

Integrating Iterative Processes 1

Tech 590

Integrating Iterative Processes

Graduate Advisor: John Mendonca

Graduate Student: Rob Lineberger

Purdue University School of Technology

Introduction

In the Information Technology (IT) field, many software development projects fail dramatically due to cost overruns, schedule overruns, poor implementations, and other management-related problems. Part of the problem is that IT project management (PM) has not matured to the point where managers can make decisions based on historical data, nor can they reliably filter out management techniques that do not add value to their projects. In other words, project managers often rely on improper methods, and in the absence of proven concepts they continue to rely on improper methods.

This reliance on traditional or accepted PM practices is particularly problematic given the severe time constraints imposed by a “first to market” economy. Time wasted in inefficient or non-value added administrative processes delays implementation and can lead to project failure.

Some of the most promising technologies/techniques to emerge recently (such as Object-Oriented (OO) technology, Rapid Application Development, and Just-In-Time programming) rely on iteration to achieve rapid implementation. Iteration is a cyclical approach to problem solving in which developers plan briefly , develop software, and then present it to the customers for feedback and approval. Iterative techniques emphasize small cycles of development coupled with frequent feedback. Problems are uncovered more quickly and designs can be altered before too much time has been spent on them.

The problem with iterative techniques is that they do not neatly fit into the traditional techniques and methodologies. For instance, the once-popular waterfall methodology is comprised of distinct planning, design, development, and implementation stages, which leaves little room for iteration. The waterfall is no longer the methodology of choice, but the techniques we use today suffer from some of the same fallacies that plagued the waterfall methodology. When faced with iterative realities, project managers struggle to integrate them into processes they normally use. There simply is not enough information or analysis on how to integrate iterative processes into traditional processes, nor enough information to decide when to abandon a traditional approach in favor of less-tried adaptive methods.

This paper will first give an overview some popular methodologies, from the Waterfall to Incremental/Iterative. Next, iteration will be discussed more fully, using a comprehensive article by Philippe Kruchten called From Waterfall to Iterative Development -- A Challenging Transition for Project Managers. Finally, integrating iteration with the Capability Maturity Model (CMM), Unified Modeling Language (UML), and predictive project management tools will be analyzed.

Methodological Overview

IT professionals are often fond of saying “we’ve seen that before” when presented with a new method or technique, as though to imply that IT is an uncreative discipline that recycles old news and calls it a hot new topic. It is true that there is a large amount of overlap in methods and techniques; IT is a fundamentally conservative discipline in that we are not willing to discard the body of knowledge that has come before. There truly are differences, it simply requires the clarity of hindsight to perceive their impact. In lifecycle development methodologies, differences have emerged over time in response to business needs and as reactions to methodological inadequacies. The following sections give a historical overview of popular methodologies and the advantages and disadvantages to each. Four methodologies are covered: The Waterfall Methodology, The Spiral Methodology, Evolutionary Prototyping, and Incremental/Iterative. Each section gives a diagram, advantages, disadvantages, and when they should be used. The discussion cumulates in Iterative/Incremental methodologies, which is the most recent trend and the focus of the rest of this paper.

Methodology in IT truly solidified with the advent of the Waterfall methodology. The waterfall broke the software development process down into distinct phases that occurred sequentially. This was found to be cumbersome and not reflective of actual development activity, and was eventually abandoned in favor of the more flexible spiral model. The spiral model was not built for speed, however, and was thus supplanted by a host of alternatives, one of which is Evolutionary Prototyping. The latest challenger is incremental/iterative, which favors rapid, small development cycles and constant revision of requirements and software.

The Waterfall Methodology

Diagram (Kruchten, 2000)
[image: image1.jpg]
Advantages (Campbell, 1998)

· Much better than “all hands to the keyboards, spend half the budget on the latest hardware, with no planning”.

· A good many software standards documents still assume a waterfall lifecycle.

· Non-technical managers, and those responsible for external development projects, like (demand) such an approach.
· An understanding of the waterfall process (and its inadequacies) is a prerequisite to study of alternative processes - which, in any case are often based on it.
Disadvantages

· Except for well understood cases, it may difficult to completely define requirements at the beginning. See Prototyping.

· Closely related to the previous item, it is almost impossible to accommodate, at a late stage, changes to requirements. After all, the requirements were agreed and frozen in the SRD.

· It is almost impossible to fit maintenance, or reuse, into this format.

· Maintenance. Much of what goes with the waterfall process. assumes `building something new'. Likewise reuse .

