based
services and thin clients. Component technologies have
made it possible to produce huge number of reliable
distributed software applications and benefit from
specialization and greater economies of scale. Recently,
Application Service Providers (ASP) have started a new
wave of Internet revolution: use the Internet or other wide
area networks (WANs) to provide on-line application
services on rental basis. For simplicity, in this paper we use
“ASP model” to denote this new service-based computing,
and “ASP” the businesses based on the ASP model. While
the ASP practices vary from company to company at this
immature early stage of the ASP era, we focus on studying
the perspectives and challenges of the ASP model of
computing in the near future. In ASP terminology,
software rental is the same as service sale.

ASP represents the beginning of commercially delivering
computing as services. The ASP market is projected to
grow rapidly over the next three to five years, from a very
small base to over $20 billion in 2003 (Figure 1), yielding
compound annual growth in excess of 80% [10]. But for the
ASP model to become the mainstream of computing
industry, significant breakthroughs have to be made in
networking infrastructure, computing technologies, and the
rental-based cost models and financial services.

While ASP is changing the infrastructure and model of
computing, the ASP model compounded with the effect of
distributed component technologies will start a new era of
competitive network based computing. The standardization
of distributed components will make integration of
applications with distributed components a common
practice, and the standardization of common application

data formats or application programming interfaces (APIs)
will further break the monopoly of application service
providers, thus instill new energy into the competitive
network-centric computing platform. A networked
economy will be possible in which modular services from
different providers can be easily integrated into new
services.

$0

$5,000

$10,000

$15,000

$20,000

$25,000

1999 2000 2001 2002 2003

ASP market in
millions

Figure 1 ASP market forecast

So far the ASP model has been limited as a hot subject of
industries only, and the research community has not treated
the subject at a level commensurate to its importance. This
paper aims at surveying the relevant ASP supporting
technologies, highlighting the technological challenges
introduced by the ASP model, and studying the impact of
the ASP model on the general computing infrastructure.

In Section II, we outline the current ASP industry: its
identity, value proposition, composition, and services. In
Section III, we summarize the current ASP enabling
technologies and development platforms. Section IV
describes the main technological challenges to supporting
ASP. Section V explains why the ASP model will become a
corner stone of the new competitive network and
component-based computing infrastructure, and foundation
of the networked economy.

II. APPLICATION SERVICE PROVIDERS IN PRACTICE

A. Origins of Application Service Providers

ASPs are emerging from three separate trends [8][9][10]
(Figure 2). From the Information Technology (IT) services
industry comes a trend towards selective outsourcing.
Among Internet Service Providers (ISPs) the relevant trend
has been towards application hosting. Finally, Internet-
based enterprises have begun to offer online applications as
part of a phenomenon called browser-based computing.

1) Selective outsourcing

The practice of outsourcing has a long history in the IT
services industry. In recent years, it has evolved to provide
increasing levels of granularity in the choices offered to
customers. Instead of handing over their complete IT
infrastructure to an outside provider, organizations have
selectively outsourced specific parts of IT, ranging from

 3

data networking all the way through to application
management. This has been combined with a trend towards
fixed and per-user pricing, often levied in the form of a
monthly subscription. ASP propositions emerging out of
this strand of development take several distinct forms:
application outsourcing, systems management outsourcing,
infrastructure outsourcing, whole-environment outsourcing,
and subscription computing.

Application hosting

Selective outsourcing

ASP

Browser-based
computing

Figure 2 The ingredients of ASP

2) Application hosting

Internet service providers have always been ASPs to the
extent that the provision of hosted mail and web servers is
an application service. Over time, the ISP industry has
divided between those who provide access and connectivity
services, and those who offer hosting services. The latter,
particularly as they move into sophisticated e-commerce,
messaging, and other complex web hosting services, are
effectively ASPs. A new class of application software
vendors, which uses the hosting model to provide Internet-
based applications and services, has joined them. Although
the Internet industry uses the term application hosting, it
differs only in name from other forms of application
services. There are several distinct subcategories: Internet
web server hosting, application server hosting, e-business
services, Internet infrastructure services

3) Browser-based computing

Web sites started out as Internet destinations that offered
only static content, mainly words and images. Today,
visitors are increasingly using applications rather than
simply viewing content. For gaining the “stickiness” that
keeps users returning to their site, information sites have
added applications to create dynamic and interactive
experiences. Meanwhile, a new generation of software
vendors is bringing their applications to market as web-
based services, accessed directly over the Internet.

