1997 Software Engineering & Economics Conference

Return on Investment from a Software Measurement Program

George E. Stark

The MITRE Corporation

1150 Academy Park Loop, Suite 212

Colorado Springs, CO 80910

(719) 572-8468

Fax: (719) 572-8345

e-mail: gstark@mitre.org

ABSTRACT

The Missile Warning and Space Surveillance Sensors (MWSSS) program management office became responsible for the software maintenance of seven products in November 1994. The total inventory consists of 8.5 million source lines of code written in 24 different programming languages. The first management decision was to define a variable staff/variable schedule process for software maintenance releases and to implement a software measurement strategy to help understand, manage, and improve the process. This paper describes the software release planning and implementation process and the measurement strategy. It examines the costs of developing and sustaining the measurement program over the past two years as well as quantitative and qualitative returns on that investment. The measurement program has returned 187% of the two year investment in cost savings and 418% in cost avoidance. The measurement program has also improved understanding of the software release planning process and allowed the organization to answer recurring questions more efficiently. Thus, we believe measurement is a necessary part of any software organization.

INTRODUCTION

Maintenance of a software system intended for a long operational life poses special management problems. The maintenance phase of the software life-cycle is widely recognized as the highest cost phase with estimated costs of between 60% and 80% of the total software budget [1-3]. Gibson and Senn noted that over 50% of programmer effort is dedicated to maintenance[4]. Given this high cost, some organizations are looking at their maintenance process as an area for competitive advantage[5].

In 1994, the Missile Warning and Space Surveillance Sensors (MWSSS) program office became responsible for the software maintenance effort on seven products executing in ten locations world-wide. The products contain 8.5 million source lines of code written in 24 different languages. Some of the systems are more than thirty years old; the newest system became operational in 1992.

To help MWSSS manage and improve their software maintenance processes we implemented a strategy similar to the one implemented at NASA’s Software Engineering Laboratory (SEL) [6]. The approach is to apply potentially beneficial software engineering techniques to the production of maintenance releases and measure the process and product in enough detail to determine the costs and benefits of the technique. The overall improvement strategy is depicted in Figure 1. It is a three phase approach that includes: Understanding, Use, and Transfer. The understanding phase starts with developing a baseline understanding of the MWSSS environment, products, and processes. This includes understanding our customer’s expectations, the operating instructions that we work under, the size and reliability of the products, and the salient characteristics of our process. In the second phase we use the data to improve our insight into the software process, products. This involves applying different models, tools, and techniques to address specific issues. A cornerstone of this approach is measuring the impact of these process changes on the products generated and on customer satisfaction. If the issue solution is successful the third phase, Transfer, is implemented. In this phase, successful experiences are promoted throughout the organization via training sessions and monthly engineering/management meetings. Our process documents are updated to reflect these changes.

In MWSSS these process improvement steps are addressed sequentially and iteratively for as long as process and product improvement remains a goal within the organization.

 EMBED Word.Picture.8

Figure 1. MWSSS Improvement Strategy

Measurement Program costs and delivered products

MWSSS spent $96,000 in the first year and $50,000 the second year to support the improvement strategy. For this investment the MWSSS organization has received the following products: (1) a useful metrics set that addresses their primary goals, (2) tools for data collection, storage, and decision support, (3) upgraded change analysis, software release planning, and risk management activities and (4) training for engineers and managers on the metrics. The following sections overview each of these products.

The Software Metrics

The primary product from this investment was a measurement program based on Basili’s Goal/Question/Metric (GQM) Paradigm [7] and other reported measurement experiences [8-13]. The GQM method is used to define measurement on the software project, process, or product in such a way that:

•
resulting metrics are tailored to the organization and their goals;

•
resulting measurement data play a constructive and instructive role in the organization; and

•
measurements and their interpretation reflect the values and viewpoints of the different groups affected (e.g., developers, users, managers, etc.).

The MWSSS goals are to improve customer satisfaction and meet our commitments to cost and schedule. From these goals, we derived questions that relate to the size and type of workload we handle; the amount of process rework; the cost and schedule of a release; and the quality of the release. The questions are answered using measurments. Table 1 contains the results.

