
ABSTRACT

Application Availability is widely sought after
as a requirement for applications delivered
over networks. While users know what they
want—continuous application access with
predictable performance—it's often difficult
to establish concrete measures that show
whether the service providers charged with
delivering the application over a network can
meet user requirements. Sifting out relevant,
actionable data about availability is often as
complicated as making decisions and acting
based on that information. In order to
structure discussion around definitions and
appropriateness of measures, this paper sets
forth:

• A definition of application availability

• An approach to decomposing applications
for measurement

• A classification of service level indicators

• A presentation of measurement as a mode
for service level contracting and feedback

• Generalized requirements for developing
synthetic transactions

1. INTRODUCTION
Ironically, as the Internet demolishes many of
the boundaries between IT and business, the
measures that account for their operations are
diverging. Traditionally, IT infrastructures,
particularly platform resources, have
accounted for how much work is getting done
by systems using the same metrics as they use
for control of resource management—CPU
utilization, queries processed per hour, I/O
operations, network packets, and the like.
However, as systems become more
distributed and networked, and as end-users
in 24 time zones access systems round the
clock—end users want to drive the measures
of system availability since it affects their
work immediately and directly.

End-users regard the contribution of IT
infrastructure in terms of the value that it
delivers, not operational metrics. The
renaissance of Service Level Agreements
(SLAs), once—like many aspects of
centralized internet computing—the province
of mainframe host-based environments, is
driving IT management and end-users alike to
seek a common currency to define their

Application Availability:
An Approach to Measurement

David M. Fishman

SunUP High Availability Program

Office of the CTO

Sun Microsystems Inc.

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

2

shared objectives, without creating undue
operational dependence between their
domains.

That common currency is availability
measurement. Application Availability
Measurement (AAMe) from the end user
perspective does not replace resource
management, capacity planning, change
management, performance analysis, or any of
the other many practices that are the métier of
the disciplined mission-critical shop. But in
establishing and maintaining the value of an
application to its users, none of these other
disciplines can represent the system as a
whole to the users as they see it.

This paper is written for IT and line-of-
business executives looking for a way to
identify meaningful indicators of application
availability. It presents a generalized model for
creating measures of application availability in
user terms, and validating the application's
user value. Specifically, it covers:

• An overview of the classic model for
quantifying availability

• An approach for choosing what to
measure

• An examination of measurement in the
context of other feedback techniques

• A classification of different kinds of
measures

• Some considerations in developing
measures

There are a number of things I've assumed
out of this paper. It does not directly address
design of highly available, redundant
application or system architectures, for a
number of reasons. Any treatment of

availability architectures short of book length
would not do the subject justice. The
measurement approach presented here is
intended to be fairly architecture-independent.
It's up to the availability architecture to
determine how it tolerates, detects and
recovers from failures at the many different
component levels that make up the stack. I
assume only that the application has the
necessary mechanisms for doing so. Though
the perspective is heavily skewed towards
validation, there's plenty that needs to be
inferred about the underlying design.

I use the terms "service", "application" and
"system" fairly interchangeably; while some
might argue for more semantic precision, the
three notions are so fluid among themselves
that one can argue for each to mean the same
as one of the others. But to the extent
precision can be applied, I use "system" to
represent an end-to-end application
environment. A "service" is defined as an
application delivered over a network; it is the
substrate of measurement for availability.
Service-level indicators, or service level
indicator metrics, are the result measures from
tests that validate the service.

2. MEASURING AVAILABILITY
How Available is Available?
In its classic form, availability is represented
as a fraction of total time that a service needs
to be up. From a theoretical perspective, it
can be quantified as the relationship of failure
recovery time (also known as MTTR, mean
time to recovery) to the interval between
interruptions (MTBF or MTBI, mean time
between failures or interruptions). A service

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

3

that fails once every twenty minutes and takes
one minute to recover can be described as
having availability of 95%.

For an entire year of uptime—365 days times
24 hours times 60 minutes equaling roughly
525,600 minutes—uptime can be represented
as "nines", as in the chart below.

One handy way to think of nines in a 365x24
year is in orders of magnitude: Five nines
represents five minutes of downtime; four
nines represents about 50 minutes; three
nines, 500 minutes, etc. Every tenth of a
percentage point per year is roughly 500
minutes of downtime. Of course, for services
that don't need to operate 24 hours a day
seven days a week, such as factory-floor
applications in a single location, the outage
minute numbers will vary based on the local
operational window.

AVAILABILITY

MEASURE

DOWNTIME PER

YEAR

DOWNTIME PER

WEEK

98% 7.3 days 202.15 minutes

99% 87.6 hours 101.08 minutes

99.5% 43.8 hours 50.54 minutes

99.8% 1,052 minutes 20.22 minutes

99.9% 526 minutes 10.11 minutes

99.95% 4.38 hours 5.05 minutes

99.99% 53 minutes 1.01 minutes

99.999% 5 minutes 6.00 seconds

Figure 1. Table of fractional outages

It should be readily apparent that getting past
1 minute of downtime per week can be quite
an expensive proposition. Redundant systems
that double the hardware required—in

extreme cases, down to specialized fault-
tolerant processes that compare instructions
at every clock—and complex software that
can handle the redundancy are just the
beginning. The skills to deal with the
complexity and the system's inability to handle
change easily drive up the cost. Moreover,
experience shows that people and process
issues in such environments cause far more
downtime than the systems themselves can
prevent. Some IT operations executives are
fond of saying that the best way to improve
availability is to lock the datacenter door.

