
The Business Case for
Software Performance En gineerin g

Lloyd G. Williams, Ph.D.

Connie U. Smith, Ph.D.

March, 2002

The Business Case for Software Performance Engineering

Contents

Executive Summary . 1

Introduction . 2

The Importance of Software Performance . 2

The Cost of Performance Failures . 2

The Cause of Performance Failures . 3

Preventing Performance Failures . 3

Software Performance Engineering . 4

Aren’t We Already Doing That? . 4

What Does It Cost? . 5

Return on Investment . 5

Getting Started . 6

For More Information . 6

Summary . 6

References . 7

About the Authors . 8

© Copyright 2002, Software Engineering Research and Performance Engineering Services.
All rights reserved.

This article may be freely distributed provided that the title page and this notice are included with each
copy.

The Business Case for Software Performance Engineering

1

Executive Summary
Performance failures occur when a software product is unable to meet its overall objectives due to
inadequate performance. Performance failures negatively impact your bottom line by increasing
costs, decreasing revenue or both. This white paper discusses the cause of performance failures
and shows how they can be cost-effectively prevented.

Performance Failures: Cause and Prevention The primary cause of performance failures is a
reactive approach to performance during the development process. Cost and schedule pressures
encourage project managers to adopt a “fix-it-later” approach in which performance is ignored
until there is a problem. When a problem is discovered, you must buy more hardware, developers
must try to “tune” the software to meet performance objectives or both, causing schedule delays
and cost overruns. In some cases, it is simply not possible to meet performance objectives by tun-
ing.

Performance problems are most often due to inappropriate architectural choices rather than ineffi-
cient coding. This means that performance problems are introduced early in the development pro-
cess but are typically not found until later (during integration test or when the system is in use)
when they are more difficult and more expensive to fix.

The key to preventing performance failures and the resulting project crises is to adopt a proactive
approach to performance management that anticipates potential performance problems and
includes techniques for identifying and responding to those problems early in the process. With a
proactive approach, you produce software that meets performance objectives and is delivered on
time and within budget, and avoid the project crises brought about by discovering performance
problems late.

Software Performance Engineering Software performance engineering (SPE) is a systematic,
quantitative approach to proactively managing software performance. SPE is an engineering
approach that avoids the extremes of performance-driven development and “fix-it-later.” With
SPE, you detect problems early in development, and use quantitative methods to support cost-
benefit analysis of various solution options. SPE is a software-oriented approach: it focuses on
architecture, design, and implementation choices. It uses model predictions to evaluate trade-offs
in software functions, hardware size, quality of results, and resource requirements. It also includes
techniques for collecting data, principles and patterns for performance-oriented design, and anti-
patterns for recognizing and correcting common performance problems.

Costs and Benefits The cost of using SPE is usually a small percentage of the overall project
budget. The level of SPE effort is determined by the amount of performance risk on the project.
For a project with little risk, SPE costs are typically 1% of the total budget. For a high-risk
project, the SPE effort might be as high as 10% of the project budget.

Industrial experience indicates that SPE can save far more than it costs by avoiding the costs (both
direct and indirect) of performance failure mentioned above.

Getting Started Begin with a single project. Train key developers in the SPE process and tech-
niques and provide then with the necessary tool support. Then, use the experience gained on that
project to make SPE and integral part of the software development process on your other projects.

The Business Case for Software Performance Engineering

2

Introduction
Performance failures occur when a software product is unable to meet its overall objectives due to
inadequate performance. Performance failures negatively impact your bottom line by increasing
costs, decreasing revenue or both. This white paper discusses the cause of performance failures
and shows how they can be cost-effectively prevented.

The Importance of Software Performance
Performance is any characteristic of a software product that you could, in principle, measure by
sitting at the computer with a stopwatch in your hand. The dimensions of performance include
responsiveness (response time or throughput) and scalability.

Performance is an essential quality attribute of every software system. Many software systems,
however, cannot be used as they are initially implemented due to performance problems. The fol-
lowing anecdote is typical.

NASA was forced to delay the launch of a satellite for at least eight months. The satellite and the
Flight Operations Segment (FOS) software running it are a key component of the multibillion-dol-
lar Earth Science Enterprise, an international research effort to study the interdependence of the
Earth’s ecosystems. The delay was caused because the FOS software had unacceptable response
times for developing satellite schedules, and poor performance in analyzing satellite status and
telemetry data. There were also problems with the implementation of a control language used to
automate operations. The cost of this rework and the resulting delay has not yet been determined.
Nevertheless it is clearly significant, and the high visibility and bad press is potentially damaging to
the overall mission. Members of Congress also questioned NASA’s ability to manage the program.
[Harreld 1998a], [Harreld 1998b]

This anecdote illustrates a “performance failure”—the inability of a software product to meet its
overall objectives due to inadequate performance.