These separate trends converge in serving either specialized
business needs or vertical industry markets. This is the
advent of browser-based computing − the provision of
sophisticated online applications alongside relevant content
from a web site, catering to the specific needs of a special
interest group. There are several variations, each of them a
significant category in their own right: network-based
application vendors, Internet business services, vertical
industry web sites, Internet marketplaces, and enterprise
extranets

B. Benefits of the ASP model

The benefits of the ASP model derive from the fact that
software applications being distributed over multiple
servers rather than dispersed over multiple clients
[8][9][10]. The greatest benefits can be derived from the
combination of a rental commercial model, a component
based application architecture, and a server-based thin-
client computing environment.

The benefits for software vendors and service providers
include

• No distribution costs. Vendors do not have to print
manuals, press disks or order thousands of colorful
cardboard boxes. They do not have to warehouse,
manage, and distribute stock, or operate a returns
procedure.

• No user installation. Users do not swamp support for
help with installation because there is no installation.

• Fewer illicit copying. Users usually do not download
the software, so they cannot copy it.

• Instant upgrades. Suppliers are free to implement
bug fixes and new features without having to trace
and notify users and then wait for them to download
and install the new code.

• Consistent user base. The proliferation of different
versions and release levels of the software in the user
base is either greatly reduced or completely
eliminated.

• Usage monitoring. Suppliers can monitor usage to
gain a much greater understanding of user interaction
with the product. They can discover which features
are most and least popular, which appear to cause
most problems, which need to be streamlined to
improve productivity.

• Potential constant revenue stream. Suppliers are not
obliged to come out with new releases boasting extra
features every year in order to maintain a revenue
stream. They can achieve the same objective by
maintaining a stable user base with a competitive
service-quality /cost ratio.

The benefits for users include

• Limitless choice. The Internet gives users access to
every rentable application that is available online.
The model is as persuasive as the PC. Software rental
gives them unbounded potential to access and
combine services at will.

• No install hassle. As soon as the user signs up, the
software is ready to use. There is no client
installation. The only reason for delay is to have the
software configured to meet specific requirements or
to allow for integration with other systems.

• No compatibility issues. Users do not have to worry
about whether their system is powerful enough to run
online software or whether the software will conflict
with other applications they already have installed,

 4

because they do not install it. They just access it
online.

• No support overhead. Users do not have to employ
expensive administration and support staff to operate
complex software installations and the equipments
required to run them. The service provider takes care
of all that, and averages the cost across all its
customers.

• Reduced downtime. Most online service providers do
a much better job of ensuring 24x7 availability of
applications than their customers would be capable of
achieving on their own, since it is the providers’ core
bread-and-butter business activity.

Figure 3 explains why the current ASP customers adopt
this new model of computing.

Figure 3 Reasons for users to adopt ASP

The benefits for investors include

• A high percentage of predictable, recurring revenue
through competitive ASP operations. In a mature
market, virtually all of an ASP’s revenue should be
recurring.

• Leverage generated from a one-to-many solution
model. This can come from reusable solutions and
higher staff productivity due to lower travel rate and
higher familiarity with the infrastructure.

• High switching costs for customers in an immature
ASP market. At this early stage of ASP, many service
providers are taking advantage of the lack of service
standardization to keep the clients against their wills.

• High returns on investment through leveraging fixed
costs.

• An expansion of the addressable market for
information technology. Because of their potentially
lower price points, ASPs have the opportunity to
expand the market for packaged software to small
and middle-sized enterprises.

• Ability to sell high-margin, value-added services into
the customer base. ASPs will have a highly captive
customer base to sell additional services.

The disadvantages of ASP include its difficulty in securing
client data and limited performance due to the limited
bandwidth of the Internet. We will address these issues in
the later sections.