Be that as it may, any foray into high-
availability goal-setting should begin with a
careful analysis of how much downtime users
can really tolerate, and what is the impact of
any outage. The "nines" are a tempting target
for setting goals; the most common impulse
for any casual consumer of these "nines" is to
go for a lot of them. Before you succumb to
the temptation, bear in mind one thing: you
can't decide how much availability you need
without first asking "availability of what?" The
concepts presented here should better prepare
you to answer that question; once you've
answered it, you can make more constructive
use of your downtime target. As your
availability goals mature, you'll find it more
productive to choose user downtime targets
rather than snappy formulations of uptime.

Availability Defined: User
Relevance and Measurement Utility
What is the value of application availability?
Let's set a definition of availability as continuous
application access with predictable performance. In
daily life, this is fairly intuitive: call your travel
agency, and you don't care whether the
servers are up or down, whether the network
is saturated or not, or whether the client

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

4

application can validate your credit card data.
To you, the only value of the system is in
whether the agent can book your ticket or
not, or how long it takes. The value of the
service—and the service level metric that
indicates whether that value is realized—is
measured at the end user's nose.

Naturally, to the user, the only measure of
availability that matters is at the user—
whether the user lives and breathes, or
whether the user is some automated
consumer of a service. In the online user
world, that user's nose is a valuable spot: it
represents the point where the application's
value is highest—and usually becomes the
most useful place to measure application
availability. By implication, AAMe increases in
value as it more closely approximates user
experience. Service level objectives for AAMe
must be tightly coupled to the value of the
work done with the application.

Heisenberg:
Measurement and its Discontents
Can application availability be measured? It's
as much a philosophical question as a practical
one. Most end-to-end applications are highly
complex, dynamic and not deterministic in
their behavior; with respect to bits speeding
from point to point on the internet, this
variation is a feature, not a bug. This also
makes it difficult to pinpoint exactly how
instrumentation at any given point will
provide perfect information about the
system's availability. Getting useful
(actionable) information is a matter of scoping
the end points around which the system may
be measured.

As Heisenberg once showed, measurement
distorts the measured event or element,
making AAMe inherently an imperfect

indicator. So at a minimum, in order to realize
the value of AAMe, it is necessary that make
certain that the measured application has
enough capacity—i.e., processing cycles—to
sustain measurement. And measures must be
selected in such a fashion that their impact on
the system is tolerable.

Be that as it may, for any dynamic system, no
momentary snapshot constitutes a perfect
measure of the application's availability. When
the cost of measuring is easier to demonstrate
than the benefit, it sets the bar high for any
benefits that might accrue. But introducing
slightly imperfect measures into a highly
imperfect system does not perforce disqualify
the act of measurement.

3. WHAT TO MEASURE
Where should an application be measured?
Viewed as a service, an application delivered
over a network can be understood in logistical
terms, at its endpoints. To better understand
the endpoints of a service, consider package
delivery—the kind of package you can wrap in
brown paper and hold in your hand. In the
early days of transportation, the term "FOB"
(literally, Freight on Board) was coined to
describe the accountability for goods at any
given point in the journey between seller and
buyer. For manufactured goods, "FOB
Factory" meant that a purchaser took
ownership of the finished product from
within the factory, through its transport, i.e.,
that transport was not the responsibility of the
shipper, but of the receiver.

Any end to end service is often composed of
subsidiary services. Let's take another
simplified example as an analogy: delivery of

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

5

fresh fish from ocean to dinner plate. The
ultimate measure of fresh fish delivery is
whether it tastes good when you eat it. But in
real life, the logistical problems of fish
delivery—specifically, measuring when the
fish you'll eat for dinner got from point A to
point B on its journey from ocean to plate—is
the subject of contract relationships between
independent service providers, stated in
measurable service level terms. Before you
eat, you value knowing when your fish left the
ocean for the net, when the fish left the net
for the ship's hold, if it was frozen, who
cooked it, etc. Delivery from any one point in
the chain to another may have multiple
owners. At each point that control changes
between service providers, be they fishermen,
shippers, grocers, or chefs, or waiters, there's
an implicit measurement point.

The analogy to service delivery, especially
over the public Internet, lies in limitations on
control and accountability for certain portions
of the service-delivery chain. Can a service
provider contract for end-user relevant AAMe
metrics over an uncontrolled transport such
as a public network? The answer may be no.
But in every case, there's a scope boundary,
up to which the service provider can take
ownership, be measured and held
accountable. And any given end to end service
can be decomposed into subsidiary services.