The Cost of Performance Failures
As the anecdote above illustrates, poor performance can be costly. The costs of performance fail-
ures are both direct and indirect. Direct costs incurred due to performance failures include:

• Increased Operational Costs—Poor performance means that your staff needs more time to
complete key tasks, or that you need more staff to complete these tasks in the same
amount of time. In extreme cases, users may bypass the automated system altogether in
favor of faster manual processes.

• Increased Development Costs—One company discovered, during integration testing, that
an online transaction that should have taken 10 seconds could not be completed in less that
60 seconds. Some transactions took as long as 200 seconds. When problems like these
arise, you need to allocate additional resources to the project to “tune” or even redesign
the software to try to meet performance objectives.

• Increased Hardware Costs—If tuning or redesign isn’t sufficient to solve the problem,
you may need to increase your hardware capacity (for example, by adding more proces-
sors or upgrading to faster disks) to achieve your performance objectives.

• Canceled Projects—In some cases it will be impossible to meet performance objectives
by tuning, and too expensive to redesign the system late in the process or add more hard-

The Business Case for Software Performance Engineering

3

ware capacity. These projects will be canceled and their costs will be largely unrecover-
able.

Indirect costs of performance failures include:
• Damaged Customer Relations—Poorly performing software can cause your organiza-

tion’s image to suffer. The effects of poorly performing Web sites are well documented;
customers will simply go elsewhere rather than endure long waits. This problem is not
limited to Web sites, however. Long waits on the telephone while customer-service repre-
sentatives access customer data will ultimately have the same effect. Even if the problem
is fixed later, negative perceptions will continue.

• Lost Income—“Tuning” or redesign results in late deployment or delivery of software. In
some cases, you may find yourself paying penalties for late delivery or failure to meet
contractual performance requirements.

• Reduced Competitiveness—Late delivery due to “tuning” or redesign can also mean that
you miss a critical market window, allowing your competition to increase their market
share at your expense.

The Cause of Performance Failures
The primary cause of performance failures is a reactive approach to performance during the
development process. Today’s cost restrictions and short development times often encourage
project managers to adopt a “Make it run, make it run right, make it run fast” approach. This “fix-
it-later” attitude can be dangerous. Performance problems are most often due to inappropriate
architectural choices rather than inefficient coding. This means that performance problems are
introduced early in the development process but are typically not found until later (during integra-
tion test or when the system is in use) when they are more difficult and more expensive to fix.
When problems are found, the project usually goes into crisis mode to try and meet performance
objectives.

Preventing Performance Failures
The best way to prevent performance failures is to adopt a proactive approach to managing per-
formance during development. A proactive approach anticipates potential performance problems
and includes techniques for identifying and responding to those problems early in the process. By
adopting a proactive approach to performance, you avoid the project crises brought about by dis-
covering problems late and produce software that meets performance objectives and is delivered
on time and within budget.

The following anecdotes illustrate how using today’s best practices to proactively manage perfor-
mance can improve software quality and prevent performance failures without the need to resort
to last-minute heroics.

An airline reservation service bureau revised its airfare quote system to improve the accuracy of the
“lowest fare” quotes. Performance engineers worked closely with developers throughout the
project. The result was a system with 100 percent accurate quotes and improved performance.

A major insurance company designed a system to provide Web access for its own agents as well as
independent agents. The first version of the design called for a large amount of code (in the form of
ActiveX agents) to be downloaded to client machines. Performance models of this approach
showed that, if the downloaded code underwent a significant upgrade, it would take approximately

The Business Case for Software Performance Engineering

4

three days at full bandwidth to download the changes to all of the client machines. The design was
changed to rely less on downloaded code, and the system was deployed successfully.

Tuning efforts to correct problems that arise due to a failure to proactively manage performance
often masquerade as “successes.” While tuning a system that is in trouble can produce noticeable
improvements, the resulting performance is unlikely to equal that of a system for which perfor-
mance has been designed-in from the beginning. In addition, tuning at the end of the project will
invariably be more costly and time-consuming than doing it right the first time.

Software Performance Engineering
Software performance engineering (SPE) [Smith 1990], [Smith and Williams 2002] is a system-
atic, quantitative approach to constructing software systems that meet performance objectives.
SPE is an engineering approach to performance, avoiding the extremes of performance-driven
development and “fix-it-later.” With SPE, you detect problems early in development, and use
quantitative methods to support cost-benefit analysis of hardware solutions versus software
requirements or design solutions, versus a combination of the two. You implement software solu-
tions before problems are manifested in code; organizations implement hardware solutions before
testing begins. The quantitative assessment identifies trade-offs in software functions, hardware
size, quality of results, and resource requirements.