· Problems associated with structured systems analysis and design:

· Real systems have no top [Meyer, 1997]. This is true in many systems: concurrent systems, any system dependent on the graphics-user-interface (GUI), see the discussion below on event-driven systems. In fact, instead of the top-down and library structure, what is more suitable is a framework or upside-down library [Budd, 1997].

· Although the components of the top-down decomposition seem to be independent and decoupled - and hence we would expect that changes to one, would affect none or very few of the others - this is far from the case. They may in fact be tightly coupled via the (effectively) global data owned by Top . This coupling is all the more damaging for its subtlety - you don't know it's there until you start to make changes, and you have no plan of escape from it's grasp.

· The user organization is involved nearly all the time. Have they the resources to do this? Where does user get the competence - consultant, another one?!

· There are massive delays involved in the documentation and review procedures. As a simple illustration, assume:

· The software requirements phase takes 4 weeks.

· Delivery of any documentation and assessment by user (in preparation for review) takes 1.5 weeks.

· Review - and fixing of defects uncovered (only after which the next phase can commence) takes 1.5 weeks.

· The two design phases take one month each.

· The code and unit test phase takes 3 months.

Draw a rough bar-chart of this and estimate the schedule. You'll be surprised at the length of time - and the amount of dead-time.

· The phases lead to a severely peaked effort curve. The effort required builds up slowly; a large number of staff are needed during the middle phases, and then the effort decreases. This is inefficient of personnel resources.
When would you use the waterfall?

It provides management the most visibility and is easy to manage. Well-understood, stable requirements. Use when dealing with others who require a traditional approach.
The Spiral Methodology

Diagram (Zammit (1998).
[image: image2.png]
Advantages

(From http://www.levela.com/software_life_cycles_swdoc.htm)

Most life cycle models can be derived as special cases of the spiral model. The spiral uses a risk management approach to software development. Some advantages of the spiral model are:

· defers elaboration of low risk software elements

· incorporates prototyping as a risk reduction strategy

· gives an early focus to reusable software

· accommodates life-cycle evolution, growth, and requirement changes

· incorporates software quality objectives into the product

· focus on early error detection and design flaws

· sets completion criteria for each project activity to answer the question: "How much is enough?"

· uses identical approaches for development and maintenance
· can be used for hardware-software system development

Also:

· No distinction between development, maintenance

· Risk-driven (focus resources where needed)
Disadvantages

· Sometimes you HAVE to get it right -- the first time

· "Second System" effect (not explained what this is, but thought I’d include it anyway ()

· "Beta" testing is done -- by your best customers
· Requires risk assessment expertise.

· Sometimes hard to convince a customer that spiral approach can be “controlled.”
When would you use the spiral?

Systems with unproven or risky technology. The spiral improves on the waterfall by avoiding late discovery of problems through checkpoints.
Evolutionary Prototyping

Diagram

[image: image3.png]
Advantages (Baldwin, 1998)

· User sees a real system fast (1 or 2 days)

· User directly involved in specifying requirements.

· Made for change therefore possibly low maintenance cost

· Serves as a basis for discussion and helps identify requirements when there is no current system like desired system.

· In some cases development cost is less.

Disadvantages (Beaumont, 1999)

The main problems with evolutionary prototyping are due to poor management:

· Lack of defined milestones

· Lack of achievement - always putting off what would be in the present prototype until the next one

· Lack of proper evaluation

· Lack of clarity between a prototype and an implemented system

· Lack of continued commitment from users. This process requires a greater degree of sustained commitment from users for a longer time span than traditionally required. Users must be constantly informed as to what is going on and be completely aware of the expectations of the 'prototypes'. This is discussed in fair greater depth elsewhere in the chapter.

(Baldwin, 1998):
· Requires high upfront costs (software for database, modeling, report generation, screen generation)

· Difficult to use when building large systems.

· Sometimes difficult to maintain user enthusiasm

· User never satisfied

· Tendency not to document
(Dyck, 2001)

“For me, there are a few major drawbacks to this approach. One is that you have to be able to create the prototype in the first place. It is somewhat of a catch-22, we can only effectively prototype what we understand, but we want to prototype when we are doing something new. The other problem is in managing expectations of the prototype. A bad prototype could damage your reputation, if it fails to perform, why should the 'real thing' do any better? At the same time, a prototype that is 'too good', with most of the functionality being 'faked', could create unreasonable expectations on the final product. What if you fake something you later cannot implement? Prototyping could also limit the creativity in design coming from the users. Like a leading question in an interview, a prototype says "Something like this, then?". A client might not be completely happy with the design, but decide not to comment, thinking that they were expecting too much or that the designer know best. Finally, care must be taken not to spend too much time on prototypes instead of on the final system.”
When would you use Evolutionary Prototyping?

