

Connecting e-Commerce to XML
Stephen Mohr, Omicron Consulting

Introduction
e-Commerce is an exercise in interconnection. If you truly want to realize the benefits of a
frictionless, commercial Web, you need to connect your site to a host of vendors, suppliers,
partners, and internal applications. A practice shooting to prominence in the field is the use of
XML as the format for expressing and exchanging data. Applications and partners are
connected through the exchange of XML documents describing the business task to be
accomplished.

Simply deciding to use XML is not the end of the story. This presentation discusses the
challenges of using XML and what techniques you can use to overcome them. We will discuss
several methods for getting data out of common sources like databases, and into XML
formatted documents first time.

A problem many people do not anticipate is the problem of data interoperability. XML by itself
does not specify structures for e-commerce. It is more like a syntax and grammar which may
be used by applications to create e-commerce languages. We will show you how to locate
suitable applications of XML, termed vocabularies, that others are using, and how to translate
to and from those vocabularies when you need to use your own specialized vocabulary.

Finally, you will receive a brief survey of commercially available e-commerce XML products and
what they can do for your implementation.

Stephen Mohr is a software systems architect with Omicron Consulting,
Philadelphia, USA. He has more than ten years' experience of working with a
variety of platforms and component technologies. His research interests include
distributed computing and artificial intelligence. Stephen holds BS and MS
degrees in computer science from Rensselaer Polytechnic Institute.

2

Needs of B2B e-Commerce
Moving a business to the Web brings certain requirements that do not exist in businesses that
are wholly manual, or at least those where the interconnections between work processes are
manual. Whenever an employee receives a document and performs some processing – even if
only to key it into an automated application – the business has the opportunity to apply human
reason and common sense, thereby smoothing the way for applications. Such manual
intervention adds time to the business cycle, however, so we want to find a way to avoid the
need for human intervention at the points where applications interact. This is particularly true
of business to business (B2B) operations.

The principal benefits of B2B e-commerce are, ideally, the reduced costs and shortened
delivery times promised by automated systems. Outsourcing functions to suppliers and
partners permits a business to concentrate on what it does best and reduce costs to a
minimum. A secondary benefit is the ability to conduct business around the clock. Anything
that adds manual intervention works against these benefits. Also, since one of the primary
aims of B2B e-commerce is to reduce costs, you do not want your B2B interconnections and
integration systems to introduce high costs of their own. It is imperative that e-commerce
systems be implemented at minimum cost.

When you are exchanging data with a large number of external partners, such as suppliers, you
quickly encounter the problem of data translation. Everyone tends to develop their own way of
describing information and processes. Industry-standard formats are slowly taking hold, chiefly
due to the promise of reduced development costs, but there are still many factors that drive
businesses to create their own formats. In the physical world, we are used to seeing similar but
different business forms for common functions like purchase orders. This is not a problem
because human intervention provides a translation. In e-commerce, we must provide an
automated and dynamic translation mechanism. Even if a majority of participants in a
particular market agree to some set of universal data formats, we must still be prepared to
translate to and from these formats and equivalent proprietary formats used by the minority.

In the recent past, automated e-commerce, chiefly Electronic Data Interchange (EDI), was
limited to very large corporations. They were the only ones who could afford the expensive
computers and proprietary networks required then. Today, though, we are accustomed to
inexpensive computers and many people have access to the Internet. We expect to be able to
conduct e-commerce with small and medium sized businesses. This will mean an explosion in
the number of potential partners with whom you must be prepared to interoperate. Clearly,
there is a need for most people to use standards for simple things that are not specific to their
business, notably networking and user interfaces.

All these factors point to the Web. Secure IP-based networking over the public Internet
promises commodity networking. Indeed, businesses can increasingly assume their partners
will already have robust access to the Internet. In cases where manual intervention is required,
such as a human-initiated purchase or authorization, web browser interfaces are an excellent
means of providing applications to people without having to train them in the basics of using
the application. While you may have to explain your particular business processes, you can
expect users to understand clicking, links, and the behavior of HTML form elements. The
combination of the public Internet and commodity web browsers spell the end of proprietary
networks and applications, such as were required by older e-commerce systems like EDI.