This principle, of decomposition into
component services, can be applied to most
applications, regardless of whether they are
internet-enabled. In the diagram below, a
stylized "end-to-end" architecture (or "stack")
for a web-based application can be
decomposed into a set of measurement points
for service level indicators. Any user or client
of the application performing a transaction

depends on all the layers below in order to
complete a transaction. In this case, a user or
client (i.e., a human or a browser) establishes a
connection with a web-server over a network.
The webserver connects with the application
server, which processes business logic. The
business logic in the application server
connects to the DBMS for data retrieval as
appropriate. And, of course, the DBMS runs
on the operating system; it is only as available
as the operating environment on which it
executes. "Service" availability can be
measured or tracked as only a subset of the
complete end-to-end stack. With correct
design allocating sufficient independence
between layers, it's possible to speak of the
availability of a series or set of services, each
of which is a subset of what the end user
requires to be up and running from end to
end.

Figure 2. Service Decomposition

(1) Operating System service on hardware,
presuming Hardware availability. Most
platform vendors who refer to "99.9%
uptime" refer only to this.

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

6

(2) End-to-end Database Service, presuming
OS and Hardware availability

(3) Application Service availability, including
DBMS, OS and Hardware availability.

(4) Session availability, including all layers
below.

(5) Application Server divorced from the
database. In this scenario, it's conceivable
that the business logic and connectivity to
a data store could be measured (and
managed) independently of the database
component. Note that a combination of
(2) and (5) are essentially the same as
service (4), in the eyes of the user/client.

(6) A complete, end-to end measure,
including the client and the network.
While the notion of a "service" used here
implies the network, I've included it in this
diagram to show that you can establish the
measure of availability for the stack as a
whole with or without the network.. For
internet-based applications, the notion of
separating the network is important,
because rarely, if ever, can service
providers definitively establish and sustain
service-levels across the public network.
Moreover, when a user connects across
the internet, it's important to understand
how much of the user experience is
colored by the vagaries of the internet,
and how much is under the direct control
of operational staff.

Decomposition into services takes the first
step towards defining what availability is
measured, and to what end. As we'll see
below, indicating end user availability over
time does not require that every service
component be measured and tracked
separately.

Comparison of Feedback Techniques
Measurement, monitoring, and management
are three distinct feedback techniques, ways of
taking data gathered about a system and
applying it in changes made to the system.
The industry and the market often confuse
these three concepts. In fact, the differences
between the three can provide a useful tool
for choosing what data are useful in tracking
availability for a service, or, in our case, a
networked application.

Figure 3. Feedback Mechanisms

In simplest terms, a feedback loop is
composed of reporting and intervention,
undertaken at certain intervals. Reporting
frequency characterizes event sampling—how
often, and how immediately are events
known? Intervention frequency characterizes
action taken based on this event data—how
often do you draw conclusions from the data,
and how immediately can you intervene to
make changes to the system based on your
conclusions?

• Measurement is periodic sampling with
periodic intervention

• Monitoring is real-time sampling with
periodic intervention

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

7

• Management is real-time sampling with
real-time intervention

One question to consider here is the value of
information. Consider, by analogy, the
relationship between bookkeeping,
accounting, and audit of an organization's
financial operations. Certainly, many of the
same tools and techniques apply at all three
levels. One key difference is in the audience:
rarely does the CEO community require
detailed, day-to-day information on smaller
aspects; they seek a high-level indicator, such
as profitability or cash flow, to give her the
audit information she needs about the health
of the business, and draw broad strategic
conclusions. Yet the operations staff needs to
understand intimately how individual data
impact profitability in order to make that
higher-level measure meaningful. Now, let's
see how this notion applies in the services
context.

4. CLASSIFYING SERVICE
LEVEL METRICS

The best AAMe indicators track real work by
real users as closely as possible. Most dot-
coms and datacenters have service-level
objectives of one sort or another that
characterize system behavior; some formally
quantify these objectives, either for internal
management and alerting or as part of formal
SLAs. Such objectives take the form of
uptime of a database, correlated output of
system management tools, delivered
bandwidth and data streams, and a variety of
levels in between. But which of these, if any,
are useful in measuring application
availability?

To this point, we've considered availability as
an attribute of a service, as in "is it available?"
In fact, availability is itself really a given
service level, with quantifiable, measurable
levels of attainment. A formal definition could
take the form:

Availability:
a measure that checks the behavior of a system, using

consistent tests repeated at set frequency over time,
comparing accumulated test results with a goal.

Such a measure would be expressed using the
formulation "test every sixty seconds, with a
maximum of 50 test failures per week", to
indicate 99.5% uptime. But taken individually,
it can be difficult to translate these result
measures into positive indicators of service
availability.

Goal of Service Level Metric
Characterization
Using a common framework can help service
providers and service consumers better match
how they work together over time on
availability goals for their critical applications.
Moreover, in a networked, distributed
application model, certain subsystems
(security, HTTP, application server, DBMS,
etc.) can be characterized independently, as
components of an end-to-end service level
metric, in a way that supports good
information about managing to service levels.

To better characterize what makes a useful
service-level metric, we have formulated a
simplifying hierarchy for ranking levels of
application availability and service level
metrics. The model, called SLIMTAX—for
Service Level Indicator Metric Taxonomy—
classifies metrics on how they test and what
they test for. An important benefit is that as
an organization's service-level tracking

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

8

capability matures, SLIMTAX provides a
roadmap for shifting towards application
availability measurement up the hierarchy to
levels that represent throughput and user
work.