Notice that the questions can support more than one goal. For example, the question “Are we meeting delivery schedules?” supports the goal of customer satisfaction as much as it does the minimize schedules goal. Table 1 shows only one occurrence for brevity. The MWSSS software measurement detailed definitions were delivered in [14-15].

Table 1. SW Maintenance Goals, Questions, and Metrics

Goal
Question
Metric(s)

Maximize Customer Satisfaction
How many problems affect the customer?
Current Change Backlog

Software Reliability

How long does it take to fix an Emergency or Urgent problem?
Change Cycle Time from Date Approved and from Date Written

Minimize Cost
How much does a software maintenance delivery cost?
$/Delivery

How are the costs allocated?
$/Activity

What kinds of changes are being made?
Number of Changes by Type

How much effort is expended per change type?
Staff Days Expended/Change by Type

How many invalid change requests are evaluated?
% Invalid Change Requests Closed each Quarter

Minimize Schedule
How difficult is the delivery?
Complexity Assessment

Software Maintainability

Computer Resource Utilization

How many changes are made to the planned delivery content?
% Content Changes by Delivery

Are we meeting our delivery schedules?
% on-time deliveries

The Measurement Toolkit

To ensure that the measurement data was collected consistently across all seven product teams and that it could easily support management decisions, MWSSS defined a standard suite of tools for use by analysts and project personnel. The toolkit supports analysis of the metrics to answer the questions and meet the goals that originally generated the metrics set. Recognizing that addressing a management or engineering issue may require integration of several measurements, it is important for the toolkit to collect, store, and manage data from multiple sources. In the MWSSS environment, the toolkit required a data repository element, a cost/resource estimation tool, a release risk assessment tool, a software change request tracking tool, and a reliability estimation tool.

The data repository element is based on a Microsoft ExcelTM spreadsheet running on a desktop computer. The spreadsheet lets managers view historical data from 34 software maintenance releases as well as track planned and actual measurements on ongoing releases. It provides graphical displays of the measurement data as well as performing linear regression or tabular analysis of the data.

Cost and schedule estimates are provided by the historical data as well as the Sacramento Air Logistics Center’s Logistic Cost Modeler (LCM)[16]. This tool helps a release manager estimate the effort, cost, and schedule required to produce a software maintenance release. LCM includes an implementation of Boehm’s COnstructive COst MOdel (COCOMO) specifically tailored for software maintenance. MWSSS has used historical data to calibrate the model to our environment.

Another tool in the kit is DELCOMP [17], a home-grown risk assessment tool that helps engineers and managers evaluate the “complexity” of a planned software maintenance release. The tool combines objective data about the software product with subjective assessments of the documentation, process, staff, environment to arrive at an overall risk of the release. If the overall risk is high, the release manager can take action to reduce the risk associated with any of the factors.

A fourth tool is the Standard Change Form (SCF) tracking system [18], developed by the Space and Warning Systems Center (SWSC) at Peterson AFB, CO. This Microsoft AccessTM based system allows us to track the status of all change requests generated for our products.

Finally, we use the Computer Aided Software Reliability Estimation (CASRE) tool for software reliability assessments. This tool is a public domain program available in [19]. It implements 10 time domain software reliability models, including those recommended by the American Institute of Aeronautics and Astronautics [20]. This tool allows analysts to forecast field failure rates based on test data and track operational failure rates.

Although this toolkit is neither completely automated nor integrated, we have found it useful for the MWSSS metrics collection and analysis.

Improved Processes

The measurement program has become integrated into the MWSSS software maintenance planning and implementation process. New change requests are evaluated according to a taxonomy of previous changes for engineering effort and computer resource estimates. During the release planning and approval process, each new release is evaluated for its cost and schedule risk, its impact on the system functionality, change request backlog, field failure rate, software maintainability, and computer resource utilization.

During release implementation, software releases are tracked against their plan for cost, schedule, and performance. Performance is measured in terms of the number of requirement changes made during the release and the number of failures experienced during developer and customer testing. Requirement changes are evaluated for cost and schedule impacts before they are agreed to by both MWSSS and the customer.