C. ASP Channel Stratification

There has been a stratification of the ASP channel into a
number of interlocking layers, each with its own areas of
core competence [8][9].

While an end user customer experiencing an ASP solution
will deal with only one provider, in most cases that solution
will be made up of various components coming from
several different layers of providers. Among those hidden
layers there might be a company that, even though it is a
major contributor within the solution, never has a direct
ASP relationship with the end customer.

This stratification is a natural consequence of the multi-
tiered computing architecture that enables the ASP model.
With various elements of the solution performed on
separate, specialized servers, it becomes an obvious next
step to have each of those elements catered for by separate
and specialized providers.

Some ASPs continue to argue in favor of a vertically
integrated model in which they own and control every
element from top to bottom, while others promote the
merits of outsourcing to best-of-breed providers. The
former approach can deliver tighter integration and more
assured control, while the latter normally benefits from
greater economies of scale. But every provider outsources
at least some element of the solution. Those who host at
their own server centers rarely write their own software. It
is up to providers - and their customers - to weigh the risk
of outsourcing against the cost of in-house provision, and
strike the balance that best suits their particular
requirements.

The four primary subdivisions of the ASP channel are set
out below (Figure 4). Within each of those layers there are
many different possible components. An ASP solution
might be made up of contributions from a dozen or more
different providers, each responsible for just one
component. Alternatively, just one or two providers may
fulfill it, each of whose activities straddles several layers.

Network services

Infrastructure

Software

Solution providers

Figure 4 ASP channel stratification

1) Network services

At the network layer sit the providers of basic
communications, server center resources, and value-added
IP (Internet Protocol) services. Communications include the
physical connections, the routers that handle the IP traffic,
and the associated performance, reliability, and security

 5

applications. Server center resources typically embrace the
provision of collocation space, protected electricity
supplies, and physical security and maintenance services.
Value-added IP services include virtual private networking
(VPN), network caching, streaming media, firewalls, and
directory services.

2) Infrastructure

The next layer is a rapidly emerging space with rich
pickings for talented early entrants. Many providers offer
individual services such as utility storage and server
hosting, or operational resources such as call centers,
finance, technical support and so on. Some have gone on to
coordinate third-party services along with their own in-
house skills and resources to provide a complete
infrastructure that allows their clients to operate as ASPs.
This ASP infrastructure provider (AIP) role includes the
coordination of network and systems management, the
supply, operation and management of systems hardware
and software, and the management of ASP subscriber
accounts, billing and customer support. A further important
element comprises application management, service level
monitoring, helpdesk infrastructure, and the streamlined
messaging of alerts and support information between
partners within the ASP channel stack.

Many ASP pioneers have gravitated towards this AIP role,
sensing the opportunity to turn their early experience into a
marketable commodity that can be packaged and sold as a
solution to newcomers. They offer the service to
independent software vendors and systems integrators who
wish to bring existing client/server applications across to
the ASP environment, often advising on the fine-tuning and
re-engineering required to enable them to run effectively
from a shared, Internet-based server center.

3) Software

Software providers add the vital ingredient that enables the
finished application service. The software may be a ready-
made, packaged application that is adapted for ASP
delivery, or it may be specifically developed for the
purpose. There are a number of application server platforms
suitable for the creation of ASP offerings, although at
present few offer a complete set of services for functions
such as service deployment, subscriber management,
support, service level management, and billing.

While most development is done in-house by independent
software vendors (ISVs), a growing number of software
companies and systems integrators are developing
specialized skills in building online application services to
order.

4) Solution providers

Solution providers fulfill the final step in the chain. These
are the true ASPs, who package the software and

infrastructure ingredients together with business and
professional services to create a complete service product to
present to the end customers.

III. SUPPORTING TECHNOLOGIES FOR ASP APPLICATIONS

Applications running on ASP servers need special
properties, such as separation of business logic from
presentation with Internet protocols; reentrant code;
scalability; efficient storage and retrieval of session data;
and lifetime management.

Most existing client/server applications are not suitable for
ASP hosting. But for those who believe time-to-market is
more important than quality of service, there are some
technologies to support fast-track adaptation of existing
client/server applications for ASP hosting by logically
extending the cord between ASP servers and client PCs’
I/O devices.