SLIMTAX Definitions
The SLIMTAX hierarchy incrementally adds
features of an application service from the
bare minimum of application existence, up
through network delivery, service level
thresholds, and complete user-centric status
measurement.

• A0: Key Process(es) Exists locally.
For example, a list of processes shows
HTTP is running. Some applications have
multiple processes, so just looking for
those that show an application is up may
not be enough.

• A1: Local State.
Key process or processes can work to
process inputs locally and produce correct
output. For example, this is how a cluster
tests the availability of the applications it
is hosting. At this level, the test is local; in
some instances, it is possible to derive
availability from such a passive measure,
such as the scanning of log files.

• A2: Remote Session.
User can establish access (log in) over a
network. Here, the notion of a synthetic
transaction is introduced, though it need
only run at intervals shorter than target
failover times, in order to expose any
failures. For example, an application that
fails over in 15 minutes can show its
availability in an A2 test that runs every 10
minutes, as the 15 minute failover will
register as an outage.

• A3: Transaction Response Time.
Key business operations are performing at
a given rate. Here, a service level
threshold or objective is used to measure
whether a sufficient fraction of key
transactions completes quickly enough;
for example, 99.9% of the monitored
transactions complete in 8 seconds or less.

• A4: User Work.
Key population of users or clients are
performing given units of user work over
time. Such an indicator would account for
200 active users, sending and receiving an
average of 30 emails each per hour,
showing that an email system delivers
12,000 messages per hour with a given
population. This measure can be based on
session logs, or based on instrumented
clients with a closed-loop that captures a
user-centric picture of the end-to-end
application.

SLIMTAX Features
It's important to understand that the
SLIMTAX hierarchy doesn’t measure
availability; it provides a "meta-metric", i.e., a
framework for comparing metrics. In service
level contracting, it can establish differences
in requirements between end users and service
providers, internal or external. Similarly, in
architecting a systems and tools environment,
SLIMTAX makes it possible to identify where
feedback techniques for availability are
applied, and to distinguish one feedback
technique from another.

One kind of availability metric that shows
operating system availability is a level A0
metric (at best) because it doesn't test if OS is
doing something, it just checks if it's there.
Similarly, many systems management tools
check application availability just by looking

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

9

for whether a certain process exists. Another
example: in order to determine the failure of a
subsystem, such as a node within a cluster,
and take appropriate remedial action, an A0 or
A1 measure may be adequate; test failures may
be sufficiently well-defined to trigger
automated recovery. But for other service
level consumers, the fact that a cluster is
"available" at the A0 or A1 level will be by
definition understood not to encompass user-
level metrics.

The SLIMTAX hierarchy also helps scope
demarcation for bottom-up, top-down
availability feedback techniques. In other
words, measurement at the A0 level maps to
interventions that are feasible at the local host
level. Moreover, to the extent that the
application stack includes redundancy built in
to mask system failures from the users—as in
a redundant server node running an
application in standby mode—the metric can
show the same mask underlying system
failures that are not immediately visible to the
user. With respect to user impact and user-
experienced availability, the lower ranks are
less informative, and higher ranks subsume
lower ranks.

A corollary of the subsystem/supersystem
demarcation is that availability metrics are
inherently not comparable across levels. In
other words, 98.2% availability at A1 cannot
be compared with 99.2% availability at A2;
the A1 level may not cover redundancies that
mask failures at the next level up.

Moving up and down the hierarchy
In considering the range of different
availability metrics described by the
SLIMTAX hierarchy, it's worth noting the
additional information that is added in
moving from one level to another:

• From A0 to A1, a metric adds information
showing that key processes in the
application can accept inputs and do
work.

• From A1 to A2, a metric adds information
demonstrating the existence of a service,
rising to meet the definition of a service as
an application delivered over a network.
Note that because the network is inherent
from this level and above, there's no need
to measure network availability alone,
independent of application traffic making
its way back and forth from the
application. Performance is measured only
with respect to failover time.

• From A2 to A3, a metric introduces a
service level performance threshold,
showing the performance of an
application in terms of work executed
over time (e.g., transactions per hour,
seconds per transaction, etc.). Moreover,
while the previous levels of the hierarchy
are binary (was the system up or down?),
an A3 metric allow for the possibility of
performance degradation, as in a fraction
of the system service level threshold. For
example, a system targeting a performance
level of 300 transactions per minute
completed may operate below this target
and still get useful work done; i.e., slow
does not mean unavailable. This implies
additional service level thresholds, such as
a system that can do 85% its target rate.
Contrast this with A2 synthetic
transactions can show whether a system
has experienced an outage.

• From A3 to A4, a metric adds user
populations as the necessary complement
to its response time requirements. For
most systems, there's a material difference

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

10

between 1 user driving 1000 transactions
each minute, and 100 users driving 10
transactions each minute. By translating
system work directly into user impact, the
A4 metric provides the most complete
indication of the impact of availability on
the consumers of a service. Conversely,
when a system's utilization drops with
dips in a user population, the impact of
downtime is adjusted appropriately.

In a perfectly instrumented system, the A4
metric would be enabled in closed loop
fashion, so that administrators and end users
would know exactly what throughput the
system was achieving at any given time, in
terms of user work. For example,
administrators could log browser error
messages on user workstations or PCs. For
systems that are not perfectly instrumented,
A2 and A3 level synthetic transactions
provide the most representative picture of
how much work the system is doing.

