
Computer Science
Technical Report

Estimating Defect Density Using Test
Coverage

Yashwant K. Malaiya
Jason Denton

Computer Science Dept.
Colorado State University
Fort Collins, CO 80523

malaiya|denton@cs.colostate.edu

Technical Report CS-98-104

Computer Science Department
Colorado State University

Fort Collins, CO 80523-1873

Phone: (970) 491-5792 Fax: (970) 491-2466
WWW: http://www.cs.colostate.edu

Estimating Defect Density Using Test Coverage

Yashwant K. Malaiya
Jason Denton

Computer Science Dept.
Colorado State University
Fort Collins, CO 80523

malaiya|denton@cs.colostate.edu

Abstract
Defect density is one of the most important factors that allow one to decide if a piece of soft-

ware is ready to be released. In theory, one can find all the defects and count them, however
it is impossible to find all the defects within any reasonable amount of time. Estimating defect
density can become difficult for high reliability software, since the remaining defects can be ex-
tremely hard to test. Defect seeding will work only if the distribution of seeded defects is similar
to the existing defects. One possible way is to apply the exponential SRGM and thus estimate
the total number of defects present at the beginning of testing. Here we show the problems with
this approach and present a new approach based on software test coverage. Software test cov-
erage directly measures the thoroughness of testing avoiding the problem of variations of test
effectiveness. Here we present interpretations of the parameters of the coverage- defect-density
model presented by Malaiya et al. We apply this model to actual test data to project the residual
defect density. The results show that this method results in estimates that are more stable than
the existing methods. This method is easier to understand and the convergence to the estimate
can be visually observed.

1 Introduction

Defect density is among the most important measures of software reliability. In a survey by
Revision Labs, the participants, mostly quality assurance engineers and managers, were asked
“ What is the most important way that you measure quality?”. Fifty-four percent of the partic-
ipants mentioned a defect count based measure, total defects classified by severity, defects per
KLOC (1000 lines of code) or defects per function point [rev97]. This suggests that the number
of defects is often used as a major acceptance criterion. Leading edge software development or-
ganizations typically achieve a defect density of about 2.0 defects/KLOC [bin97]. The NASA
Space Shuttle Avionics software with an estimated defect density of 0.1 defects /KLOC is re-
garded to be an example of what can be currently achieved by the best methods [hat97]. A low
defect density can be quite expensive to achieve, the Space Shuttle code has been reported to
have cost about $1,000 per line of code. The cost of fixing a defect later can be several orders
of magnitude higher than during development, yet a program must be shipped by some dead-
line dictated by market considerations. This makes the estimation of the defect density a very
important challenge.

One conceivable way of knowing the exact defect density of a program is to actually find all

remaining defects. This is obviously infeasible for any commercial product. Even if there are
resources available, it will take a prohibitive amount of time to find all bugs in a large program
[but93]. Sampling based methods have been suggested for estimating the number of remaining
defects. McConnell [mcc97] has given a method that involves using two independent testing
activities, perhaps by two different teams of testers. If NA is the number of defects found by
team A, NB is the number of defects found by team B and if the number of defects found by
both is NAB, then we can assume that

Ntotal

NA
=

NB

NAB
(1)

which allows us to estimate the total number of defects as

Ntotal =
NB�NA

NAB
(2)

The equation 2 is based on the assumption that team A will find the same fraction of all
possible faults as the fraction of all faults found by team B. In other words it assumes that the
faults found have the same testability as the faults not found. However, in actual practice, the
faults not found represent faults that are harder to find [mal84]. Thus equation 2 is likely to
yield an estimate of faults that are relatively easier to find, which will be less than the true num-
ber. Ebrahimi [ebr97] has suggested a sampling based method to estimate the number of defects
during the inspection phase. Fault seeding is another sampling method that estimates the total
number of faults based on the number of seeeded faults [mcc97]. Again seeded faults are likely
to be defects with higher testability resulting in underestimation of the number of faults.