Microsoft Windows 2000 Terminal Services (WTS) is an
example technology in this category. WTS allows standard
Windows-based client/server applications to run on the
server instead of on a client PC. Clients running Windows
terminal software can then access the sessions through
Microsoft Remote Display Protocol (RDP).

As another example in this category, Citrix, the original
developer of the core technology underlying WTS, has its
own Independent Computing Architecture (ICA) for
delivering sessions to clients, which supports non-Windows
clients on platforms such as Java and Unix as well as the
Windows clients supported by Microsoft RDP. It also offers
a technology called Application Launching and Embedding
(ALE), which allows Windows applications on the server to
be accessed from any browser without the need to install
special Citrix or Microsoft client software.

To fully benefit from the ASP infrastructure, ASP
applications must be designed and implemented for ASP
purpose. The complexity and cost of such applications
mandate their adoption of the component approach. Even
though different ASP applications may provide different
services, they do share many functions like user
subscription and management, billing and payment
processing, service quality control, data storage and
management, and authentication and verification. The rule
of thumb for the success of a small or medium-sized
enterprise is: spending 90% of its investment in optimizing
the 5-10% components in its expertise domain, and
adopting commercial-off-the-shelf (COTS) components for
the rest of its applications. For advanced external
components it may be better off to let them be hosted by
other specialized ASPs, which is exactly the concept of
service integration.

A common concern for the component approach is the
quality of external components, since the source code of

 6

them is usually kept away from the system integrators. Our
arguments are: in-house code is usually inferior to
components implemented by specialists; market
competition is the major driving force for producers of
components based on publicly-accepted standard APIs to
perfect their products; and public adoption of a commercial
component will lead to early discovery of its bugs and
deficiencies.

A. A Reference Model for Distributed Components

A component is a binary module of code that supports
system integration. A component is usually implemented as
an object with some extra properties. A distributed
component further supports interoperation and
collaboration of components running on different
processors across a network. A full-fledged distributed
component usually has the following properties:

• Universal reference. Each instance of the component
must have a reference or ID unique across the world,
so that other component instances can call methods
on it through the Internet. Such reference should be
valid across various computing platforms, component
implementation languages, network protocols, and
geographical distances.

• Network interoperability. Any two component
instances on the Internet should be able to interact
with each other without regard to the computing
platforms, implementation languages, network
protocols, and geographical distances.

• Introspection. Without the source code of a
component, the computing environment or other
component instances should be able to dynamically
find out the API of the component including types
and signatures of public attributes and methods. This
will enable dynamic interaction between two
component instances unknown to each other.

• Customizability. The attributes and behavior of a
component instance should be able to be customized
off-line, usually visually with an integrated
development environment (IDE) tool, without
touching the source or binary code of the
instantiating component.

• Toolability. The above customization, as well as
component integration, should be able to be carried
out in a visual tool environment. This will enable
system integration and management without coding.

Since the component instances will interact and collaborate
across networks, a component supporting system must be
used to provide various services either on-line or off-line.
Typical services in this category include

• Naming. It associates user-friendly names with
references of component instances. The names should
be globally unique.

• Trading. Just like phone yellow pages, trading
service will allow new components to be published
on the Internet, and looked up by potential users
according to categories of services.

• Life cycle. Life cycle service is responsible for
handling the instantiation, migration, copying, and
destruction of component instances. It is the key to
support visual dynamic integration of applications
and services.

• Persistence. Persistence service will allow
component instances to be activated automatically
upon client invocation; it will automatically save the
state of a component instance during server crash,
restore the saved state upon re-instantiation, and
support the illusion that component instances and the
references to them are persistent.

• Event. This service is the key to support event-driven
execution among components. Event services are
usually components themselves. Event source and
sink components can register with an event service
component. A sink component can register itself as
either a “push” or a “pull” client for a particular
category. Upon notification from the event source,
the event service component will broadcast the event
to all of its registered “push” clients for a particular
category. The “pull” clients can check out the events
with the event service component at their own timing.
Event service is also a convenient tool to support the
“push” and “pull” of information.