However, for many applications, particularly
those with named users, it's possible to
establish exactly how many users are on the
system at any given moment and derive an A4
metric by observing key transactions and their
response time.

At the A0-A2 level, most indicators do not
provide positive indication of system
availability, though they can show when work
is being done. The lack of transactions does
not mean that the system is down; it may
mean that no users are performing
transactions, or that the entire population of
users is on a lunch break, etc. But it may be
possible to correlate a set of passive data
measures into a record of how much work is
being done at any one time. Log data can
show how many transactions were completed
over a particular period, but this is an
incomplete positive indicator of application
availability (i.e., a lack of logged operations
does not mean the system was down).

UI/CLIENT

WAN/LAN

WEB SERVER

APP SERVER

DBMS

HW/OS

"THE
STACK"

A0

PROCESS

A1

STATE

A2

SESSION

A3

RESPONSE

TIME

A4

USER WORK/

THROUGHPUT

Figure 4. Hierarchy of Result Measures

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

11

Applying SLIMTAX to application stack
Earlier, I described how an application may be
decomposed into a stack of end-to-end
services, or a "stack". It's a straightforward
matter to conceive of tests that indicate
service availability at a variety of points up
and down the stack—either for the stack as a
whole or for parts of the stack.

SLIMTAX can be represented as a simple
matrix representing the service components
of the stack along the vertical axis, and the
hierarchy of result measures (A0-A4) along
the horizontal axis, as shown above (Figure 4).

What the chart represents is a roadmap from
server-centric, infrastructure-focused meas-
ures of uptime, at the lower left hand corner
of the matrix, towards user-oriented measures,
which are represented up and to the right.
Most measures of application availability can
be mapped into this hierarchy based on how
they test for service availability (A0 through
A4) and where in the stack they test for it.

There's often a temptation among operational
groups just beginning to take on the challenge
of user-oriented availability measures to "go
for broke"—to focus only on measuring end-
to-end service-level availability because "that's
what users care about." It's important to
recognize that it's often difficult to establish
these kinds of measures at one stroke.
Targeting a metric that represents only part of
the stack or that only measures a certain
degree of user activity offers solid incremental
progress. It's also useful to move up the stack
within a single result-measure class; for
example, if you have a test and a metric that
show A2-level database session availability
over the network, a good next step would add
A2 application server availability measurement
over the network. It's not necessary to move

directly from A2 to A3 in order to provide a
more end-to-end measure.

Moving a test further up the application stack
provides more information to the service
consumer; ironically, it provides less
actionable information to the service provider.
For example, an end-to-end test might:

(1) begin at a browser;

(2) traverse the network;

(3) connect to a web server;

(4) submit data and transact business logic in
the application server;

(5) retrieve data and insert a record in the
database;

(6) perform read and write operations
through an I/O device into a disk;

(7) return the correct result back through the
stack to the user in under 15 seconds

Depending on the response time criterion for
the test, it measures the service at either an A2
or and A3 level. If the test passes, the service
is available; if it fails, the service is not.
Designing this test correctly requires some
analysis the application architecture to ensure
that data retrieved from the database, for
example, is not cached on the application
server, to avoid masking a database failure.

SLIMTAX: Measurement vs.
Management
The test transaction in the example above
provides an interesting comparison between
measurement data and management data. For
measurement, this test case has two possible
outcomes: pass or fail.

Contrast this with the management
perspective. A diagnostic view of this test

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

12

would take into consideration results at each
step of the way. For an administrator, having
such data available can help deal with an
outage, either with some policy-based
automated recovery mechanism or as after-the
fact diagnostic. Or, to make certain that she
could deliver on the test result above, the
administrator could complement the end-to-
end test above with a set of A0-A2 tests,
either in real time as an automated recovery
mechanism, or as a set of diagnostics in
dealing with an outage. It's up to the
administrator and the application architect to
make a number of choices:

• what tests short of the A3 end-to-end
level are required in order to diagnose
service outages and act upon service
outages

• whether she needs to monitor them at all
times, or only when there's a breach of the
end-to-end service levels.

• What indicators, in combination, provide
positive proof of the availability of the
components of the service level.

This service level test, and its complementary
diagnostic or management indicators, is
mapped onto the SLIMTAX in Figure 5.

Note that the diagnostic examples set also
shows the possibilities for applying the
principle of service decomposition to create

UI/CLIENT

WAN or

LAN

WEB

SERVER

Webserver ping

APP

SERVER

App Server

process alive

Log in to

App Server

DBMS DB cluster

heartbeat

Log in to

DB Server

HW/OS

Check OS process
list

Start console on

host

Ping host

MEASURE:

End to end

Service Level

Test;

response in

under 15

seconds

A0

PROCESS

A1

STATE

A2

SESSION

A3

RESPONSE

TIME

A4

USER WORK/

THROUGHPUT

Figure 5. Applying the SLIMTAX hierarchy to a service level objective

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

13

service-level targets within the application
stack that capture its constituent parts. The
database cluster heartbeat is a good example
of management information that can be
inferred from the system architecture, as a
cluster is a local service level unto itself. While
it may be part of a management mechanism
with automated policies, it's not difficult to
extract information about whether those
policies are working and report it as part of
the availability measurement effort.