B2B Technical Problems
Few companies will have the luxury of starting from the beginning and creating systems and
data formats expressly for B2B e-commerce. The investment in legacy systems, data storage,
and data structures and formats is simply too great to throw away for the average business.

3

Legacy applications have another name in most companies: the systems that have been
running the business for years. They are trusted and dependable. Much has been invested in
them and the day-to-day operation of the company relies on the continued and correct
functioning of these applications. It is unwise and often impractical to modify them solely for
the purpose of integrating with other applications. Interconnection between many of these
systems is currently made through manual intervention. There will be great reluctance to open
them up to applications hosted by outside partners. Your e-commerce system must take this
reluctance into account. You must deal with the I/O already in place.

Data formats are another area in which companies resist change. There are the technical issues
of understanding and converting large volumes of legacy data, not to mention the issue of
modifying legacy applications to operate with a new format. There is also the cultural issue of
changing formats. Often, the structure of a business message generated by a company's
applications reflects that company's way of looking at its industry. My purchase order is your
requisition. My way of listing business contacts is different from yours. Both are valid and
related, but neither of us is going to change. Small companies, in particular, face this
challenge. Any large customers are likely to dictate formats to them. Unless they want to rely
on a single large customer, they must be prepared to accommodate multiple data formats.
Dynamic translation is needed.

What is needed to answer these challenges is a simple and inexpensive way of expressing data.
It must be well suited to the Internet and its protocols, and it must lend itself well to dynamic
translation. As you might have guessed, XML is one such answer.

XML as a Common Representation
XML has a number of things going for it as a common format for data representation in
Internet-enabled B2B e-commerce. First, it is entirely represented in text. Unlike binary
formats, XML can be processed without change regardless of the receiving platform. Different
countries and languages employ different character sets, but XML includes provisions for
specifying which set was used to compose the document. Text, moreover, is the primary
format used with such protocols as HTTP and SMTP, so XML needs no special handling when
used with the most widely employed protocols of the Internet.

XML is also experiencing a wave of popularity at the moment. Technologies built around XML
provide powerful capabilities useful to e-commerce applications. We will see one of those
technologies – the styling and transformation language XSLT – later in the presentation.
Because of the technical advantages and market popularity, XML tools are readily available on
most platforms and for most programming languages. The result is that a critical mass of
trading partners and suppliers is forming. XML is rapidly transitioning from a technical frontier
to the safe choice for data exchange in e-commerce applications.

Getting Data into XML
Unless you are developing a brand new application that emits XML as its native export format,
you will need to get your business data into XML. Some sources of data are:

� Data manually entered into an HTML form
� Relational data from a commercial database
� Data exported from an application in a flat file format such as CSV or positional data
� Data transmitted via messaging middleware in a flat file format

4

The flat file sources may be the result of data dynamically created by an application or
exported from some storage form, e.g. a database or a spreadsheet, that is capable of
translation from its native format to a common flat file format.

Regardless of the source, we need convenient, ready-built tools for creating XML. This is the
starting point for connecting e-commerce applications to XML.

ADO Recordsets
Since version 2.1, ADO recordsets have been capable of exporting from the native binary form
of a recordset to XML. ADO 2.1 permitted recordsets to be saved to a disk file in XML form.
ADO 2.5 broadened this capability so that the XML data can be written to an IStreamPersist
interface. This means that a recordset can be written as an XML document directly to an
instance of the MSXML parser, the body of a Microsoft Message Queue (MSMQ) message, or the
Response object in ASP. This opens many possibilities for writing e-commerce applications that
depend on a relational database on the Windows platform.

The sample in the presentation shows the results of a query against the publishers table of the
SQL Server pubs database. It consists of two main segments. The first is an embedded XML
schema. This describes the structure of the XML document itself. A moment's thought will show
you why this is absolutely necessary. The data requested by a SQL query can be different from
every other SQL query. This results in different results that need to be expressed. There is no
way one XML vocabulary can express all possible result sets.