• Transaction. Transaction service makes a sequence
of interactions among components atomic: either they
all succeed, or none of them will commit any state
change for the relevant components. Since such
transactions are not specified in source code,
transaction service can support dynamic or
integration-tool based specification of transactions, or
transactions among components implemented in
different languages.

B. Major Component Technologies

In the following Subsections we describe briefly three
major distributed component models based on our
component reference model. They represent the latest
industry technologies that support ASP server applications.

1) CORBA

Common Object Request Broker Architecture (CORBA)
[4] is the dominant distributed component model for ASP
applications for which the components need to be deployed
across various types of networks and on various platforms.
The Object Management Group (OMG), an industry
consortium consisting of over 800 IT companies, with the
noticeable exception of Microsoft, specified CORBA.

CORBA uses Object Request Broker (ORB) to provide
network connectivity for its components. It uses a neutral

 7

Interface Definition Language (IDL) to separate interface
specification from the implementation of a component.
CORBA components support all of our component
properties except customizability and toolability. Currently
all Netscape web browsers have a built-in ORB to support
CORBA based applications embedded in web contents.

The component management services for CORBA
components are supported by CORBAservices, which
covers all of our listed supporting services, and much more.

A special feature of CORBA is that it can easily wrap up
legacy code in CORBA wrapper components, thus
providing a fast-track approach to adapt legacy code to the
ASP model.

The ultimate goal of CORBA is system integration. OMG
uses IDL to standardize the specification of vertical and
horizontal common facilities for system integration.

2) Enterprise JavaBean (EJB)

Java, developed by Sun Microsystems, has become the
foundation of a powerful environment for developing and
running server-based applications [3]. Enterprise JavaBean
(EJB) is a component-based infrastructure framework that
forms the basis of many high-end application servers.
While JavaBean is the model for Java components that
mainly run on a client machine, an EJB is a specialized,
non-visual JavaBean that runs on a server. The EJB server-
side component architecture brings together most of the
properties and services we described for our component
reference model.

EJB by itself can only support the integration of Java
components. But EJB and CORBA are complementary.
CORBA has become the implementation technique of EJB
Remote Method Invocations (RMI). EJB has provided
CORBA with a user-friendlier user interface. EJB augments
CORBA with declarative transactions, a server-side
component framework, and tool-oriented deployment and
security descriptors. CORBA augments EJB with a
distributed object framework, multilingual client support,
and IIOP (Internet-Inter-ORB Protocol) interoperability.

To integrate an existing CORBA component into an EJB
framework, we only need to use the IDL-generated
JavaBean proxy to represent the original CORBA
component. Therefore it is very easy to take advantage of
both of these two component models.

3) Microsoft DNA

While CORBA and EJB are both based on open standards,
Microsoft Distributed interNetwork Applications (DNA) is
a proprietary technology based on Microsoft’s COM+ [6].
DNA represents Microsoft’s vision of networked
computing; it is an application architecture to compete with
CORBA and EJB. The objective of DNA is to fully
embrace and integrate the Internet, client/server, and PC

models of computing to support the development of
scalable, multi-tier business applications that can be
delivered over any network.

The core of DNA is COM+, which is an enhanced version
of (Distributed) Component Object Model (COM/DCOM)
integrated with Microsoft Transaction Server (MTS), the
supporting environment for COM components. Unlike
CORBA and EJB, COM is a binary standard to support the
interaction among component instances with pointers to
interfaces.

The main strengths of COM+ include its position as a
mature core supporting technology for Windows
applications in the last decade; close integration with
Windows applications; and user-friendly development
environments. Therefore it is a very attractive platform for
developing ASP applications for servers and clients using
Windows. The disadvantages of COM+ include that it is
basically native to Windows platform; its limited services
for distributed computing and limited scalability at this time
compared with CORBA; and the lack of competition to
perfect the technology. Even though Microsoft has made
great effort to port COM to other platforms, MTS, the
supporting environment for COM, proved to be a big
obstacle to this effort due to its high platform dependency.
In recent years Microsoft tried to use interoperability to
compensate COM’s platform dependency. With
DCOM/CORBA bridges, COM component instances
running on Windows can interact with CORBA/EJB
component instances running on other platforms. Microsoft
supports Java, but only as a language, not as a platform.