Use in projects that have low risk in such areas as losing budget, schedule predictability and control, large-system integration problems, or coping with information sclerosis, but high risk in user interface design.

(From Dyck, 2001)

Prototyping is an excellent approach to development when covering new ground. A mock-up of a new system will generate plenty of user feedback. Limited tests of functionality can be used in field applications to find out if the design is on the right track.
Incremental/Iterative

[image: image5.wmf]Set Context

Build

Sponsorship

Charter

Infrastructure

Document

Current and

Desired States

Develop

Recommendations

Set Priorities

Develop

Approach

Plan Actions

Create

Solution

Pilot Test

Solution

Refine

Solution

Implement

Solution

Analyze and

Validate

Propose

Future

Actions

Stimulus for change

[acceptable]

[unacceptable]

[complete]

[incomplete]

[Next iteration of

current project]

[Project or

company ends]

[new project]

Diagram (Kruchten, 2000)
Advantages (Kessler, 2001)
· Can be very effective to actually deliver product early, thus serving the user (good time to market).

· Generates revenue early.

· Add features, fix bugs in next cycle.

· Can get feedback early.

· Minimizes staffing requirements.

· Reduced risk by planning around technical problems.

· Customer involvement is increased.

From (Kruchten, 2000)
· Serious misunderstandings are made evident early in the lifecycle, when it's possible to react to them.

· It enables and encourages user feedback, so as to elicit the system's real requirements.

· The development team is forced to focus on those issues that are most critical to the project, and team members are shielded from those issues that distract them from the project's real risks.

· Continuous, iterative testing enables an objective assessment of the project's status.

· Inconsistencies among requirements, designs, and implementations are detected early.

· The workload of the team, especially the testing team, is spread out more evenly throughout the lifecycle.

· This approach enables the team to leverage lessons learned, and therefore to continuously improve the process.

· Stakeholders in the project can be given concrete evidence of the project's status throughout the lifecycle.
Disadvantages

· Might actually take longer in overall time given requirements to go through full product delivery.

· People who like to “get it right” get very uncomfortable (mindset change).

· Can lead to “just hack.”

· Could be inappropriate for larger scale projects or complex integration
When would you use an incremental/iterative approach? (Kruchten, 2000)
Iterative development is not a magic wand that when waved solves all possible problems or difficulties in software development. Projects are not easier to set up, to plan, or to control just because they are iterative. The project manager will actually have a more challenging task, especially during his or her first iterative project, and most certainly during the early iterations of that project, when risks are high and early failure possible.

Use when easy adaptability to requirements changes are needed and when customer needs the most visibility.

Summary of Methodological Overview

Adapted from http://www.cpsc.ucalgary.ca/~danah/613/lifeCycle.html

Waterfall
Spiral
Evolutionary

Prototype
Incremental

Iterative

Availability of resources
All
Some
Some
Some

Complexity of project
Low
High
Medium
High

Understanding of user requirements
Specific
Vague
Vague
Vague

Product technology
Existing
New
New
New

Requirements volatility
Low
High
High
Low

Risk Management perspective
No
Yes
Yes
No

Schedule constraint
Medium
Medium
Low
Medium

Problem domain knowledge
High
Poor
Fair
High

More About Iteration: A Summary of Philippe Kruchten’s Work

Iteration is exciting because it can truly improve the software development process. However, as in any endeavor, there are traps to avoid. There are many excellent resources detailing the pros and cons of iteration, but by far the best I have found is From Waterfall to Iterative Development -- A Challenging Transition for Project Managers by Philippe Kruchten (2000). Because this is a report of what I have learned over the semester, I will give a detailed summary of this fundamental article, with fair warning that this section is almost entirely a paraphrase of the article, and thus could not be included in an academic paper.

Iteration can be beneficial to an organization in many ways. One of the inherent benefits is risk mitigation. Perceived risks can vanish under the light of iteration, and unconsidered risks may surface. “If a project must fail for some reason, let it fail as soon as possible, before a lot of time, effort, and money are expended” (Kruchten, 2000). Architectures tend to be more stable and implementations go more smoothly because the system has been cycled through repeatedly.

Another benefit is the ability of an iterative process to absorb change. Changes can occur in requirements, tactics, or technology, and iterative processes can handle those changes well. For example, a tactical change might cause a company to release the current iteration minus the planned total functionality in order to compete with a new product.