It is possible to estimate the defect density based on past experience using empirical models
like the Rome Lab model [lak97] or the model proposed by Malaiya and Denton [mal97]. The
estimates obtained by such models can be very useful for initial planning, however these models
are not expected to be accurate enough to compare with methods involving actual test data.

Another possible way to estimate the number of faults is by using the exponential SRGM. It
assumes that the failure intensity is given by

λ(t) = βE
0 βE

1 e�βE
1 t (3)

It can be shown that the parameters βE
0 and βE

1 depend on the system and the test process
characteristics. Specifically βE

0 represents the total number of defects that would be eventually
found. We can estimate the number of remaining defects by subtracting the number of defects
found from the value of βE

0 obtained by fitting. We will evaluate this approach by comparing it
with a new approach presented here.

An SRGM relates the number of defects found to the testing time spent. In actual practice,
the defect finding rate will depend on the test effectiveness that can vary depending on the test
input selection strategy. A software test coverage measure (like block coverage, branch cover-
age, P-use coverage etc.) directly measures the extent to which the software under test has been
exercised. Thus we can expect that a suitably chosen test coverage measure can correlate better
with the number of defects encountered. The relationship between test coverage and the num-
ber of defects found has been investigated by Piwowarski, Ohba and Caruso [poc93], Hutchins,
Goradia and Ostrand [hfgo94], Malaiya et al [mali94], Lyu, Horgan and London [lyu93] and
Chen, Lyu and Wong [che97].

2

In the next section, a model for defect density in terms of test coverage is introduced and its
applicability is demonstrated using test data. Section 3 presents an interpretation of the model
parameters and a two-parameter approximation of the model. In the next section we use the
model to estimate the number of defects and compare the results with those obtained using the
exponential SRGM. Finally we present some observations on this new approach.

2 Coverage model for Defect Density

Recently a model was presented by Malaiya et al that relates the density of residual defects with
test coverage measures [mali94]. This model assumes that the logarithmic SRGM is applicable
to the total number of defects found, as well as the number of test enumerables (e.g. branches
or p-uses). Here we use the superscript 0 for defects and i = 1,2,.. for various test enumerables.
Thus we can write for defect coverage C0(t)

C0(t) =
β0

0

N0
0

ln(1+β0
1t); C0(t)� 1 (4)

and enumerable i coverage

C0(t) =
βi

0

Ni
0

ln(1+βi
1t); Ci(t)� 1 (5)

where N0
0 is the total initial number of defects and Ni is the total number of enumerables of

type i in the program under test. Here β0
0;β

0
1;β

i
0;β

i
1, are appropriate SRGM parameters.

We can eliminate time t from equation 4 and 5 to obtain

C0(Ci) = ai
0ln[1+ai

1(e
ai

2Ci
�1)]; Ci

� 1 (6)

where

ai
0 =

β0
0

N0
0

; (7)

ai
1 =

β0
1

βi
1

(8)

and

ai
2 =

Ni

βi
0

(9)

If we indicate the total expected number of defects found in time t by µ0(t), we can write

C0(t) = µ0(t)
N0

0
. Hence from equation 6,

µ0(Ci) = ai
3ln[1+ai

1(e
ai

2ci
�1)]; Ci

� 1 (10)

where ai
3 = ai

0Ṅ0
0 = β0

0

3

0.5 1

1

0.85

approximately

may not be observed in
small programs

Enumerable Test Coverage

Defect

Coverage

linear here

i

Figure 1: Defects vs. Test Coverage Model

Equation 10 can be used when the initial number of defects is not available. We must note
that equations 6 and 10 are applicable only when Ci is less than or equal to one. Thus 100%
branch coverage does not imply 100% defect coverage.

Figure 1 shows a plot illustrating the shape of the curve described by equation 6. At the be-
ginning, defect coverage grows only slowly with test enumerable coverage. However, at higher
test coverage, there is a linear relationship. The value around which the curve exhibits a knee
has a significance as we will see below.