5. TEST FREQUENCY, TIMING
AND PERFORMANCE IN
SLIMTAX

Sampling frequency
Now that we've seen how to test once for
service level availability at different points in
the stack, let's add a final dimension to the
indicator: frequency of sampling. How do you
know how frequently to run a test against
your stack? It's only at this point that it is
appropriate to consider your target downtime
requirements, which I first mentioned at the
outset of this paper.

Failure, interruption, recovery time, outage,
timeout — all these terms represent the
interval during which the application is not
available. Since one goal of AAMe is to
represent how long an application is up, a
good test would be able to identify when the
application stack is not available. For instance,
given an architecture designed to recover
from an outage in twenty minutes, there's an
implied uptime goal for the service to keep
interruptions to twenty minutes. Consequently
the service level measure should test more
than once every ten minutes to help make

certain it never misses an outage, such as once
every 2 minutes. This is a good place to apply
an A2 metric; so long as the test can establish
remote session into the monitored system
every two minutes, then the application is up.
More than 10 successive failures of the test is
a good indicator that the application is
missing its recovery-time target.

Outage duration is not the only consideration
in deciding how often to test if the system is
up. Take a service that's down four times in
one hour, 3 minutes at a time, but once every
15 minutes. If a user tries to get onto the
system, but logs in at exactly the same 15-
minute intervals as the outage, she may well
perceive that the system has been down for an
hour. For users, frequency of outages matter
as much as (or more than) their duration.

Note, again, the difference between
management and measurement. From the
system management perspective, even one
failed A2 test should trigger an intervention,
manual or automated. Measurement assumes
that those responsible for management will try
to do the right things and checks whether they
have succeeded or not.

When performance is an availability issue
Traditionally, systems have been sized and
configured based on workloads that account
for performance, such as a particular
throughput whenever the system is up. In
other words, sizing for 3000 transactions per
hour assumes that for 10,000 hours operation,
the system will complete 30 million
transactions. Naturally, there's a difference
between 10,000 hours of systems operations,
and 10,000 hours of the business being open.
Each whole percentage point of downtime --
i.e., the difference between 98.5% and 99.5%
availability -- amounts to 300,000 transactions.

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

14

When this system comes up short 30
transactions per hour, it can miss its
operational uptime targets.

Viewed this way, distinctions between
measurement of performance and availability
blur somewhat. However, erasing this
distinction clashes with some fairly well
established measures of system behavior. The
challenge is in identifying given measures of
availability and performance that can provide
an indicator of overall system work.

SLIMTAX accounts for this in the distinction
between A2 and A3 metrics, as I described
above. Implicit in this distinction is a time-
out; if an A2 session test cannot be
established within the time that the
application was to recover from a failure, it's a
safe bet that there is a failure. For
transactional environments, performance
targets for transaction completion time are
typically denominated in seconds; recovery
from failure is typically slower, denominated
in minutes. (For batch jobs and other long
running transactions, completion time may be
significantly longer. In these cases, other
indicators such as work rates, rows processed,
tables backed up, and the like, may be more
appropriate.)

How does one account for slow performance
as an availability problem? Since it's difficult
to tell from a single transaction that missed its
target speed whether there's a general
performance problem, the system needs a
performance profile that targets a
performance threshold. At the A3 level, such
a threshold could be characterized as "a
minimum of 9000 transactions per hour, with
an average rate of 15 seconds per
transaction." One way to determine whether
the system hits its performance target is to

sample completed transaction logs
retroactively, and inspect to see whether they
completed on time. Given the sensitivity of
most administrators to performance issues,
they typically attend to such metrics much
more closely. Moreover, it provides excellent
evidence of their success or failure.

One important aspect of performance as
availability is measurement of degraded
operations. This can be applied in several
ways. It's healthy for administrators to report
to their users that the system is experiencing a
"traffic jam" even if the cause has yet to be
determined. In parallel, it may be possible to
specify a target limitation for degraded
operations; as in "98% of all synthetic
transactions must complete within 15
seconds; no more than 5% must complete in
more than 15 seconds, but less than 20
seconds."

But inspecting transactions locally doesn't
show whether end users were driving
transactions successfully. A more complete
measure of application availability would drive
a "synthetic transaction"—a set of user-level
operations, scripted and driven by an
automated tool that captures the result of any
transaction, including elapsed time. Designed
correctly—and this can often be done
simply—such a synthetic transaction can
show when a system is performing at the
required level without actually creating a great
deal of overhead on the system. A few well-
placed synthetic transaction users around the
network will reveal a great deal about the end-
to-end performance of the system as a whole.
Using synthetic transactions, outages can be
declared when the system is performing at less
than its target performance rate for a specified
period of time. This service level objective

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

15

would take the form, "98% of all synthetic
transactions must complete within 15
seconds." Most website and internet
monitoring today takes this form, using
synthetic transactions to drive traffic at a
website to emulate end user experience.