There are other benefits as well. Developers, testers, and other personnel learn incrementally as they go rather than hurry up and wait. Reuse is made more tractable because each area is addressed sooner. Finally, overall quality typically increases because the final software has been revised and tested multiple times.

Iterative processes have some downsides, and can provide several traps for the unwary manager or architect. These traps aren’t necessarily worse than those experienced in other methodologies, but they are different from the traditional traps:

“Iterative development actually involves much more planning and is therefore likely to put more burden on the project manager: An overall plan has to be developed, and detailed plans will in turn be developed for each iteration. It also involves continuous negotiation of tradeoffs between the problem, the solution, and the plan. More architectural planning will also take place earlier. Artifacts (plans, documents, models, and code) will have to be modified, reviewed, and approved repeatedly at each revision. Tactical changes or scope changes will force some continuous replanning. Thus, team structure will have to be modified slightly at each iteration.” (Kruchten, 2000).

Some of the traps introduced by iterative methods are:

Overly Detailed Planning Up to the End- Comprehensive plans will quickly become obsolete. Only plan as far as you can see.

Failure to Acknowledge Rework Up Front - To get a software release working, the team will have to build stub methods that will later be replaced with more robust functionality.
Project Not Converging- Do not hide the desire to tinker or gold plate as an iteration. Likewise, new team members may have new ideas of how things should have been done in previous iterations. Do not fix anything that works: "Perfect is the enemy of good."
Let's Get Started; We'll Decide Where to Go Later- Clear goals and requirements will not magically appear from thin air.
Falling Victim to Your Own Success- The perception at first is that nothing is going to be delivered. Then the “customer bit” turns on, and suddenly people realize the whole thing is going to be pulled off and begin to fight for their functionality making the first release. The manager must remain steadfast to promised features, or risk jeopardizing the entire project.
Too Much Focus on Management Artifacts- The working product is of utmost importance, not pretty charts that cover your posterior.
Hit Hard Problems Earlier- The most common reason for technical failure in startups: "They spent all their time doing the easy stuff." Difficult, thorny issues must be pushed to the forefront and tackled head on.
Putting Your Head in the Sand- It is often tempting to say, "This is a delicate issue, a problem for which we need a lot of time to think. Let us postpone its resolution until later, which will give us more time to think about it." When the time for tough decisions comes, they are made hastily.
Forgetting About New Risks- The initial risk assessment was just that: initial. New ones will crop up. Seek them out.
Clashes Because of Different Lifecycle Models- Simply put, there is a culture clash between those who understand iteration and those who don’t. Management must be proactive in educating upper management and other customers about the differences of their lifecycle approach.
Different Groups Operating on Their Own Schedules- Gains in speed bought by optimizing different groups paths will be lost when they must wait on the slowest one. Keep schedules in synch even at the expense of individual group productivity.
Fixed-Price Bidding During Inception- Iterative development is a particularly poor style of development for up-front negotiations.
Accounting for Progress Is Different- Earned value analysis and other traditional approaches will yield false indications of progress. The best indication of progress will be the working software releases.
Pushing Too Much in the First Iteration- The opposite of pushing hard problems away. Remember that team dynamics are still being formed in early iterations. Shoot for a conservative, attainable (not necessarily easy) goal.
Too Many Iterations- A good rule of thumb for iterations is 6 months, plus or minus three. Weekly builds are not iterations. Pace yourself.
Overlapping Iterations- Do not even begin to plan the next iteration until the first is complete. Developers and testers need to follow up their work and see the process through, and cannot be distracted by thinking about the next cycle.
Requires A Good Project Manager and a Good Architect- About 20% of functionality should go into the first release. It takes good management and good architectural skills to plan that 20%. The only way to capitalize on a good architecture is through good management and vice versa.
Using the Same Person as the PM and the Architect- Both are full time jobs. Avoid burnout and role duplicity.
Integrating Iteration into Common Practice

This section will analyze some of the reasons for working iteratively, explain the impact of iteration on popular models, and describe how iteration can affect the software development process. In general, iteration can speed up the software development process and uncover problems sooner, but iteration can also cause stress for those involved and make communication more difficult. The goal of iteration is to find just the right productive balance between software development, risk management, time, and administrative communication. For the purposes of this discussion, I will look at the Capability Maturity Model (CMM) and Unified Modeling Language (UML). For an overview of the CMM please visit http://www.sei.cmu.edu/cmm/cmms/cmms.html. For an overview of the UML, please visit http://nas.cl.uh.edu/helm/cs4931a/uml/umloverview1 .