Applicability of this model is illustrated by the plots in figures 2, 3, and 4. This data was
collected experimentally by Pasquini et al [pas97]. They tested a 6100 line C program by ap-
plying 20,000 test cases. The test coverage data was collected using the ATAC tool. Figure 2
shows a screen in ROBUST, an integrated software reliability evaluation tool [rob97] that has
been developed at CSU. Further development of this tool is underway to include additional ca-
pabilities.

For the 20,000 tests, these were the coverage values obtained: block coverage : 82.31% of
2970 blocks, decision cover : 70.71% of 1171 decisions, and p-use coverage 61.51% of 2546
p-uses. This is to be expected since p-use coverage is the most rigorous coverage measure and
block coverage is the least. Complete branch coverage guarantees complete block coverage,
and complete p-use coverage guarantees complete decision coverage.

The plots suggest that 100% block coverage would uncover, 40 defects, 100% branch cover-
age would uncover 47 defects, whereas 100% p-use coverage would reveal 51 defects. We can
expect that the actual total number of faults is slightly more than 51. In actual practice, it would
be generally infeasible to achieve 100% p-use coverage. In Pasquini’s experiment, it took an
additional 18760 tests to increase p-use coverage from 66% to 67%. It is thus unlikely that more
than 51 defects will be found with random testing within a reasonable period of time.

Also we note that the fitted model becomes very linear after the knee in the curve. Let us
define Ci

k as the knee, where the linear part intersects the x-axis. For block, branch and p-use
coverage it occurs at about 40%, 25% and 25% respectively. Below we see the significance of
this value.

4

Figure 2: ROBUST: Block Coverage data (Pasquini et al.)

3 The Model Parameters: Interpretation

An interpretation of the three parameters in equation 10 is important for several reasons. Such
an interpretation would provide valuable insight into the progress of testing to testers. Since
the model is nonlinear and involves three parameters, accuracy of the results would be greatly
enhanced if initial estimates using only static information like software size could be made.

Equations 7,8, and 9 relate the parameters of the coverage model to the logarithmic SRGM
parameters. The parameters of the logarithmic model can be interpreted in two different ways,
as shown by Malaiya and Denton [mal97]. Let us consider both approaches here.

3.1 Indirect Interpretation through the Exponential SRGM

This approach views the exponential model to be an approximation of the logarithmic model.
Let us assume that at the end of test both models project the same total number of faults. Let

us also assume that at the end the number of defects still not found is given by
N0

0
α0 . We can then

show that

β0
0 =

α0
�1

α0ln(α0)
βE

0 β0
1 =

α0
�1

ln(α0)
βE

1 (11)

where βE
0 and βE

1 are the parameters of the exponential models. Using the interpretation of
the exponential model from [mus87], we have

β0
0 =

α0
�1

α0ln(α0)
N0

0 (12)

and

5

0

5

10

15

20

25

30

35

40

45

50

0 0.2 0.4 0.6 0.8 1

D
e

f
e
c

t
s

Branch Coverage

Data Set: Pasquini

Coverage Data

Model

Figure 3: Defects vs. % Branch Coverage

β0
1 =

α0
�1

ln(α0)

˙K0r
IsQ

(13)

where K0 is the fault exposure ratio, Is is the software source size, Q is the average number
of object instructions generated per source instruction, and r is the object instruction execution
rate of the computer used.

Using these equations, we can obtain from equations 7 - 9.

ai
0 =

α0
�1

α0ln(α0)
(14)

ai
1 =

α0
�1K0

ln(α0)

˙ln(ai)

ai�1
Ki (15)

ai
2 =

ailn(ai)

ai�1
(16)

where

a0
=

Total enumerables of type i
Enumerables of type i remaining uncovered

(17)

Generally we can expect that ai > a0 and Ki > K0.

Example 1: Here we use Pasquini et al’s data to obtain preliminary estimates of ai
0;a

i
2;a

i
3.

Let us assume that the total initial number of defects N0
0 is 52. Let us also assume that the ex-

ponential SRGM and the Logarithmic SRGM track each other during testing until 51 of the 52
defects have been found. Then

6

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1

D
e

f
e
c

t
s

P-use Coverage

Data Set: Pasquini

Coverage Data

Model

Figure 4: Defects vs. % P-use Coverage

α0 =
52

52�51
= 52:0 (18)

Using this value, equation 14 gives

ai
0 =

α0
�1

α0lnα0 = 0:246 (19)

Note that this value is not very sensitive to the value of N0
0 assumed.