The second major section of the XML document is the data itself. The format favored by ADO is
a loose form, consisting, in the most commonly used case, of one element per row. The
columns of the recordset are expressed as attributes of the element. Nested recordsets,
involving a column that is itself a recordset, are expressed as elements nested within the row
element. Here's a very brief excerpt from the sample:

<rs:data>
<z:row pub_id="0736" pub_name="New Moon Books" city="Boston"

state="MA" country="USA" />
<z:row pub_id="1389" pub_name="Algodata Infosystems"

city="Berkeley" state="CA" country="USA" />
</rs:data>

RDBMS Support
ADO support for XML was quickly followed by support for XML in the major RDBMS's
themselves. Oracle 8 introduced support, quickly followed by a Microsoft technology preview
for SQL Server 7.0, and SQL Server 2000. The basic format used is similar in most cases to
that used by ADO. The element per row, attribute heavy form, sometimes known as the
canonical form, is useful and easily implemented from a database cursor. Alternatives to this
form supported by SQL Server 2000 include making the attributes child elements of an element
named for the table, as well as hybrid forms in which the query explicitly designates which
columns become elements and which remain attributes. Here is the sample given above
rendered in the form in which columns are child elements:

<root>
<publisher>

<pub_id>0736</pub_id>
<pub_name>New Moon Books</pub_name>
<city>Boston</city>
<state>MA</state>
<country>USA</country>

</publisher>

5

<publisher>
<pub_id>1389</pub_id>
<pub_name>Algodata Infosystems</pub_name>
<city>Berkeley</city>
<state>CA</state>
<country>USA</country>

</publisher>
</root>

Transforming Data
When we speak of transforming data, we are not talking about changing our data into
something completely different. Rather, we have the problem of two dissimilar but related XML
vocabularies. Related, in the sense that the two vocabularies are talking about the same thing.
If they weren't, there would be no need to transform them, nor would we be able to do so.
Dissimilar, in the sense that the form of the data is a bit different. Consider the following:

<Contact fname="John" lname="Doe"/>

<Person role="contact">
<Name>

<First>John</First>
<Last>Doe</Last>

</Name>
<id>12345-asd</id>

</Person>

Both XML fragments are clearly expressing the name of a person. In the first, it has been made
clear from the element name that we are talking about a contact, although it is not clear what
sort of contact we are talking about. Perhaps this is the person to call in the event that a
shipment is delayed, or perhaps we are talking about a sales contact. In the second fragment,
we are dealing with a person, and that person's status as a contact is expressed in the value of
the role attribute.

To relate the second to the first, we need to assign the values of the Name related elements to
the attributes of the Contact element in the first fragment, dropping the id element entirely.
This can be done with an XML-related technology called the Extensible Stylesheet Language
– Transformation (XSLT). XSLT is a data-driven method for converting one XML document
into another. An XSLT stylesheet contains a series of rules, called templates, each of which
specifies a pattern to be matched in the source document and a set of actions to be taken
when the pattern is matched. The results of the actions become the body of the target
document. You start with a source document, apply the stylesheet actions, and generate the
target document. You can see how this might be useful. We have a business document in one
XML vocabulary, and we want its equivalent in another vocabulary. I write a stylesheet
describing the transformation we need to make, and we can create the needed document. XSLT
only became a W3C Recommendation last year, but a number of XML parsers support it, so we
should have no trouble finding one that will do the job for us. The preview release of Microsoft's
parser supports XSLT, as do a number of parsers and editors from IBM's alphaWorks
laboratory. Writing a stylesheet is generally easier than writing all the custom code to perform
the transformation ourselves.

The Basic Transformation Process
The basic process of setting up and executing a transformation on B2B documents is as follows.
First, you need the schemas or Document Type Definitions (DTDs) for the two documents. You
control one document, so getting the information on its structure should be easy. You may
need to contact the owner of the other document to get information on its structure, or you

6

may be able to get the information from a third party. A number of portal sites exist, such as
BizTalk.org, with the hope of becoming a clearinghouse for just this sort of information.

Next, you need to determine the mapping between the two schemas. Strictly speaking, you
don't absolutely need the schemas for the two vocabularies, but you do need to be sure that
you know all the possible elements, attributes, and structures that can appear in documents of
the two types. A comprehensive sample of a document written to each vocabulary might be
sufficient, but generally speaking you will want to get a schema or other documentation from
the vocabulary originator. These two steps – determining the vocabularies needed and
developing a mapping – occur at design time.