The impact of iteration on UML

Fowler (2001) has recently clarified some of the business reasons for pursuing an adaptive process (what he refers to as evolutionary design). There are two basic types of design: planned and evolutionary. The most common implementation of evolutionary design is code-and-fix, a nightmare which leads to unmaintainable, patchy code. Planned design was to be the panacea to this rampant vigilante coding. In planned design the software is designed up front in abstract terms, and coding is almost an afterthought. The flagship of planned design is UML. The system is mocked up in use cases, association diagrams, graphical user interface mockups, and other conceptual documents before coding begins. This approach does eliminate code-and-fix and brings a unified design to the table, but there are two major problems: the impossibility of thinking through all issues and changing requirements.

In the first case, programmers stumble across issues that question the design, so they code around the problem to meet the design (Fowler, 2001, p. 44). This is ultimately unhealthy for the software. Barrett (1998) writes that it is impossible to design a complex system in one try. If each programmer found just one issue that questioned the design, and each programmer coded around the design, where is the design?

The second case, changing requirements, is a business reality. “The only systems for which requirements will not change are those that have no users, no customers, and no stakeholders.” (Davis, 2000, p. 1). Fowler (2001, p. 44) indicates that many planned design advocates attempt to build flexibility up front into the design, but there is no way to predict what the requirement changes will be. At best, the extra time spent on predictive flexibility is wasted, at worst it puts blinders on future design when requirements change differently than expected.

The solution to incorporating planned design approaches such as UML with iterative methodologies such as Extreme Programming (XP) is to use UML diagrams selectively and know why you are using them. For example, developers should not develop use cases for every design session. “We only create use cases the first time we are approaching a problem or the first time we work with a specific customer. After we understand the problem or customer’s business practices, the use cases become cumbersome.” (Baker, 2001). Fowler (2001, p. 46) advocates this approach: “This selectivity is the key to using the UML well. Don’t draw every class, only the important ones. For each class, don’t show every attribute and operation, only the important ones… You get the picture.”

Grady Booch, one of the authors of the UML, has recently weighed in on these issues. He admits that UML, in becoming a standard, is being used and applied in inefficient ways to the wrong projects: “As for modeling, UML has definitely entered the mainstream, and is being applied in places far beyond its initial goals” (Booch 2001). UML is certainly a great tool, but it does not work as well for projects with high flexibility and iterative requirements. “…heavyweight processes …dictate the rhythms of individual developers as well as the team as a whole. The problem with this is it typically stifles creativity and leads to horribly over-engineered solutions” (Booch, 2001). The goal is to find the sweet spot of just enough overhead. He advocates “…keeping UML from growing too large. In short, the challenge for the UML 2.0 effort will not be what to add, but what to take away and consolidate” (Booch 2001). The key is to do only what is necessary for the success of the specific project.

The impact of iteration on CMM

The CMM is quite popular because it brings maturity to the software development process. Unfortunately it has a tendency to be inflexible and slow to adjust to the needs of a compressed time schedule. The CMM also has an Achilles’ heel: it was originally designed with separate Key Process Areas, but little emphasis was placed on integrating these KPA’s into an overarching organizational approach.

The good news is that SEI has realized this flaw and is correcting it. The CMM has been recently replaced with CMM-I, or Capability Maturity Model Integration. This new model is a integrated, enterprise-wide solution that looks at software development from an organizational perspective. It eliminates some of the less efficient processes of the CMM. CMM-I also allows more flexibility, which comes with responsibility. “The latitude given by the CMMI to tailor how you do business can allow some flawed interpretations by inexperienced configuration managers” (Starbuck, 2000). Inexperienced managers might take the path of least resistance and fall back on the very processes CMM-I aims to eliminate. This is precisely the kind of antics that iteration eliminates. One of the values of XP is courage, and in the case of CMM-I courage is needed: CMM-I is brand new and does not have the wide base of knowledge and experience enjoyed by the CMM.

One way to incorporate iteration within the CMM-I framework is to adapt the IDEAL model developed by SEI. “The IDEAL model as originally conceived was a life-cycle model for software process improvement based upon the Capability Maturity Model® (CMM®) for Software, and for this reason the model used process improvement terms. Recognizing that the model had great potential outside of the process arena, the SEI has revised the IDEAL Model for broader application” (Gremba and Meyers, 1997).The IDEAL model is shown in Figure One. It is broken up into five phases: Initiating, Diagnosing, Establishing, Acting, and Learning:

[image: image6.png]