Let us use P-uses as the enumerable. Figure 4 suggests that 51 defects would be found with
98.53% P-Use coverage. Hence,

αi =
100

100�98:53
= 68:03 (20)

Thus we have,

ai
2 =

αilnαi

αi�1
= 4:28 (21)

we can also obtain

ai
3 = ai

0N0
0 = 0:248�52 = 12:89 (22)

Thus we can get preliminary estimates for two of the three parameters. The parameter ai
1 is

harder to estimate, however we can see that it can be estimated using the estimates of the other
two parameters.

7

3.2 Direct Interpretation through the Logarithmic SRGM

An interpretation of the logarithmic model parameters can be obtained by considering the vari-
ation in the fault exposure ratio [mvs93, mal97],

β0 = IsDmin (23)

β1 =
Kminr
QIs

e
1�

D0
Dmin (24)

where DO is the initial defect density, Kmin is the minimum value of K and Dmin is the de-
fect density at which K = Kmin. Both Kmin and Dmin are parameters that characterize the defect
finding process, depending both on the software under test and the test strategy. Using these
equations, we can write equations 4,5 and 6 as

a0
0 =

IsDmin

N0
0

=
Dmin

D0
0

(25)

a0
1 =

K0
mineD0

0=D0
min

Ki
mineDi

0=Di
min

(26)

a0
2 =

Ni

IsDi
min

=
D0

Di
min

(27)

These three parameters are all independent of software size. Equation 27 suggests that ai
0

would have an inverse dependence on the initial defect density D0
0. In actual practice, the testing

strategy (and hence D0
min) itself varies with D0

0. Thus the dependence of D0
0 variation on α0

0 may
be small.

Example 2: Here we will obtain preliminary estimates of the parameters using the direct
interpretation. In [mal97] it has been observed that D0

min can often be estimated as D0=3. This
would give

ai
0 =

D0
min

D0
0

=
D0

3
1

D0
0

= 0:33 (28)

For an enumerable like P-uses, we do not yet know the relationship between Di
0 and Di

min.
If we assume that the minimum enumerable exposure ratio occurs at the same time as the min-
imum fault exposure ratio, we can estimate Di

min as Di
0=3. That yields,

ai
2 =

Di
0

Di
min

=
Di

0

(Di
0=3)

= 3:0 (29)

Comparing with the values in Example 1, we see that both interpretations yield comparable
preliminary estimates.

8

3.3 A Two parameter approximation

Figure 1, which is a direct plot of the model, and figures 2, 3, and 4 which plot actual data,
suggest that at higher coverage values, a linear model can be a very good approximation.

We will obtain a linear model from equation 6. Let us assume that at higher value of Ci

equation 6 can be simplified as

C0(Ci) = ai
0ln[ai

1eai
2Ci

] = ai
0ln(ai

1)+ai
0ai

2Ci = Ai
0 +Ai

1Ci
; Ci

>Ci
n (30)

where

Ai
0 = ai

0ln(ai
1) =

β0
0

N0
0

ln

�
β0

1

βi
1

�
(31)

and

Ai
1 = ai

0ai
1 =

β0
0

N0
0

Ni

βi
0

(32)

Note that this simplification is applicable only for values greater than Ci
n where the knee

occurs. The experimental parameters values for this model can not be obtained until a clear
linear behavior beyond the knee has been established. Assuming that the knee occurs where
the linear part of the model intersects the x-axis, using equation 30, the knee is at

Ci
knee =�

Ai
0

Ai
1

(33)

Here we can make a useful approximation. For a strict coverage measure, for Ci = 1, C0
� 1.