Project close-out reports are completed on all software maintenance releases. These close-out reports document the final measurements for the project and discuss any lessons learned during the release. Additionally, detailed post-release root cause analysis is completed on all releases that come in over schedule or budget to understand what caused the overrun (e.g., estimation error, requirement volatility, staffing, etc.)

training

Training in the MWSSS software measurement program consists of both formal and informal training. Formal training involves scheduled lectures with hands-on tool demonstrations. Three training classes have been presented to the MWSSS engineers and managers over the past two years. Informal training consists of the available documentation describing the measurement program and quarterly reviews of the measurement data.

Return on investment

The return on the two year investment contains two components: (1) the savings resulting from better decision-making during the release planning and implementation process and (2) the costs avoided through improved cost and schedule estimation. The following subsections describe these returns.

Cost savings

Table 2 shows the overall status of the software product maintenance from fiscal year 1994
 to fiscal year 1996. The workload remained relatively constant from FY95 to FY96, with only six fewer changes delivered in the second year. There were fewer releases in FY96 because two systems had “frozen” baselines while they are being upgraded with new architectures by other groups. Eight of the 133 changes required rework because of customer found failures in FY96 as compared to 6 of the 139 in FY95.

Table 2. MWSSS Software Maintenance Process Parameters

Fiscal Year
SW Maintenance

Releases
Changes Closed
Average

Cost (K$)
Percent Releases on Schedule
Priority Change Cycle Time (Days)
Customer Found Failures

per Change Delivered

94
8
98
unknown
0
90
unknown

95
17
139
380
20
120
.04

96
13
133
359
61
134
.06

The average cost per release dropped by $21K from FY95 to FY96. With thirteen releases in FY96, this is a total savings of $273,000. This savings is in large part because of the increase in the percent of releases made on schedule (from 20% in FY95 to 61% in FY96). Better planning estimates and schedule impact models developed using the measurement data helped our project managers work with our customers and suppliers to meet delivery schedules.

MWSSS has three priorities of change request: emergency, urgent, and routine. An emergency change requires immediate attention and is worked on from the time it is approved by the customer as a valid emergency until it is complete. Only one emergency change has occurred in the past three years. An urgent change implies a high priority that should be included in the “next available” release. Depending on the status of the release being implemented (i.e., has critical design occurred), the urgent change may be delivered as a part of it, or in the next release. The priority cycle time has increased in each year. There are two reasons for this increase. First, not as much requirement volatility was allowed in the release cycle. Most “change the release content” requests (placing urgent priority change requests into the release being implemented) were denied. This placed those urgent requests as content in the next release planning cycle. Thus, reducing the impact to the customer. Second, there was not a release on one product in FY94. This product has an extremely difficult software engineering environment (i.e., assembly language with no tools and custom hardware) and had staffing difficulties. Since there was no release, all change requests delivered in FY95 and FY96 were at least 365 days old. Changes to the environment are being examined to reduce the cycle time. Removing the data for the one product reduces the priority cycle time to 103 days for the organization. This compares favorably with the FY94 data.

Cost Avoidance

Prior to the collection and analysis of the software measurement data, the project manager relied on “engineering judgment” and supplier justification to estimate the cost and schedule of software maintenance releases. After data was collected on ten releases, that data was used to negotiate the cost and schedule of a release. The supplier was asked to bid on the implementation of a release that contained 16 changes. Based on the historical data the release was estimated to cost $420,000 and take approximately 8,000 staff-hours. The supplier bid was 16,000 hours and $980,000. After the negotiation over the differences in these two estimates, MWSSS and the supplier agreed to 8,500 staff-hours and $480,000. Thus, the historical data and the cost estimation process implemented by the MWSSS helped avoid a $500K cost. This project was actually delivered at 8,623 hours and cost $478,680.

One major factor in performing to a delivery plan is requirement volatility. Requirement volatility comes in three types, additions to the delivery content, deletions from the delivery content, and changes to an agreed to request. The requirement’s volatility for 19 deliveries is shown in Figure 2.

 EMBED Word.Picture.8

Figure 2. Requirements Volatility for 19 Deliveries

Five of the nineteen deliveries (26%) had no requirement changes; of these, two were made ahead of schedule and all were within 15% of the originally scheduled delivery date. Fourteen of the nineteen (74%) had requirement changes with five of them having greater than 50% change. Because requirement volatility is a part of our process, we looked for a method to quantify its impact.