The IDEAL model does have a certain amount of iteration built in. The learning phase leads back into the middle of the process, creating a cycle of improvement. However, in terms of achieving iteration in software development, this model can be adapted to incorporate more iteration, particularly when applied to smaller software releases. Figure Two is a UML activity diagram that shows those adaptations:

[image: image7.wmf]Set Context

Build

Sponsorship

Charter

Infrastructure

Document

Current and

Desired States

Develop

Recommendations

Set Priorities

Develop

Approach

Plan Actions

Create

Solution

Pilot Test

Solution

Refine

Solution

Implement

Solution

Analyze and

Validate

Propose

Future

Actions

Stimulus for change

[acceptable]

[unacceptable]

[complete]

[incomplete]

[Next iteration of

current project]

[Project or

company ends]

[new project]

The impact of iteration on predictive reporting tools

The emergence of light software methodologies such as XP is a reaction to inefficient, bureaucratic “administratrivia” (DeMarco, 1998) that can impede software development. The intense time pressures of the internet economy are playing havoc with traditional project schedules. IT has ever increasing complexity of software integration that current project methodologies simply cannot handle. Everyone is talking about how IT needs to change, yet managers still huddle under the shelter of the wrong methodology: they make Gantt charts, try to make guesses about time frames, and try to wedge integration projects into a form that superiors and customers recognize. They justify it by saying “We don’t have the perfect development methodology, but it is out there”, or “If we only had more knowledge and experience from which to make estimates we’d get better.”

There is pressure for these behaviors from the management culture that presently exists. Management often attempts to use predictive strategies when they are inappropriate or ineffective. This tendency could be a result of routine, or the feeling that resource allocation and scheduling need to be done beforehand, or instincts resulting from other kinds of project work. Even when managers know that predictive staffing charts and schedules are tenuous enough as to be practically worthless, they create them anyway. Unfortunately this causes all sorts of problems. The customers and managers get dates and numbers fixed in their minds, and if those numbers later change then difficulty arises and meetings ensue. Artificial pressure is created in the development environment. Developers and analysts are not as free to explore or innovate because of their allocated tasks and time. Inefficient techniques can not only waste time and resources, they can adversely affect the development process itself.

This is not to advocate anarchy, however. “Time compression creates unique challenges for project managers and, while many have been tempted to discard project management in the new environment, project management has become even more important” (Kulik and Samuelsen, 2001). Instead of anarchy, Kulik and Samuelsen propose adapting processes to fit the new way of working. Some of the differences between traditional and iterative projects are summed up in Table One.

[image: image4.jpg]
Table One: Comparison of Traditional and e-Projects (Kulik and Samuelsen, 2001).

Conclusion

The bottom line of this discussion is that iteration is a promising and potent way to improve software development. However, at this time it is not fully embraced by the overall business and IT community. This causes a lack of comprehension of how to be successful using iterative approaches, causes mistrust among management and customers, and causes apprehension in those who would approach iterative development. The way to exploit iteration is to confront the baggage that comes with it up front and openly. One of the difficulties in discussing iteration is that its applications are limitless. With a sophisticated and cohesive team, steadfast management, and supportive upper management/customers, iterative development can truly improve the quality and success of the end product.

Apendix 1:

Discussion of Tech 590 Course: Integrating Iterative Processes

What value did you get from doing this course? Be as specific as possible.

This course allowed me to pursue in depth a topic that could not be fully explored in the classroom. Iteration and lightweight methodologies are a somewhat hot topic right now, and the more I looked into it the more I found people talking about it. I would ask a question, and a week later that question would be answered in a new article. It is too new and too turbulent a topic for general integration into a curriculum. So the real value I got was:

· the freedom to pursue a fringe topic on my own terms

· the knowledge and comprehension to discuss this area intelligently

· the ability to delve much deeper into the topic than allowed by my other course, despite the patience of my instructor (Kevin Dittman) and his indulgence in letting me steer our class sometimes towards discussions of iteration.

Specifically, I had many “A-Ha!” moments during the semester, which is of course what academic pursuit is about. I read many, many articles, websites, and letters to the editor of Software Development Magazine (in fact I’m sending one myself today!). There were four articles that distinguished themselves head and shoulders above the rest. These articles each expanded my understanding exponentially and were the heart of what I learned in this course. I will summarize their value in the order I read them:

Fowler, M. (2000). The new methodology. ThoughtWorks. Available: http://www.thoughtworks.com/cl_library.html [2000, October 5].

This article gave me a whole new appreciation for the purpose, difficulties, and cultural identity of lightweight methodologies. This was the cornerstone of my research and understanding of lightweight methods.

Booch, G. (2001). The illusion of simplicity. Software Development Magazine, February 2001.