IV. ASP CHALLENGES

At this time ASP is still in its stage of proof-of-concept. To
truly benefit from the ASP model of computing, we have to
address many challenges in technology, financial
infrastructure, and law. In this Section we only discuss
some of them related to computing technologies.

A. Scalability of ASP Servers

Application hosting servers need to support tens of
thousands of concurrent service sessions with high
availability and short response delay. Not like web servers
that are mainly used to support stateless HTTP connections
requesting web contents, ASP application servers need to
support connection sessions during which some state
(session data) must be kept on the servers. Such sessions
may last hours or days, and servers cannot predict the
connection patterns.

For web servers, the current main techniques to improve
server performance include RAID disk array; server farms
based on dozens of processors interconnected by buses or
shared memories; and extensive caching. For example,

 8

Yahoo uses an array of around 50 high-performance server
processors, and Windows 2000 can support a limited
number of server processors. Non-preemptive scheduling
algorithms are used to balance the workload among the
processors. Some application service providers also support
external caching as a generic approach to boosting web
server performance. Today’s web server market is mainly
based on proprietary ad hoc techniques, which cannot
support the level of service quality needed by ASP.

Due to the need to support session data, caching will be
much less effective for ASP servers. Dozens of processors
may not be enough to support the data processing power of
a full-fledged ASP server. The current bus or shared
memory based architectures introduce bottlenecks in server
performance.

To achieve the scalability required by ASP servers, we need
to investigate the preemptive process or object scheduling
techniques [2] in the environment of ASP servers. A server
will consist of one or more master processors and a cluster
of client processors. The master processors maintain
dynamic load information of the client processors. The
client service request will first reach one of the master
processors, which will become the gateway for further
communication between this client and its client processors.
The master processor will start a server process on a client
processor based on the current load distribution of the
processors, the level of service quality required by the
client, and the scheduling policies. Since the clients use the
ASP servers in unpredictable patterns, the initially lightly
loaded client processor may become heavily loaded
afterwards. With preemptive scheduling, a process can
migrate from one processor to another based on particular
scheduling policies to rebalance the workload. The major
challenges here include how to minimize the process
migration overhead; how to share and maintain client state
(session data); and how to reroute the communications
between the gateway and the client processors with minimal
footprint in the client processors and minimal overhead.

B. Internet Infrastructure

Distributed components and services mainly use or will use
URL addresses to uniquely identify each other. Currently
the Internet mainly uses the 32-bit Internet Protocol (IP)
addresses specified by IP version 4 (Ipv4). But we are
running out of address space in the Ipv4 address base by
2005. We need to have IP version 6 (Ipv6) in place by then.
Ipv6 uses 128 bits to represent a URL address, and allows
ample expansion space for future component-based ASP
services. Windows 2000 already supports Ipv6.

With ever-increasing communications volume on the
Internet, the response time of ASP services depends on the
speed by which the information flows between clients’ Web
browsers and the ASP server centers. Data communications
are mainly supported on the Internet by packet switching

today. With the achievable bandwidth of 1 Tb/s (1012 b/s)
per optical fiber, the communications delay on the Internet
will be mainly dominated by the number of hops from
source to destination, not by the bandwidth of individual
carriers, which are coupled by routers. When a packet
arrives at a router, the packet needs to be buffered, its
header needs to be extracted for destination address, and a
routing table or algorithm will be used to determine its
outgoing channel. A typical message will be cut into many
small fixed-size packets, thus incur significant overhead in
routers along the way to the destination.