Hence from equation 30, we have

Ai
0 +Ai

1 � 1: (34)

Replacing Ai
0 by 1�Ai

1 in equation 33, and using 31, we can write,

Ci
knee = 1�

1

ai
0ai

1

(35)

Using the interpretation of the parameters through the Logarithmic model, this can be written
as

Ci
knee = 1� (

Di
min

D0
minDi

0

)D0
0 (36)

Where Di
min, D0

min, Di
0 are parameters and D0

0 is the initial defect density. Thus for lower de-
fect densities, the knee occurs at higher test coverage. This has a simple physical interpretation.
If a program has been previously tested resulting in a lower defect density, it is likely that the
enumerables with higher testability have already been exercised. This means that testing will
start finding a significant number of additonal defects only after higher test coverage values are
achieved.

The approximation 34 has another useful implication. Using equations 31 and 32, we can
obtain,

9

ai
1 � e

1�ai
0ai

2
ai
0 (37)

which can be used to estimate ai
1 once ai

0 and ai
2 have been estimated.

4 Estimation of Defect Densities

The coverage model in Equations 6 and 10 provides us a new way to estimate the total number
of defects. As we can see in Figures 2, 3 and 4, which use the data obtained by Pasquini et al.,
the data points follow the linear part of the model rather closely. Both the experimental data and
the model suggest that the 100% coverage eventually achieved should uncover the number of
faults as given in Table 1 below. The numbers in the last column have been rounded to nearest
integer.

Table 1: Projected number of total defects with 100%coversage

Coverage measure Total defects Coverage achieved Defects expected
found with 100% coverage

Block Coverage 28 82% 40
Branch Coverage 28 70% 47
P-uses Coverage 28 67% 51
C-uses Coverage 28 74% 43

It should be noted that for this project 1240 tests revealed 28 faults. Another 18,760 tests did
not find any additional faults, even though at least 5 more faults was known. The data suggests
that the enumerables (blocks, branches etc.) not covered by the first 1240 tests were very hard
to reach. They perhaps belong to sections of the code intended for handling special situations.

There is a subsumption relationship among blocks, branches and P-uses. Covering all P-
uses assures covering all blocks and branches. Covering all branches assures coverage of all
blocks. Thus among the three measures the P-use coverage measure is most strict. There is no
coverage measure such that 100% coverage will assure detection of all the defects. Thus in the
above table, the entry in the last column is a low estimate of the total number of defects actually
present. Using a more strict coverage measure raises the low estimate closer to the actual value.
Thus the estimate of 51 faults using P-use coverage should be closer to the actual number than
the estimates provided by block coverage. Two coverage measures, DU-path coverage and all-
path coverage are even more strict than P-use coverage, and may be suitable for cases where
ultra-high reliability is required. However considering the fact that often even obtaining 100%
branch coverage is infeasible, we are unlikely to detect more faults than what the P-use coverage
data provides even with fairly rigorous testing. It should be noted that C-use coverage does not
fit in the subsumption hierarchy and therefore it is hard to interpret the values obtained by using
C-use coverage data.

Further application of this new method is illustrated by examining the data provided by Vouk
[vou92]. These three data sets were obtained by testing three separate implementations of a sen-
sor management program for an inertial navigation system. Each program is about five thousand
lines of code. In the first program, 1196 tests found 9 defects. For the other two programs 796
test revealed 9 and 7 defects respectively. Figure 5 shows the plots of P-use coverage achieved
versus the number of defects found. Table 2 shows the estimates for the total number of faults
that would be found with 100% coverage.

10

0

2

4

6

8

10

12

14

0 0.2 0.4 0.6 0.8 1

D
e

f
e
c

t
s

P-use Coverage

Data Set: Vouk3

Coverage Data

Model

Figure 5: Defects vs. % P-use Coverage

Table 2: Projected number of total defects with 100%coversage (Vouk’s data sets)

Faults Expected Faults
Data Set Found Block Branch P-use
Vouk1 9.00 11.26 11.49 17.87
Vouk2 7.00 7.74 7.83 8.14
Vouk3 10.00 9.97 10.60 12.98

Table 2 again shows that the estimates obtained are consistent with the subsumption hierar-
chy.