This article was the least comprehensive of the four, but Booch admitted the limitations and abuse the UML was being subjected to. It gave credence to other things I had read and made the whole debate real.

Kulik, P.& Samuelsen, R. (2001). e-Project management for the new reality. PM Network Online. Project Management Institute, International. Available: http://www.pmi.org/publictn/pmnetworkonline/3%2D01e%2Dprojec.htm [2001, 11 April].

This article confirmed in a different perspective the conclusions I had made for myself. It was such a relief to find this article because I could say with certainty that I’m not the only one who is writing these rantings.

Kruchten,P. (2000). From waterfall to iterative development -- A challenging transition for project managers. The Rational Edge e-zine for the Rational Community. Available: (Kruchten, 2000) [2001, 25 April].

I wish I’d read this article a long time ago. It contains everything I have sweated to discover about the real business needs for successful use of iteration. It is rock solid and I wouldn’t be surprised if it becomes a seminal article for the next five years. It is already being turned into a textbook.

How is what you produced related to the Prof Dittman's course on Project Management?

Indirectly, with some notable exceptions. Kevin’s course is about Quality and Productivity in IT, with an emphasis on the management aspect of quality and productivity. There is some overlap because we talk about the best way to achieve quality, and I’m firmly convinced that iteration is the key.

Kevin was pretty indulgent about letting me air out some lightweight methodological issues in class. I try to integrate what I learn from different courses into a cohesive understanding. This semester, I was taking Kevin’s course, the Tech 590 independent study, and completing my directed project. Wherever possible, I tried to integrate what I was hearing in one ear with what I was hearing in the other ear. That was harmful in a couple ways because it took class off topic a couple times and it tended to box in my focus to a developer-centric approach when discussing larger issues. But it also was really good because I was able to explore some of Kevin’s topics with greater depth.

For an example, we had a group project in Kevin’s class where we were to develop a plan to take a fictional company to CMM Level 2. I was studying how iteration affected CMM for Tech 590. My 590 research really strengthened our group project because I was able to incorporate what I had learned. Specifically, in Tech 590 I was exploring how to adapt CMM processes to be more iterative. In the group project we were required to make up UML activity diagrams, which I took one step further by integrating the UML activity diagrams and incorporating iterative loops into them. So in this way 590 added to my knowledge for Kevin’s class.

Kevin’s class also influenced my Tech 590 report somewhat. I had already written the bulk of it when I received Kevin’s final exam. One of the questions was a survey of methodologies. As you had pointed out, I needed to describe iteration better in my Tech 590 report, and I thought it would be neat to include a history of methodologies in the Tech 590 report as well; a back story for why I’m talking about iteration. So I tackled Kevin’s exam with an eye towards what I could use to strengthen the Tech 590 report. I was able to bring some of my Tech 590 research into the exam and also able to reuse some of the graphs and research for that exam question to supplement the Tech 590 report. This led naturally to my section for the Tech 590 report on iteration and made a nice transition.

Overall, I’d say that the primary overlap between the two courses was in discussion of quality and productivity topics. This semester I have really begun to solidify my understanding of productivity issues and how iteration can impact that. You can’t grind an axe until you have an axe in hand.

How is what you produced related to your Directed Project?

When I proposed my directed project, I had a good idea of what the Blur Box looked like, but was less sure of its business utility and how to frame discussion about the model. Also, in discussions with Kevin Dittman and Jeff Whitten, it became clear that I was not quite polished on my understanding of some key topics in OO Development, namely Unified Modeling Language (UML) and to a lesser extent the Capability Maturity Model (CMM). This course was a way for me to fill in the back story for the Blur Box model in such a way that it was relevant to current topics in IT.

 The research I did for this course directly assisted me in several ways in my directed project:

1. I was able to eliminate several places where I had fluff or filler statements and replace them with more concise and informative prose. This was particularly true of the statement of problem, where my research of Kulik and Samuelsen's e-projects discussion helped me zero in on what my directed project was about.

2. I was able to specifically counter points made by my committee members with solid research. We may not all agree on my answers, but at least I can point to references now.

3. The section of my directed project comes word for word from the Tech 590 report. This was of course the whole purpose of doing Tech 590 in the first place.

4. I was able to add heft to the conclusion and recommendations based on research from Tech 590.

"So what?" Why should an IT manager be interested in this paper?