The most complete measure of performance
as availability accounts for users on the system
as well as the rate of their work as it proceeds
through the system, designated by SLIMTAX
as an A4 metric. Some infrastructures lend
themselves to complete instrumentation, so
administrators know in real time exactly how
many concurrent users are doing how much
work on the system. It's possible to infer this
by inspection, either live or retroactively, to
look at active, concurrent users (those who
submit input at least once every 15 minutes,
for example), and compare that to the total
number of transactions, or correlate it with
the rate of synthetic transactions.

6. METRICS AND TOOLS
Distinguishing Architecture and
Operations from AAMe and Service Levels
Too often, service-providers—classically IT
operations departments, help desks, and as
they emerge, independent Application Service
Providers and other "xSPs"—burden service
consumers with management and monitoring
parameters internal to the service. So long as
the service provider meets set objectives, the
consumer of the service need know nothing
about how the provider manages or monitors
the delivery of service. By implication, any
corrective action undertaken to address
missed service level targets is primarily the
responsibility of the service provider.

Because service providers and IT operational
staff are accustomed to viewing their
infrastructure through the lens of
management, such management tools have
emerged as the preferred technique for
measuring system and application availability.
This tendency is more the product of tactical
operational considerations—i.e., given a
problem, find an action to be taken—than it is
in tracking whether a system meets its desired
availability goals. Knowing the behavior of
one element of a system—such as hardware
MTBF, or disk utilization, or network
traffic—generally won't represent the
behavior of an application and operating
system software, nor will it expose
dependencies between those layers.

The flaw at the heart of this "management
fallacy" is not that such management tools are
not useful. Rather, it is that they do not
adequately represent whether user work is
being undertaken and completed—in other
words, does the end to end system provide
continuous application access with predictable
performance? For most networked
application environments, the most useful
technique to apply to begin to answer the
question is measurement.

While it may seem obvious, service providers
need to realize that exposure of management
and monitoring information internal to a
service is unnecessary so long as service
consumers are not directly involved at the
operational level. Any consumer of a service is
more concerned with the attainment of
service level targets than the underlying
implementation. The challenge is to
understand which metrics provide the
necessary information to the service
consumer, and to select measures that over

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

16

time can provide information that keeps both
sides focused on service level attainment.

Of course, the administrator is not alone in
deciding how to manage the components of
the service; it's up to the systems architect to
account for service level and manageability
architecture from the inception. In an ideal
world, the two communicate; in reality, it's
often up to the administrator to make
inferences about the architecture in choosing
what management information is most useful.

One implicit theme in the discussion of
measurement so far is the virtue of simplicity.
The primary question we've dealt with is not
how to measure, but what to measure. In this
final section, we'll explore different
approaches one might take in taking specific
measurements of a service.

Defining A Service-Level Indicator
As I mentioned earlier, measuring a service
level requires the following:

• a test performed at regular intervals

• a tool to perform the test

• a goal for the results of the individual test
(e.g., up/down, speed threshold)

• a goal for test results over time (e.g.,
99.8% completion)

• a tracking mechanism for collecting and
comparing results

• A presentation mechanism for showing
results over time

The practice of testing for service levels has
many elements in common with the broader
discipline of software and system testing. (In
fact, several test tool vendors are entering the
market for service level monitoring, since the
technology for service level measurement and

monitoring is very similar to that used for test
automation.) This is particularly true of test
design, since it is important to apply many of
the same architectural analysis skills. For
example, when a test transaction selects a
record from a database, which tables does it
select from? Are these tables the ones most
likely to show that the database is having a
problem? However, testing for service levels
need not be as complicated as regression
testing, stress testing, or system envelope
testing.

For simple applications with web interfaces,
an automated test can use either a perl script
or a servlet that logs its results to a flat file,
spreadsheet, or database. Creating an A2
metric for database availability, for example,
could be implemented by embedding some
JDBC™-enabled calls into a perl script, and
setting a flag, based on correctness of
returned output. Of course, it still requires
programming, maintenance, and attention to
results over time to make sure that the test
itself isn't broken. It's also possible to create
synthetic transactions with formal automated
testing tools. Such tools typically have more
than capture/replay capabilities, adding
language facilities to create logic in automated
test scripts that can handle exception
conditions, deal with conditional inputs and
outputs, and log data in a repository.

To facilitate data collection and analysis over
time, it's generally also useful to store outputs
in a data store (or spreadsheet, at a minimum).
This data store should enable you to easily
retrieve and present trend information over
time.

One practice that many operations personnel
find useful is to post a "dashboard" that
shows the state of key services on the

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

17

organization's intranet. This allows any single
user who needs a service to "check the traffic"
when using an application. Several of the
automated service-level monitoring tools in
the market have this facility built-in. A good
complementary practice for a web-based
dashboard is to provide links to service-level
definitions, as well as prose descriptions of
service level targets, so that a user who sees a
service-level trouble indicator can also check
what the service level covers.

Defining a Synthetic Transaction
I've referred a number of times in the course
of this paper to "synthetic transactions" as a
means for checking the availability of an
application across a network. By definition, a
synthetic transaction constitutes an
automated, self-contained set of user-
operations that can be executed against
service much as would be undertaken by any
consumer of the service, such as a real user
operating an application. For example, on the
internet, a synthetic transaction includes a
script that goes a public website for trading
stocks, and tests looking up a stock price or
portfolio valuation, and reporting whether the
series of operations completed successfully. In
other words, any fixed set of user operations
that can be automated reliably can be defined
as a synthetic transactions.