4.1 Comparison with exponential model based approach

As mentioned before, it is possible to obtain an estimate of defect density from the exponential
SRGM. The parameter βE

0 of this model represents the total number of faults in the system, and
can be determined by fitting the available data to the model. Figure 6 shows the fitted value of
βE

0 for Pasquini et al’s data as testing progresses. Several things about this plot are worth noting.
First, towards the end of testing the exponential model consistently predicts that the total

defects present is the same as the number of defects found. As figure 6 shows, defects are still
being found after the point where the model predicts zero residual defects. This means that
in the later stages of testing, the exponential model provides no useful information about the
remaining defects. Second, the predictions made by the exponential model never stabilize. The
estimate of βE

0 continues to rise as new defects are found, and can do so at a widely varying rate.
If the estimates produced by the exponential model where accurate, then they should eventually
begin to converge to some value, but this does not seem to be the case. Figure 8 shows similar
results with data from Vouk.

Figure 7 shows the estimates for total defects made by our model as testing progresses, based
on Pasquini et al’s data. Like the exponential model, the predictions initially made by our model
rise quickly. After about 20 test cases however, they begin to take on stable values, maintaining

11

5

10

15

20

25

30

0 200 400 600 800 1000 1200 1400

D
e

f
e
c

t
s

Test Cases

Data Set: Pasquini

β0
b

b

bb
b
b
b

b

b

b

b

b

b
b

b

b

b

b b
b

b
b

b

b

b

Defects Found
s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

Figure 6: Estimated total defects using exponential model (Pasquini data)

consistent estimates of the total defects as more data comes in. Again, we see similar results
with Vouk’s data, as shown in figure 9. This stability is quite remarkable considering that the
defect finding rate fluctuates considerablly.

It should be noted that if there is any unreachable or redundant code, our method will regard
it as a part of the overall code. Presence of unreachable code can be avoided by using coverage
tools and making sure that all modules and sections are entered during testing. The data sets
used in this paper are for programs that are not evolving and thus the actual defect density is
constant. The variation in the estimate of the total number of faults arise due to use of additional
test data.

5 Conclusions

We have presented a model for defects found based on coverage, and shown that this model
provides a very good description of actual data. Our method provides stable projections earlier
in the development processes. The choice of coverage measure has an effect on the projec-
tions made. Results show that a strict coverage measure such as P-uses gives the most accurate
results. We have provided interpretations of the model parameters, and shown how a priori in-
formation about the development process can be used to obtain estimates of the parameters in
the model.

Defect density is an important measure of software reliability, figuring prominently in the
reliability assessment of many quality assurance engineers and managers. Existing methods
for estimating the defect can underestimate the number of defects because of a bias towards
easily testable faults. The exponential model tends to generate unstable projections. This can
lead to cost overruns or low reliability. Experimental data suggests that our method can provide
more accurate estimates and provide developers with the information they require to make an
accurate assessment of software reliability.

12

10

15

20

25

30

35

40

45

50

55

60

0 200 400 600 800 1000 1200 1400

D
e

f
e
c

t
s

Test Cases

Estimated Defects
b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b
b
b
bb b

b

b
b b b b

Figure 7: Estimated total defects with new approach (Pasquini data)

6 Acknowledgement

This work was supported in part by a BMDO funded project monitored by ONR. We would like
to thank Mladen Vouk for providing us some of the data used here.

References

[bin97] Robert V. Binder, “Six Sigma: Hardware Si, Software No!”,
http://www.rbsc.com/pages/sixsig.html, 1997.

[but93] R.W. Butler, and G.B. Finelli, “The Infeasibility of Quantifying the Reliability of
Life-Critical Real-Time Software. ”IEEE Transactions on Software Engineering,
vol. 19, no. 1, Jan.1993, pp. 3-12.

[che97] Mei-Hwa Chen, Michael R. Lyu and W. Eric Wong, “An Empirical Study of the
Correlation between Coverage and Reliability Estimation” IEEE Third Int. Sym-
posium on Software Metrics, Mar. 25-26, Berlin, Germany, 1996.