One possible approach to reduce the delay of router
processing is to adapt the wormhole routing [5] of parallel
computing to the Internet. With this approach, a message is
cut into packets, and each packet is further cut into smaller
units named flits (flow control digits) the bits of which can
traverse the communications carrier in parallel. For a
packet, the first flit contains the destination address, and the
last flit signifies the end of a packet. When the first flit
arrives at a router, the router hardware will set up a passage
to bypass the incoming channel to the out-going channel
based on the destination address and the routing algorithm.
The following flits can just bypass the router without being
buffered or processed. When the last flit arrives, the
hardware passage between the incoming and out-going
channels will be broken up, and the router resources can be
recycled. With this approach, if the network is not
congested, and the number of flits for a packet is much
larger than the number of hops that the packet needs to
traverse, the delay for the packet is roughly proportional to
the packet size, not to the hop number. CISCO has
implemented a variant of this approach in some of its
switches [11]. Based on today’s Internet infrastructure, a
packet can move around the world in around 14 hops or
less.

C. Micropayment

For ASPs to fully benefit from the new model of operation,
the on-line billing and payment mechanisms must be
smooth, secure, and efficient. They should support both
very large transactions and very small transactions, the
latter may involve only a few dollars that the traditional
financial institutions do not process.

Today’s dominant mechanism for on-line e-commerce
paying is credit cards, which supports neither the very large
transactions nor the very small transactions. The major
challenge is to design mechanisms that support the
collection of very small sums, or micropayments, so that
clients can pay-as-you-go and not be deterred by
complicated payment overheads. The current approaches
under investigation include electronic money, virtual
money, digital money, and smart cards [7].

Micropayment is much more complicated when an ASP
service is implemented by integration of distributed

 9

components from several ASP providers. Such components
may be downloaded to client sites during usage for
performance or security. In this situation the client payment
may need to be distributed transparently to multiple
involved service providers based on accurate usage
statistics and service contracts. The situation will be easier
to handle if all commercial distributed components support
standard API and mechanisms to record and maintain usage
statistics, or microaccounting.

D. Security

This is one of the first issues that potential customers
typically raise with application service providers. ASP
security addresses both client data security and server
availability.

Today’s virtual private network (VPN) technology can be
used to make any Internet connection highly secure against
outside interference. Similarly, it is easy to make direct
access, either through dial-up or with a leased line
connection, secure using encryption. At the server centers,
the use of firewall technology further guards against
unauthorized access.

It is much more difficult to establish internal staff
procedures that are sufficiently robust to protect against
security breaches. The vast majority of security lapses
involving information technology today are not caused by
hackers breaking through electronic security defenses, but
through careless or malicious acts by employees. ASPs will
have to establish stringent procedures to ensure that the
integrity of customer data is not compromised while it is
under their care.

For extremely sensitive data, it is necessary to support the
fat mode of ASP: allow clients to download the necessary
subset of components to process data on clients’ desktops.

ASP server centers must be armed against malicious attacks
in forms of viruses and monopoly of communications and
server resources. The examples of such attacks in 2000
include the mafiaboy’s attack to major web servers in
America by exponential number of HTTP page requests
that paralyzed the web servers for several hours, and the
love virus that blocked email services around the world.
These attacks could reduce the confidence level of
customers to ASP services. At this time, most web servers,
including Microsoft IIS (Internet Information Server) and
Apache, would crash themselves and the underlying
operating systems when the concurrent client connections
to them exceed the capacities of their scalability.

E. Dynamic Configuration

In the ASP environment, multiple clients of different
configuration requirements may use the same application,

and they may run the application concurrently. Therefore,
an ASP application must be able to support separate
configurations for each independent group of users. This is
in stark contrast to current practice in enterprise systems
management, where it is the norm to enforce a common
standard throughout the enterprise in order to ease systems
management complexity. ASPs do not have the option of
mandating consistency across the user population, but
instead must embrace and manage that complexity. Neither
conventional client/server nor next-generation e-commerce
application architectures currently have satisfactory
answers to this need to support and manage diversity.

F. ASP Service Integration

An enterprise may not want to entrust all its computing
needs to a single service provider. First, it may have
significant amount of proprietary or legacy systems and
applications to run. Second, it may have sensitive data to
protect. Third, it would like to benefit from competitions
among the service providers for better service quality and
lower cost.

On the other hand, few service providers can afford to be
fully self-contained. For example, many ASPs will opt to
let professional financial institutions or companies run the
credit card payment services, so they can reduce the
operation cost and increase the confidence level of their
clients. There is a strong need for easy integration of
existing ASP services to create new services.