Requirements for a synthetic transaction, at a
minimum, should address the following:

1. Service Scope. What are the boundaries of
service level tested by the synthetic
transaction? For example, does it include
or exclude the local area network? Are
there redundancies that it masks?

2. Geographic Scope. From which point(s) on
the network should the synthetic

transaction execute from? Executing a
single synthetic transaction within the four
walls of data center at the same time as
the same transaction runs across the
corporate network (or the internet, for
that matter) can help establish the relative
availability of the network compared to
the service. Running the same transaction
independently from multiple locations in
the corporate network provides significant
diagnostic information through triangu-
lation, and comparison of results over
time. This also represents a significant
opportunity to add operational diagnostic
capability; or, alternatively, to define a
service level objective that excludes the
outer levels of the network.

3. Functional coverage. This is the core of any
test: what subsystems and functionality are
exercised by the operations performed
during the test? What subsidiary
components of the service stack does the
synthetic transaction exercise? For
example, if a sample transaction includes
data input and retrieval, does that data
input cause the application server to do a
select from the database, demonstrating
its availability, or does it just retrieved
cached information from a file server?

Functional coverage analysis requires
close collaboration between adminis-
trators and the system architects, but with
a strong bias to end-user orientation. One
good test of the functional coverage is to
ask an average user how he or she knows
the system is down, and see if he or she
can readily perform the exact same trans-
action manually. It's also important to
resist the temptation to create synthetic
transactions that provide a wealth of

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

18

diagnostic information; complexities
introduced in the pursuit of optimization
and troubleshooting data can make tests
less robust and generate false negative
results. Focus should be on a test that
closely reflects what users do in spite of
the possibilities for optimization

4. Randomized think-time. Users don't typically
fire off inputs into an application as fast as
they see outputs; typically, they pause
between entries, either to think, or for
interruptions or cups of coffee. Within
reason, the synthetic transaction should be
able to vary how much time passes
between key inputs, to better simulate
how users interact with the system.

5. User operation demarcation (start/end). Like
any good test, a synthetic transaction
needs to begin at a known system state,
and end at a known state. Again, the focus
of the test is on completion, not diagnosis.

6. Response timeout. When there is an outage,
what is the service's recovery target? This
applies at two levels. First, for each step
of the test, how long should it wait to see
the system respond to a single input?
Second, for the synthetic transaction as a
whole, the allotted completion time
should also be a function of its SLIMTAX
classification. A2 metrics can sustain
longer response times, since it needs only
to establish whether a service is there, not
how quickly it responds.

By contrast, A3 and A4 metrics should
time out quickly, subject to the
performance targets of the system. Again,
brevity in a synthetic transaction is a
virtue; many short transactions serve the
purpose of measurement better than a few

long-running ones. Again, the higher the
metric rises in the SLIMTAX hierarchy,
the more frequently tests need to execute.

7. Operational windows. When does the service
under test have to be available? A
simplified way to account for operational
windows is to manually review availability
data accumulated by the synthetic
transaction, and consider only those
outages that took place within operational
constraints. Alternatively, the synthetic
transaction can be programmed to consult
a table of service parameters and ignore
outages at certain times

8. Service level goal: % success. Appealing as it
may seem to set goals in terms of
percentage of 100% 24x7 uptime, both
users and administrators will find it more
constructive to work against outage
budgets, denominated in minutes. Outage
budgets can also be allocated to root
causes following analysis of service-level
attainment; network, application, and
operating platforms can each be allocated
a certain fraction of the outage budget,
and managed to meet those targets
independently.

©2000 SUN MICROSYSTEMS INC., All Rights Reserved

19

Acknowledgements:

Much of the explication in this paper is my own
thinking, but underlying it are some strong ideas from

many of the people I've been privileged to work with as

I developed this exploration of the subject. I am
indebted to Richard McDougall for his insights on the

relationship of resource management to availability

measurement, and to Michael Treese for both his ideas
on the hierarchy of measures and his editorial skills.

Thanks also to John Bongiovanni, Amir Raz, Farhad

Shafa, Rob Sibley, and Jim Wright for their support and
contributions.

About the Author:

David M. Fishman works in the SunUP™ High
Availability Program under the Office of the CTO at

Sun Microsystems, where he is responsible for

application availability measurement strategies. Prior to
that, he managed Sun's strategic technology

relationship with Oracle, driving technology alignment

on HA, Enterprise JavaBeans™ (EJB), scalability and
performance. Before joining Sun in 1996, David held a

variety technical and business development positions at

Mercury Interactive Corporation, a software test
automation tools company. There, he led product

management efforts for automated GUI testing tools

and load testing for packaged ERP implementations.
As Mercury's business development manager, he

helped drive its 1993 IPO. From 1988-1991, David

worked at a VME board manufacturer in the defense
electronics industry. He holds an MBA from the

School of Management at Yale University. Email:

david.m.fishman@sun.com.

Sun, Sun Microsystems, the Sun logo, Enterprise JavaBeans,

JDBC are trademarks or registered trademarks of Sun

Microsystems, Inc. in the United States and other countries.