When you have an actual source document instance that requires transformation, your code
loads the document and a stylesheet into your XSL processor. Using the Windows XML parser,
you load the source document into one parser and the stylesheet into another:

doc = new ActiveXObject("MSXML2.DOMDocument");
stylesheet = new ActiveXObject("MSXML2.DOMDocument");

doc.load("OrderRequestSample.xml");
stylesheet.load("cxmlToPO.xsl");

Next, you apply the stylesheet – XSLT stylesheets are themselves XML documents – to the
source document by calling the transformNode method on a node in the source document:

StrXML = doc.transformNode(stylesheet);

The node you select is the starting point for the transformation. If you are transforming the
entire document, you call the method on the entire source document. The result is a new XML
tree describing the target document. With this in hand, you can save it to disk or transmit it to
the recipient. Let's try a practical example of this process.

cXML to XML Common Purchase Order
The cXML vocabulary is a consortium (http://www.cxml.org) effort to describe common
business documents in XML. Messages in this vocabulary consist of documents whose root
element is named cxml, and whose body can contain a number of different elements. These
elements are what distinguish the various messages possible in the cXML vocabulary.

For its part, Microsoft has created a number of XML vocabularies for use with its BizTalk Server
product. These have the same aim as cXML, but unlike that effort, each message is a different
XML document type.

One of these types is the Common Purchase Order (PO). cXML has a message type called
OrderRequest which is analogous to a purchase order.

There are many vocabularies with similar goals in existence today. It is worth checking one of
the repository sites, such as BizTalk.org or RosettaNet, to see if one of their vocabularies meets
your needs. Your needs and data requirements are the determining factor.

To test our XSLT transformation process, we will attempt to devise a mapping between cXML
messages containing an OrderRequest element and the Common PO vocabulary.

cXML OrderRequest

A cXML OrderRequest message is a purchase order. It is capable of expressing a new order as
well as updates to existing ones. All cXML messages include a general Header element,

7

followed by a Request element that, in turn, contain the element that denotes the type of
message we are sending. In our case, this is OrderRequest. The OrderRequest element
contains a header and one or more ItemOut elements which correspond to the line items in a
PO. To simplify matters, we will assume we are dealing with a new PO rather than a change to
an existing one. Take a look at the sample OrderRequest message found in the file
OrderRequestSample.xml. Here's a brief excerpt:

<cXML payloadID="3223232@ariba.acme.com"
timestamp="2000-03-12T18:39:09-08:00">

<Header>
<From>
. . . .

</From>
<To>
. . . .

</To>
. . .

</Header>
<Request deploymentMode="test">

<OrderRequest>
<OrderRequestHeader orderID="DO1234"

orderDate="2000-03-12" type="new">
<Total>

<Money currency="USD">50.00</Money>
</Total>
<ShipTo>
. . . .

</ShipTo>
<BillTo>
. . . .

</BillTo>
<Shipping trackingDomain="FedEx"

trackingId="1234567890">
<Money currency="USD">0.00</Money>
<Description>

<ShortName>FedEx 2-day</ShortName>
</Description>

</Shipping>
<Tax>
. .

</Tax>
<Payment>
. . . .

</Payment>
<Contact role="sales">

<Name>John Doe</Name>
</Contact>

</OrderRequestHeader>
<ItemOut quantity="2"

requestedDeliveryDate="2000-03-12"
lineNumber="001">

<ItemID>
<SupplierPartID>1233244</SupplierPartID>

</ItemID>
<ItemDetail>

<UnitPrice>
<Money currency="USD">25.00</Money>

</UnitPrice>
<Description>

8

<ShortName>AtomWidget</ShortName>
</Description>

. . .
<ManufacturerPartID>234</ManufacturerPartID>

. . .
</ItemDetail>
<ShipTo>
. . . .

</ShipTo>
. . .

</ItemOut>
</OrderRequest>

</Request>
</cXML>

XML Common PO

The Common PO is a bit simpler than the OrderRequest message. It is provided with the
BizTalk Server product as an XML counterpart to EDI purchase orders. It contains a root
element of CommonPO, followed by a number of elements like POHeader, BillTo, and ShipTo,
followed by one or more Item elements and then a Total element. Each Item element is a line
item in the purchase order.