Therefore, ASP applications should support the integration
of ASP services from different ASP providers, and the
integration of ASP services with the client applications.
There are two basic approaches to this problem. One is the
standardization of common applications’ data formats. The
other is the standardization of common applications’ APIs.
They are further explained in Subsection V.A.

V. ASP IN PERSPECTIVE

A. Breaking ASP Monopolies

The ASP model alone can easily lead to monopoly of
services. Current ASP market mainly consists of service
providers for existing standalone or client/server
applications. Applications in the same category usually
have similar functionalities, but different data formats or
user interfaces. Many data formats, like Microsoft Word,
are proprietary and kept from the public. Changing format
of user data, while possible in some simpler cases, is
problematic in general, especially when a proprietary data
format is involved. Clients of such service providers will
soon find that it is almost impossible for them to switch to
other service providers that may provide similar services
but with a different application. While many ASPs today

 10

[10] cite “high switching cost for customers” as a major
advantage of the ASP mode of computing, such switching
cost will definitely deter the adoption of ASP by many new
clients, and impede the competitive innovation thrust in the
computing industry in general.

To promote competition in the ASP market, and expand the
ASP market with non-committed free trials, public
standardization of services must catch up. There are two
levels of standardization here. At the lower level is the
standardization of data formats of major applications. All
ASP services complying with such standards can process
user data in such public data format, but users may need to
learn the different user interfaces of the alternative services.
At the higher level, in addition to the standardization of
data formats, the user interfaces of major applications in the
same categories are also standardized. Services based on
new applications complying with such standards can be
easily adopted by clients without a learning curve.
Innovative companies can improve the performance of
existing applications, and grab the user base from less
competitive service providers with higher service quality.

But who should be in charge of such standardization? There
are two choices: governments or industry consortiums.
Object Management Group (OMG) is an example of such
industry consortiums. Individual companies will usually not
publicize its proprietary standards. For many companies,
the standardization process is not voluntary, but mandated
by the market economy.

B. Network-Centric Computing

The ASP model is based on the advances in distributed
computing in the last two decades. But the ASP model will
also promote network-centric distributed computing to a
new level of scale.

The essence of distributed computing is to use networks to
promote cooperative computing and specialized computing.
The Internet expanded such cooperation and specialization
to the global scope. Componentization of distributed
software made distributed computing more reliable, more
convenient, and less expensive. The ASP model promotes
cooperative computing by simplifying the client side’s
computing device and application to a web browser or a
thin client, and running the applications by specialized
service providers. As a result, the Internet is emerging as a
new platform of global computing.

The new generation of distributed computing will be
characterized by component-based finer computing
granularity; global cooperation and specialization;
multimedia data; binary integration; mobile computing; and
its omnipresence in electrical/electronic devices.

The application of the above generic network-centric
computing will lead to networked economy characterized
by integration of services.

Reference

[1] F. J. Corbato and V. A. Vyssotsky, “Introduction and overview of the

MULTICS system,” Proceedings of the AFIPS Fall Joint Computer
Conference, 1965, pages 185-196

[2] A. Goscinski, “Distributed operating systems: the logical design,”
Addison-Wesley, 1991

[3] James Gosling et al., “Java programming language, second edition,”
Addison Wesley, 1998

[4] Thomas Mowbray and Ron Zahavi, “The essential CORBA: systems
integration using distributed objects,” Wiley, 1995

[5] L.M. Ni and P.K. McKinley, “A survey of wormhole routing
techniques in direct networks,” Computer, 1993, pages 62-76

[6] David S. Platt, “Understanding COM+,” Microsoft Press, 2000
[7] Mostafa Hashem Sherif, “Protocols for secure electronic commerce,”

CRC Press, 2000
[8] Phil Wainewright, “Anatomy of an ASP: computing’s new genus,”

ASP News Review, www.aspnews.com, January 2000
[9] Phil Wainewright, “Packaged software rental: the net’s killer app,”

ASP News Review, www.aspnews.com, January 2000
[10] “ASPs: the net’s next killer app,” www.aspisland.com, January 2000
[11] “Bridging and switching basics,” www.cisco.com, June 1999