SPE is a software-oriented approach: it focuses on architecture, design, and implementation
choices. It uses model predictions to evaluate trade-offs in software functions, hardware size,
quality of results, and resource requirements. The models assist developers in controlling resource
requirements by enabling them to select architecture and design alternatives with acceptable per-
formance characteristics. The models aid in tracking performance throughout the development
process and prevent problems from surfacing late in the life cycle (typically during final testing).

SPE also prescribes principles and performance patterns for creating responsive software, perfor-
mance antipatterns for recognizing and correcting common problems, the data required for evalu-
ation, procedures for obtaining performance specifications, and guidelines for the types of
evaluation to be conducted at each development stage. It incorporates models for representing and
predicting performance as well as a set of analysis methods.

Aren’t We Already Doing That?
Do you have—or can you get—precise, quantitative answers to the following questions before
your developers begin coding on a project?
1. Will your processing complete in the allotted time? What is the projected response or turn-

around time?
2. Are your hardware and software capable of supporting the load? What percentage of the avail-

able resources is it projected to take?
3. How well does the architecture support your current performance goals and meet your future

scalability goals? What are the projected response or turnaround times for the forecast work-
load volume over the years in the planning horizon?

4. Do you have a diagram that shows the end-to-end steps in key business tasks and the projected
amount of time required for each?

If not, it is likely that you are not already doing SPE.

The Business Case for Software Performance Engineering

5

The fact that you have “performance specialists” on your staff does not guarantee that you are
using SPE techniques. In most organizations, performance specialists are oriented toward system
support. They typically focus on tuning operating system and middleware parameters rather than
the application software. Many are unaware of application-level performance problems and their
solution.

It is possible that your developers may, in fact, be aware of SPE techniques (many are not—it is
taught in only a few universities). Nevertheless, they may feel that they do not have the time to
apply the techniques within the short time frames in most project schedules. Developers often
have the attitude that “I’d like to use SPE, but my managers will not allocate enough time in the
schedule.”

If you outsource all or part of your software development, you may assume that the vendor is
using SPE. Some outsourcing organizations do regularly use SPE techniques. They build it into
their bid, cost, and schedule. Others feel pressure to produce low bids or short schedules to get the
job, and thus omit these extra steps—especially if they are not legally bound to meet specific per-
formance requirements, or to conduct the SPE steps. The bottom line is: if it’s not in the contract,
it’s probably not happening.

What Does It Cost?
The cost of using SPE to proactively manage software performance depends on the size and com-
plexity of the system under development, the level of performance risk, and the expertise and
experience of the development team, as well as other factors. If not meeting your performance
goals would endanger the success of your project, you have a performance risk. Factors that
increase performance risk include: the use of new technologies, lack of experience in the applica-
tion area, schedule, market factors, and others.

SPE is a risk-driven process. The level of risk determines the amount of effort that you put into
SPE activities. If the level of risk is small, the SPE effort can be correspondingly small. If the risk
is high, then a more significant SPE effort is needed. For a low-risk project, the cost of the SPE
effort required is typically about 1% of the total project budget. For high-risk projects, the SPE
effort might be as high as 10% of the project budget.

Return on Investment
When you apply SPE successfully, you are preventing problems. Thus, calculating a return on
investment requires tracking or estimating the savings that you realize from avoiding these prob-
lems as well as the costs of applying SPE.

Experience reports from industry indicate that the use of SPE to proactively manage performance
can save far more than it costs. For example, Banc One Services Corporation reported that, on one
project, SPE costs over a five-month period were $147,000. During this time, the team analyzed
three applications and identified modifications that resulted in a projected annual savings (cost
avoidance) of $1,300,000 [Manhardt 1998]. Similarly, the performance engineering group at MCI
reported a $20,000,000 savings in one year with SPE due to reduced resource requirements that
resulted in deferred configuration upgrades [CMG 1991].

The Business Case for Software Performance Engineering

6

Getting Started
Begin by taking stock of your current situation. Assign a “key technology specialist” to investi-
gate SPE, whether it is being applied on specific projects (and the outcome), whether projects that
experienced severe performance problems upon deployment used SPE techniques, and whether it
is a standard part of your development process. If so, you are in great shape, but it’s important to
make sure that your SPE program is well-integrated into your development process and not
dependent on a key person who may leave the company.

If you are not already doing SPE, begin with a single project. Train key developers in the SPE
process and techniques and provide them with the necessary tool support. Then, use the experi-
ence gained on that project to make SPE an integral part of the software development process on
your other projects.