In Software Development magazine, there has been a bit of a hornet’s nest brewing. Every month for the last five or six months, there have been at least one or two articles about lightweight development, XP, and/or iteration. “Put your process on a diet.” “Lean Programming”. “Lightweight modeling”. “Is design dead?” The list goes on. Some people write letters saying extreme programmers are hackers with no appreciation for design. The lightweight methodologists counter with the dinosaur argument. It isn’t exactly ugly, but it’s on everyone’s mind. So at a basic level, managers should care because their developers are out in the streets heatedly debating this very topic. It is that important.

Why is it that important? Iteration has so much potential. If we can streamline the development process to the point where stable and functional software is built on time and under budget, IT will have finally gained true legitimacy and can drive the bus. It can take its rightful strategic position without the ugly black cloud over it’s head. Iteration is the most promising way to remove the cloud.

IT has been discussing iteration for years. But it is elusive. My paper gives concrete and theoretical reasons for taking the plunge into iterative development. It adds legitimacy to people’s desire to cut administrative overhead. If I had to sum up why IT managers should read my paper in one idea, it would be this: talk openly about your methodological problems and take a hard look at whether iteration can be of use to you.

Please acknowledge receipt of this.

Ok, I received it. (
References

Baker, K. (2001). Personal communication.

Baldwin, D. (1998).Systems Development Approaches. University of Wisconsin-Parkside. Available: http://www.uwp.edu/academic/mis/baldwin/sysdelec.htm [2001, 7 May].

Barrett, M. (1998). What should we teach about object-oriented modeling and design? Presented at Object-Oriented Programming, Systems, Languages, and Applications Educator’s Symposium, 19 October 1998, pp 4-11.

Beaumont, R. (1999). Information Systems (IS) Development Methods. Available: http://www.robinbt2.free-online.co.uk/virtualclassroom/chap12/s3/des1.htm [2001, 7 May].

Booch, G. (2001). The illusion of simplicity. Software Development Magazine, February 2001.

Booch, G. (2001). The illusion of simplicity. Software Development Magazine, Feburary 2001.

Budd, T. (1997). An introduction to object-oriented programming. Addison Wesley.

Campbell, J. G. (1998). Methods for information systems development. University of Ulster. Available: http://www.cs.qub.ac.uk/~J.Campbell/myweb/misd/misd.html [2001, 11 April].

DeMarco, T. (1998). The deadline. Addison Wesley.

Dyck, S. (2001). Simon Dyck's SENG 611 lifecycle critique. University of Calgary. Available: http://sern.ucalgary.ca/~sdyck/courses/seng611/lect4.html#Lect4 [2001, 7 May].

Fowler, M. (2000). The new methodology. ThoughtWorks. Available: http://www.thoughtworks.com/cl_library.html [2000, October 5].

Fowler, M. (2000). The new methodology. ThoughtWorks. Available: http://www.thoughtworks.com/cl_library.html [2000, October 5].

Herlea, D., Wuw, M. and Lam, S. (2001). SENG 613 exercise: choosing software development life cycle. University of Calgary. Available: http://www.cpsc.ucalgary.ca/~danah/613/lifeCycle.html [2001, 7 May].

Kessler. (2001). Software engineering: programming is not enough. The University of Utah. Available: http://www.cs.utah.edu/classes/cs6940/handouts/kessler/se_files/frame.htm [2001, 7 May].

Kruchten, P. (2000). From waterfall to iterative development -- A challenging transition for project managers. The Rational Edge e-zine for the Rational Community. Available: (Kruchten, 2000) [2001, 25 April].

Kulik, P.& Samuelsen, R. (2001). e-Project management for the new reality. PM Network Online. Project Management Institute, International. Available: http://www.pmi.org/publictn/pmnetworkonline/3%2D01e%2Dprojec.htm [2001, 11 April].

Level A Software. (2000). Software life cycle models. Available: http://www.levela.com/software_life_cycles_swdoc.htm [2001, 7 May].

Meyer, B. (1997). Object-oriented software construction. Prentice-Hall.

Zammit, J. (1998). How do we build correct systems? Software development process, methodologies, methods & techniques. Available: http://www.cis.um.edu.mt/~jzam/ [2001, 11 April].

I - Initiating Laying the groundwork for a successful improvement effort.�D - Diagnosing Determining where you are relative to where you want to be.�E - Establishing Planning the specifics of how you will reach your destination.�A - Acting Doing the work according to the plan.�L - Learning Learning from the experience and improving your ability to adopt new technologies in the future.

Figure One: The IDEAL Model by the Software Engineering Institute

Figure Two: Activity Diagram of Iterative development in IDEAL

� EMBED Visio.Drawing.6 ���

[image: image8.jpg]_1049897354.vsd