Transformation

We'll first try the transformation using an XSLT stylesheet and just enough custom code to load
the source document and stylesheet and execute the transformation. We already know one
mapping: ItemOut in cXML contains the information we will need in Item elements of the
Common PO. Another mapping you can determine from the stylesheet is Shipping to
CarrierDetail (to pick up the shipping carrier). One interesting detail is that there are several
calculated values. QuantityTotal and LineItemTotal do not correspond to any element or
attribute in the OrderRequest document, but must be determined from looking at the source
document and counting the line items and totaling the quantity attributes.

The Stylesheet

The stylesheet, cxmltoPO.xsl, contains all the mappings. Note that it is an XML document that
is rooted by the xsl:stylesheet element. The templates alluded to earlier are contained in the
xsl:template elements. Without going into a great lecture on the fundamentals of XSLT, we
can say a few things to get you started. Each template contains a match attribute whose value
is an XPath expression denoting some XML structure that is to be matched. XPath is a W3C
Recommendation that describes how to query within an XML document, based on a path from a
known XML node and some desired properties or conditions. If a match is found, everything
within the template is executed to create output XML. There is a starting template, denoted by
a match value of /, which is the XPath expression for the root of the document. The
xsl:apply-templates element tells the XSLT processor to continue with the pattern in its
select attribute. In our case, we are directing it to the cXML element. This is an important
element as, without it, the processor would cease working after matching the root. Whenever
we want to continue with another template, we need to insert an xsl:apply-templates
element. In our stylesheet, you will also see some looping structures denoted by the xsl:for-
each element. That is a template that is to be applied for every part of the XML that matches
the XPath expression in the select attribute, i.e. iterate over each element that matches. Let's
explain a fragment from the stylesheet:

<xsl:template match="cXML">
<CommonPO>

9

<xsl:apply-templates select="Request"/>
<FOB ShipPaymentMethod="CC"/>
<SpecialCharge Type="X" HandlingMethod="XX"/>
<TermsOfSale PaymentMethod="PCard"/>
<DateReference Description="XYZ"/>
<xsl:apply-templates
select="Request/OrderRequest/OrderRequestHeader/Shipping"/>

Upon matching the cXML element, this template writes a CommonPO element to begin our
CommonPO output document. Next, it invokes the template that handles the Request element.
After that template has generated its output, we generate hard-coded elements named FOB,
SpecialCharge, TermsOfSale, and DateReference. This is because we have fixed their values
for our purposes. Next, the template for reaching down deep into the document and handling
the Shipping element is invoked.

Now, to handle the calculated values we need some script. XSLT has its own method of dealing
with this that may be different from what you are used to. It uses parameterized templates.
Our stylesheet uses two proprietary elements supported by the Microsoft parser since version
2.0, xsl:eval and xsl:script. These permit us to include a CDATA section with JavaScript
code that uses the document object model to do our calculations.

The Code

Given the stylesheet from design time, how do we perform a runtime XSLT transformation?
Here is the entire code you would use in a client-side script minus some error handling. We
begin by setting up two instances of the Microsoft parser, preview edition:

doc = new ActiveXObject("MSXML2.DOMDocument");
stylesheet = new ActiveXObject("MSXML2.DOMDocument");
doc.async = false;
stylesheet.async = false;

Since this is the preview version, I've taken care to provide the version specific progid. After I
have my two instances, I tell each to perform synchronously as I am writing a scripted HTML
page and cannot easily do multithreading. Now I load my source document and the XSLT
stylesheet:

doc.load("OrderRequestSample.xml"); stylesheet.load("cxmlToPO.xsl");

Now I want to call the transformNode method on the document itself (not the
documentElement property). The result of this call is XML text, so I'll pass that directly to the
alert method in JavaScript to pop the result up in a dialog box for inspection. If I needed to
manipulate the target document further, I could call the Microsoft-proprietary
transformNodeToObject method and get a DOM tree in return.

alert(doc.transformNode(stylesheet));

Is There a Better Way?
Our simple case was harmless enough, although it can't handle flat file formats. More
complicated transformations could prove difficult, however. We need to be fluent in XSLT, and
writing and debugging stylesheets can prove time-consuming. While it is better than writing
custom code for transformations, we can't help but wonder if there's a better way. If we are
going to have lots of partners requiring lots of transformations, we'd rather not have to write a
lot of stylesheets.