Figure 3 is a scatter plot of schedule performance versus the square root of the percentage requirement volatility for these nineteen deliveries. We chose the square root transformation to increase the contribution of values less than 100% and decrease the contribution of values much greater than 100%. A value equal to 100% of the planned schedule means that the schedule was met. A number less than 100% indicates the product was delivered early and a number greater than 100% indicates the product was delivered late. We developed a linear curve fit (least squares) to predict schedule volatility using this data and delivery effort data. The model is of the form:

Percent Schedule Slip = 0.97 + 0.41*(% rqmt vol)1/2 + 0.23*(changes/staff-day)

This equation yields a coefficient of correlation (R2) of 0.72 with a standard error of 0.17. This implies that the model approximates the schedule slip fairly well. Notice that the schedule change goes up regardless of whether the requirement’s change was an addition or deletion because the input to the model is percentage of requirement’s change. This is a topic of debate in the organization, some people argue that removing requirements involves effort to change the design and test procedures, while others argue that a reduction in requirements means less work for the team and should result in completing the project in less calendar time.

 EMBED Word.Picture.8

Figure 3. Schedule Volatility vs. Requirements Volatility

We have used this equation to explain the expected impact of changes to the delivery plan as they arise. For example, one version, contained 15 planned requirements scheduled for delivery in 91 calendar days; the customer wanted to drop two of the requirements and change the scope of a third at preliminary design. Managers estimated the change in risk to version delivery to change from 0.14 (15 changes in 108 staff-days) to 0.1 (13 changes in 130 staff-days). Using the model, managers forecast the overall schedule impact to be [0.97 + 0.41*(0.2)1/2 + 0.23*(0.1)] = 1.18 or an 18% schedule slip. An 18% slip is equivalent to 16 days added to the 91 day schedule. This 16 days would have cost an additional $60,000 to the customer.

During discussion about the model and the prediction, the customer decided that this schedule slip was not acceptable to the overall mission of the version. Thus, they decided not to pursue the changes, but to incorporate the scope change in the next release. The metrics-based model facilitated objective communication about version release plans and status between us and our customer.

In a second instance of the customer requesting to change the release content, the model forecasted a $50,000 cost impact with a 12 day schedule slip in the release. This additional cost was not acceptable to the customer and they decided to incorporate the changes in the next release. Thus, the overall cost avoidance because of the quantitative schedule impact analysis is $110,000.

ROI Calculation

Return on Investment is calculated by the formula:

ROI = [(Savings - Total Investment)/Total Investment]*100

For MWSSS, the ROI was calculated in terms of the two component ROIs (i.e. annual savings and cost avoidance). Recall, the cost savings was calculated as $273,000 from FY95 and the cost avoidance was calculated as $110,000. The Total Investment is the sum of the investment over the two years since November 1994, or $96,000 + $50,000 = $146,000. Thus, the ROI components become

ROI(annual savings) = [($273,000 - $146,000)/$146,000]*100 = 87%

ROI(cost avoidance) = [($610,000 - $146,000)/$146,000]*100 = 318%

The measurement program has returned its initial two-year investment plus an additional 87% by helping lower software release costs and has returned more than three times its investment (318%) by avoiding costs that MWSSS program management office would have accepted in the past.

Summary

The goal of the MWSSS measurement program is to create a more objective dialogue between managers and system engineers or between customers and suppliers. In general, the predictions made from the data have no element of statistical confidence. They are first and foremost design tools used to compare plans to actual results, to serve as input to the organization’s risk management, and implement our process improvement strategy. The measurement data has allowed MWSSS to perform analysis never before possible. This analysis has allowed them to communicate more clearly with their customers and answer recurring questions about software releases and specific change requests quickly and more accurately.

The software responsibility was new to MWSSS in November 1994. Thus, managing the risks inherent in software releases is an important and highly visible part of the organization’s role. The measurement effort inside MWSSS has helped the managers and engineers better understand their processes and products. The toolkit helps ensure consistent data collection across projects and increases the number and types of analysis options available to project teams. The measurements are now a standard part of the requirement validation, release planning and approval, and project monitoring processes.