[ebr97] Nader B. Ebrahimi, “On the Statistical Analysis of the Number of Errors Remain-
ing in a Software Design Document after Inspection” IEEE Trans. on Software En-
gineering, Vol. 23, No. 8, August 1997, pp. 529-532.

[hat97] L. Hatton, “N-version Design Versus One Good Design” IEEE Software,
Nov./Dec. 1997. pp. 71-76.

[hfgo94] M. Hutchings, T. Goradia and T. Ostrand, “Experiments on the effectiveness of
data-flow and control-flow based test data adequacy criteria” International Conf.
Software Engineering, 1994, pp. 191-200.

[lak97] P. Lakey, A. Neufelder, ”System and Software Reliability Assurance Notebook”,
Rome Laboratory, 1997.

[li96] N. Li and Y.K. Malaiya, “Fault Exposure Ratio: Estimation and Applications”
Proc. IEEE Int. Symp. Software Reliability Engineering 1996 pp. 372-381.

13

4

5

6

7

8

9

10

11

0 100 200 300 400 500 600 700 800

D
e

f
e
c

t
s

Test Cases

Data Set: Vouk 3

β0
b

b
b

b

b

b

b

bDefects Found
s

s

s

s

s

s

s

s

Figure 8: Estimated total defects using exponential model (Vouk data set 3)

[lyu93] M.R. Lyu, J.R. Horgan and S. London, “A Coverage Analysis Tool for the Effec-
tiveness of Software Testing” IEEE Int. Symp. on Software Reliability Engineer-
ing, 1993, pp. 25-34.

[mal84] Y.K. Malaiya and S. Yang, “The Coverage Problem for Random Testing,” Proc.
International Test Conference, October 1984, pp. 237-245.

[mvs93] Y. K. Malaiya, A. von Mayrhauser and P. Srimani, “An examination of Fault Ex-
posure Ratio,” IEEE Trans. Software Engineering, Nov. 1993, pp. 1087-1094.

[mali94] Y.K. Malaiya, N. Li, J. Bieman, R. Karcich and B. Skibbe, “The Relationship be-
tween Test Coverage and Reliability” Proc. Int. Symp. Software Reliability Engi-
neering, Nov. 1994, pp.186-195.

[mal97] Y. K. Malaiya and J. Denton, “ What Do the Software Reliability Growth Model
Parameters Represent?” Int. Symp. on Software Reliability Engineering, 1997. pp.
124-135.

[mcc97] Steve McConnell, “Gauging Software Readiness with Defect Tracking” IEEE
Software, Vol. 14, No. 3, May / June 1997. pp.

[mus87] J.D. Musa, A Iannino, K. Okumoto, Software Reliability, Measurement, Predic-
tion, Application, McGraw-Hill, 1987.

[pas97] A. Pasquini,A.N. Crespo and P. Matrella, “Sensitivity of Reliability Growth Mod-
els to Operational Profile Errors” IEEE Trans. Reliability, Dec. 1996, pp. 531-540.

[poc93] P. Piwowarski, M. Ohba and J. Caruso, “Coverage measurement experience during
function test,” Proc. 15th Int. Conf. Software Engineering, May 1993, pp. 287-300

[rob97] ROBUST, An integrated Software Reliability tool. Manual available at
http://www.cs.colostate.edu/testing/robust/manual.pdf.

[rev97] Revision Labs’ Survey (April 1 to August 2, 1997),
http://www.revlabs.com/surresult.html Rev. 8/9/97.

14

12

13

14

15

16

17

18

19

0 100 200 300 400 500 600 700 800

D
e

f
e
c

t
s

Test Cases

Estimated Defects
b

b

b

b

b
b

b

b
b

b

Figure 9: Estimated total defects with new approach (Vouk data set 3)

[vou92] M.A. Vouk “Using Reliability Models During Testing With Non-operational Pro-
files,” Proc. 2nd Bellcore/Purdue workshop on issues in Software Reliability Esti-
mation, Oct. 1992, pp. 103-111

15