10

What we need is a tool that will accept a message and do a transformation for us. Rather than
write the stylesheet, we'd like the tool to generate the stylesheet based on some input from us.
Ideally, we'd like something with extensions that could handle flat file formats in addition to
XML. Happily, there are a number of such products.

B2B Messaging Products
Some B2B products of interest in our situation primarily work to the data transformation aspect
of B2B processing. This will be most useful to you when you have large quantities of legacy
data to be transformed to disk or when you have an unusual business process requiring custom
programming.

More advanced products also include some form of workflow processing. Data transformation is
one possible action that can be taken at any step in the workflow. Other actions include
decision points and message reception or transmission. Such products give you the capability
to map out complex business processing with little or no programming on your part.

Microsoft BizTalk Server
Once such product, which will be demonstrated shortly, is Microsoft BizTalk Server. This is a
completely new product due imminently. It consists of graphical design time tools for specifying
B2B vocabularies and data transformation mappings, as well as runtime servers for message
transformation and workflow scheduling. While you can extend the product through code, it is
designed to be data driven. This means that you will primarily work with graphical interfaces to
specify configurations and mappings to be applied by the server at run time. As messages pass
through the system, you have the option of creating an audit trail with information taken from
each message.

BizTalk Mapper
One of the tools is the BizTalk Mapper. It takes two message specifications (BizTalk's generic
construct for XML schemas and flat file message descriptions) and lets you point and click links
between related items. Mapper uses the terms record and field. Not only is this more familiar to
the average business programmer, but it avoids forcing flat file programmers to think in terms
of XML. In addition to direct links, we can drop intermediate elements, called functoids, onto
the mapper grid. We specify a link coming from the source document into the functoid, and a
link coming out to the target. Functoids are used to perform some intermediate processing that
is not supported by the core elements of XSLT, such as numeric type conversions, string
manipulation, and database access.

cXML to XML Common PO via BizTalk
Returning to our example, we import the cXML DTD into BizTalk's Editor to create a message
specification for that message type. BizTalk includes a specification for the Common PO. Next,
we load these specifications into the Mapper and create the links you saw in the demonstration.
Note the use of functoids to obtain the calculated values. Although there is a script function
that offers you the ability to enter your own scripts in JavaScript or VBScript, we did not need
to resort to that. There are preexisting functoids for the sums we need, so it is simply a matter
of adding them to the grid. The code to perform the iterations and calculate the sums is
generated by the functoid.

The Code

Here is every line of code used in our sample to submit the cXML sample for transformation:

Dim IntC As New Interchange
. . .

11

sDocument = CustMessage.Text

sHandle = IntC.Submit(MODELDB_OPENNESS_TYPE_NOTOPEN, sDocument, ,
"Organization Name", "Home Organization",
"Organization Name", "XPurchasing")

The first line retrieves the text of the message from the edit control in our application. In a real
application you would replace this line with code to obtain the message from some incoming or
outbound message protocol. The object IntC is an Interchange object. This is an interface that
is part of BizTalk Server and it acts as your gateway into the server's message queue. We are
asynchronously submitting the message with information telling BizTalk who is to receive it
following transformation. In this case, we, the Home Organization, are sending it to the
XPurchasing organization. Based on this information, BizTalk looks at the message type and
looks for a configuration that matches. Once found, it performs the transformation specified.

Configuration

To make this example work, we created the XPurchasing organization and specified some
information through the BizTalk Management Desk. We told BizTalk that XPurchasing uses the
Common PO message type. Using the BizTalk Management Desk tool, we created a port, which
is the combination of a receive location and a message type (think "port for passing the
message to the recipient"). For the example, we said we wanted to save POs to a disk location.
Next, we created a Channel, which is an agreement for a message type and a port. Channels
specify the format of the message coming into the port, the desired output format, and any
specialized routing or security provisions for messages transmitted through the port, under the
guidelines of the channel. We said that this port should receive cXML OrderRequest messages,
transform them into Common PO messages, and save the result to disk as specified by the
port. All this took about five minutes using the Management Desk. More complicated cases
would take slightly longer, but you could provide for message encryption and authentication,
auditing, and specify other protocols like HTTP or MSMQ.