At a cost of just under $150,000 over two years, the measurement program is a bargain. The decisions made based on the measurement data have helped avoid more than $600,000 in program costs and have contributed significantly to the $273,000 saved in software releases.

References

[1]
B. P. Lientz and E. B. Swanson, “Characteristics of Application Software Maintenance,” Comm of ACM, vol. 21, no. 6, Jun. 1978, pp. 466-471.

[2]
G. Parikh, The Guide to Software Maintenance, Winthrop Publishers, Cambridge, Mass, 1982.

[3]
S. S. Yau and T. J. Tsai, “A Survey of Software Design Techniques,” IEEE Trans on SW Eng, vol. 12, no. 6, Jun. 1986, pp. 713-721.

[4]
V. Gibson and J. Senn, “System Structure and Software Maintenance Performance,” Comm. of ACM, vol. 27, no. 3, Mar. 1989, pp. 347-358.

[5]
J. Moad, “Maintaining the Competitive Edge,” Datamation, vol. 36, no. 4, Feb. 1990, pp. 61-66.

[6]
F. McGarry, R. Pajerski, G. Page, S. Waligora, V. Basili, and M. Zelkowitz, “An Overview of the Software Engineering Laboratory,” SEL-94-005, Goddard Space Flight Center, Dec. 1994.

[7]
V. Basili, and H. D. Rombach, “Tailoring the software process to goals and environments,” Proc. 9th Intl. Conf on SW Eng., Monterey, CA, 1987.

[8]
R. B. Grady, “Measuring and Managing Software Maintenance,” IEEE Software, vol. 4., 1987.

[9]
G. E. Stark, R. C. Durst, and C. W. Vowell, “Using Metrics for Management Decision-making,” IEEE Computer, Sept. 1994.

[10]
G. E. Stark, L. C. Kern, and C. W. Vowell, “A Software Metric Set for Program Maintenance Management,” Journal of Systems and Software, vol. 24, pp. 239-249, 1994.

[11]
R. B. Grady, Practical Software Metrics for Project Management and Process Improvement, Prentice-Hall, Englewood-Cliffs, NJ, 1992.

[12]
T. Lydon, M. Wall, and L. Fischer, “Software Metrics at Raytheon,” Proc 4th Annual Oregon Workshop on Software Metrics, March, 1992, Silver Falls, OR.

[13]
N. Fenton, Software Metrics: A Rigorous Approach, Chapman and Hall, London, 1991.

[14]
G. E. Stark, “Measurements for Managing Software Maintenance,” proc Intl. Conf. on SW Maint., Nov. 1996.

[15]
AFMC/AFSPC Software Measurement Working Group, AFMC/AFSPC Space Systems Software Normalization Core Metrics Guidebook, 21 May 1996, available from AFMC/SSSG/AP, Peterson, AFB., CO.

[16]
AFMC, Logistics Cost Model (LCM) Version 2.1, Sacramento Air Logistics Center (SM-ALC) or Ogden Air Logistics Center (OO-ALC), Oct. 1994.

[17]
G. E. Stark and P. Oman, “A Survey Instrument for Understanding the Complexity of Software Maintenance,” Software Maintenance: Research and Practice, Vol. 7, Dec. 1995, pp. 421-441.

[18]
AFMC, Consolidated Standard Change Form (SCF) Data Base User’s Manual, Integrated Tactical Warning/Attack Assessment (ITWAA) System Program Office, Peterson AFB, CO.

[19]
M. Lyu (ed.), Handbook of Software Reliability Engineering, McGraw-Hill, NY, 1996.

[20]
AIAA SBOS/COS Software Reliability Working Group, AIAA Software Reliability Engineering Recommended Practice, R-013-1992, American Institute of Aeronautics and Astronautics, Washington, DC

� The data from fiscal year 1994 is from the previous software maintenance organization. Since no formal records were maintained by that organization, this baseline was created from reading available documents and interviewing some members of the customer organizations.

_1077458735.unknown

_1077458736.unknown

_1077458734.unknown