For More Information
For more information contact:

More information about SPE is also in the book Performance Solutions: A Practical Guide to
Creating Responsive, Scalable Software [Smith and Williams 2002].

Summary
Performance failures occur when a software product is unable to meet its overall objectives due to
inadequate performance. Performance failures negatively impact your bottom line by increasing
costs, decreasing revenue or both.

The primary cause of performance failures is a reactive approach to performance during the
development process. Cost and schedule pressures encourage project managers to adopt a “fix-it-
later” approach in which performance is ignored until there is a problem. When a problem is dis-
covered, developers must try to “tune” the software to meet performance objectives if, indeed,
they can be met.

The key to preventing performance failures and the resulting project crises is to adopt a proactive
approach to performance management that anticipates potential performance problems and
includes techniques for identifying and responding to those problems early in the process. With a
proactive approach, you avoid the project crises brought about by discovering performance prob-
lems late and produce software that meets performance objectives and is delivered on time and
within budget.

Software Engineering Research
264 Ridgeview Lane
Boulder, CO 80302
(303)938-9847
FAX: (303) 443-5279
boulderlgw@aol.com

Performance Engineering Services
PO Box 2640
Santa Fe, NM 87504
(505) 988-3811
FAX: (786) 513-0165
cusmith@perfeng.com
www.perfeng.com

The Business Case for Software Performance Engineering

7

Software performance engineering (SPE) is a systematic, quantitative approach to proactively
constructing software systems that meet performance objectives. SPE is an engineering approach
to performance, avoiding the extremes of performance-driven development and “fix-it-later.”
With SPE, you detect problems early in development, and use quantitative methods to support
cost-benefit analysis of hardware solutions versus software requirements or design solutions, ver-
sus a combination of the two.

SPE is a cost effective approach to managing software performance. The level of SPE effort is
determined by the amount of performance risk on the project. For a project with little risk, SPE
costs are typically 1% of the total budget. For a high-risk project, the SPE effort might be as high
as 10% of the project budget. Experience indicates that the use of SPE to proactively manage per-
formance can save far more than it costs.

References

[CMG 1991] Computer Measurement Group, Software Performance Engineering Panel,
moderator C. U. Smith, Computer Measurement Group, December, 1991.

[Harreld 1998a] H. Harreld, “NASA Delays Satellite Launch After Finding Bugs in Software
Program,” Federal Computer Week, April 20, 1998.

[Harreld 1998b] H. Harreld, “Panel Slams EOSDIS,” Federal Computer Week, September 14,
1998.

[Manhardt 1998] D. Manhardt, “Applications Optimization Methodology—An Approach,”
Proceedings, First International Workshop on Software and Performance, Santa Fe, NM, pp.
93-100, October 1998.

[Smith 1990] C. U. Smith, Performance Engineering of Software Systems, Reading, MA,
Addison-Wesley, 1990.

[Smith and Williams 2002] C. U. Smith and L. G. Williams, Performance Solutions: A Practical
Guide to Creating Responsive, Scalable Software, Boston, MA, Addison-Wesley, 2002.

The Business Case for Software Performance Engineering

8

About the Authors
Dr. Lloyd G. Williams is a principal consultant at Software Engineering Research, where he spe-
cializes in the development and evaluation of software architectures to meet quality objectives,
including performance, reliability, modifiability, and reusability. His experience includes work on
systems in fields such as process control, avionics, telecommunications, electronic funds transfer,
Web-based systems, software development tools and environments, and medical instrumentation.
Dr. Williams has been a pioneer in the application of Software Performance Engineering (SPE) to
object-oriented systems. He is the author of numerous technical papers and has presented profes-
sional development seminars and consulted on software development for more than 100 organiza-
tions worldwide.

Dr. Connie U. Smith a principal consultant of the Performance Engineering Services Division of
L&S Computer Technology, Inc., is known for her work in defining the field of SPE and integrat-
ing SPE into the development of new software systems. Dr. Smith received the Computer Mea-
surement Group's prestigious AA Michelson Award for technical excellence and professional
contributions for her SPE work. She also authored the original SPE book: Performance Engineer-
ing of Software Systems, published in 1990 by Addison-Wesley, and approximately 100 scientific
papers. She is the creator of the SPE•ED™ performance engineering tool. She has over 25 years of
experience in the practice, research and development of the SPE performance prediction tech-
niques.

Together, Drs. Williams and Smith have over 50 years of experience in software development.
They have worked together for more than 15 years to help clients design and implement software
that meets performance objectives. They have published numerous technical papers and articles,
and are the authors of Performance Solutions: A Practical Guide to Creating Responsive, Scal-
able Software, published by Addison-Wesley.