Flat File Processing

We mentioned that XSLT won't handle flat file source documents and may not be able to
produce flat file output. BizTalk uses a series of components to allow the XSLT engine to work
with such formats. This is also how BizTalk supports EDI message formats. The schematic
depicted in the slides shows the case in which you want to transform a flat file source
document into a flat file target document. A flat file parser uses the message specification for
the source document to locate the records and fields and transform the document into an
internal XML representation. Next, an XSLT stylesheet transforms that document into another
XML representation that more closely resembles the target flat file format. Finally, a flat file
parser component uses the target message specification to transform the intermediate XML
format into the target flat file format. This process harnesses the XSLT engine but lets you use
flat files or mix them with XML documents in any combination.

Orchestration
A simple message exchange such as we described requires nothing further. Your real-world
B2B processes, by contrast, will usually require a series of messages to complete. You might
send out a request for bids, receive responses, select a winner, and transmit the order. Your
supplier must acknowledge the order, provide status updates, and send a message indicating
that the product has shipped. The Orchestration feature of BizTalk lets you set up a complex
workflow like this graphically, then uses that configuration to drive the server.

A BizTalk orchestration document is a series of actions and decision points. Message exchanges
are modeled as ports. A port is connected to some component or message. This connection
maps to a channel in BizTalk. Within the orchestrated workflow, you can have concurrency, or

12

you may suspend processing to await an incoming message. The graphical tool generates an
XML document that is loaded by the server. This describes a state machine that the server is to
execute. The mappings, ports, and channels you define are coordinated by the state machine,
at the points specified in the workflow, to accomplish the overall business process. Applications
and services can invoke the workflow by referring to the file generated by the Orchestration
tool in a COM moniker.

B2B Portals
Performing B2B messaging with a product like BizTalk Server requires information from your
trading partners. Minimally, you need the message specifications for the formats they use, as
well as information on the messaging protocols and configuration needed to talk to them. You
will also want to establish security arrangements as well as any non-technical contractual items
required by your respective organizations. For a limited number of partners, you can get this
information directly. For larger numbers, or for ad hoc exchanges, you need a portal.

The vision of a messaging portal is to help companies locate appropriate partners and give
them the information they need to begin communicating. In return, these portals might take a
transaction fee. BizTalk.org is Microsoft's free portal containing a searchable repository of
message schemas. RosettaNet is a consortium that is developing a number of standard
workflows. It too, offers a repository of messaging information. Trading hubs and portal sites
are being created for a number of vertical markets using these and competing e-commerce
frameworks and technologies.

Actual practice is diverging from the vision, at least initially. A number of vertical portals have
been created or are being developed to help groups of mammoth manufacturers exchange
messages with their suppliers. Examples of these may be found in the automotive and
aerospace industries. Such manufacturers can get away with controlling the portal because
their size creates immediate critical mass and because the size of their business allows them to
dictate standards to their suppliers. It remains to be seen if this will spread to the rest of the
business world or whether third-party portals will have a chance.

Summary
If you are building a B2B site on the Web, design it with automated message interchanges in
mind. Use XML as the exchange medium. Think of the business process as a sequence of
applications connected by XML messages. Even if you are using XML, message transformation
will be a necessity for you.

Use existing tools to get your platform-specific data into XML and to accomplish data
transformation. If you anticipate large numbers of partners and transformations, look into third
party messaging and transformation tools. The degree of sophistication you require will be
dictated by the needs of your site. In advanced cases, look for tools capable of implementing
business process workflows as an alternative to custom code. They will be much more
productive for you, and you will be better able to respond to changes in the business process.

Further Resources

cXML
http://www.cXML.org

BizTalk
Framework, repository: http://www.biztalk.org/BizTalk/default.asp
Server: http://www.microsoft.com/biztalkserver

13

RosettaNet
http://www.rosettanet.org

XSLT
 Recommendation: http://www.w3.org/TR/xslt
Tools and programming: http://msdn.microsoft.com/xml/default.asp

