
 Model-Driven Architecture and Integration

Model-Driven Architecture and Integration
Opportunities and Challenges

Version 1.1

Desmond DSouza, Kinetium (desmond@kinetium.com)

Model-Driven Architecture (MDA) is an approach to the full lifecycle integration and
interoperability of enterprise systems comprised of software, hardware, humans, and
business practices. It provides a systematic framework to understand, design, operate,
and evolve all aspects of such enterprise systems, using engineering methods and tools.
The framework is based on modeling different aspects and levels of abstractions of such
systems, and exploiting interrelationships between these models.

In this paper we drill down into the MDA vision, define it’s broader objectives from a
modeling and integration perspective, identify key opportunities and challenges, and
show how the “Model” and “Architecture” in “MDA” could be used to effectively
enable large-scale model-driven integration. We also highlight how the MDA will
impose significant requirements on both the UML and MOF.

For a current version of this paper, more information about solutions for model-driven
architecture and integration, or to discuss how these issues might be addressed in UML
2.0, visit www.kinetium.com or email info@kinetium.com

March 2, 2001
About Kinetium

Kinetium is a start-up focused on leveraging shareable architectures for model-
driven development and integration of systems, based on precise architectural
styles and inter-model relationships across models of domains, subject areas,
levels or abstraction, and technology platforms. Stripped off its buzzwords, that
simply means that we offer advanced solutions to those who are ready to exploit a
model-driven approach to architecture, integration, and interoperability, through
services, methods, and products. For more information visit www.kinetium.com or
email to info@kinetium.com
Page 1 More information at www.kinetium.com

http://www.kinetium.com/
http://www.kinetium.com/

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 2 More information at www.kinetium.com

1 Introduction
Model-Driven Architecture (MDA) is an approach to the full lifecycle integration of enterprise
systems comprised of software, hardware, humans, and business practices. It provides a
systematic framework to understand, design, operate, and evolve all aspects of such enterprise
systems, using engineering methods and tools. MDA is based on modeling different aspects
and levels of abstraction of a system, and exploiting interrelationships between these models.

MDA is motivated by integration and interoperability at the enterprise scale. It utilizes models and
a generalized idea of architecture standards to address integration of enterprise systems in the face
of heterogeneous and evolving technology and business domains. From [Soley00]:

“It’s about integration. It’s about interoperability….The need for integration remains strong –
we need to build on the success of UML and CORBA … to provide the model-based standards
that are necessary to extend integration beyond the middleware approach.”

In this paper we drill down into the MDA vision, identify key opportunities and modeling
challenges, and show how the “Model” and “Architecture” in “MDA” could be used to effectively
enable large-scale model-driven integration. This paper make several telling points in a fairly
dense form, and some may be lost in a casual reading. The main points are listed here:

1. Software systems exist to support a business. Hence modeling of software systems is strongly
linked to modeling the environment of those systems, their business processes and domains.

2. A system can be described from different viewpoints, each focused on particular concerns. A
viewpoint, applied to a system, gives a view of that systems. That view, expressed in one of the
languages suited to that viewpoint, is a model of that system from that viewpoint, and in that
language. The same viewpoint can be used on different systems. This is true from the level of
business strategy and policy to engineering and technology details.

3. A system can be modeled at different levels of abstraction, even within certain viewpoints: the
outside (the environment into which the system will be deployed to play its part in some larger
goal), the boundary (the interfaces of the system), and the inside (its internal design). Further,
any of these descriptions can be at varying granularities of objects and actions. This is true
from the level of the enterprise to engineering and technology components.

4. Separated viewpoints are interrelated; integrating them requires that relationships, including
correspondences, between the models be clearly defined, separately from models of each
viewpoint. Similarly, each interface of a component is modeled separately; when the entire
component is specified, these models have to be integrated.

5. Separated levels of abstraction are related in non-trivial ways so the realization faithfully meets
the guarantees made by the abstraction. This relationship, called refinement, must be explicitly
modeled, separately from both abstraction and realization, and regardless of the order in which
abstraction and realization were created or the degree of automatic generation or
transformation involved. Refinement enables a fractal zoom-in/zoom-out approach, and lets us
treat a multi-tiered business component as either a single object or as a composition.

6. The modeling core must be very small and precise e.g. object and action applies uniformly at

 Model-Driven Architecture and Integration

 Page 3 More information at www.kinetium.com

all levels (Section 6.3). Once we allow refinement of objects (a single abstract object is refined
to some community of finer-grained objects) and of actions (a single n-way abstract action is
refined to some protocol of finer-grained actions) we have a core that works across levels, and
can build appropriate higher-level constructs and notations on this base. Note that every
needless distinction at the core level causes multiplicative overhead as we layer on that core.

7. Architecture guides design. For any abstraction there are many possible realizations, and the
architecture style you use admits some of those realizations but not others. A good architecture
provide shared ways of devising suitable realizations for different abstractions.

8. The approach of connecting building-blocks into larger assemblies applies at all levels of
development, including code, interface specs, domain models, and architectures. To compose
Java Beans, you connect event, property and method ports to create larger assemblies; to
composing Corba components, you connect facets and receptacles ports; to compose models of
design patterns, you connect parts by substituting your own model elements for places in the
design pattern; to connect processes you identify outputs with inputs and connect using flows.

9. Interoperability is about ensuring that parts which embody different realization decisions can
still be integrated so they work together as expected at a more abstract level. “… as expected at
a more abstract level” implies that we have to be quite careful about how we interpret the
models1 at both levels, and about precisely what is normative and guaranteed vs. what is
auxiliary and the relation between these two.

10. Interoperability specifications need conformance tests. However, what happens to those tests if
the specs deliberately permit refinement of observable behavior at the concrete level? For
example, a platform-independent specification will translate into different observable platform-
specific interfaces. Platform-independent tests require a precise definition of the architectural
styles that transform platform-independent to platform-specific observable behaviors.

11. To define component interoperability, we must distinguish specification of a replaceable
component (a ‘closed’ black-box spec including all it guarantees to, and requires from, its
environment, via all interfaces), from specification of a single interface (an ‘open’ black-box
spec where all other interfaces are not described) e.g. consider a legacy wrapper component.

12. Hence a common core of concepts – abstraction, realization, refinement relation; viewpoint,
view, integration of views, interfaces; component, port, connector, assembly; and architectural
style – exists at all enterprise levels; and objects and actions work at all levels.

13. Certain categories of systems – such as those referred to as “product-lines” – are highly
configurable to fit into different environments and processes. These bring additional challenges
of characterizing domain variability, choosing a flexible set of components and composition
machinery, specifying requirements for a given configuration, and mapping to a particular
configuration of components that will realize that requirement.

14. Models and systems at this scale will always evolve. The architecture for the models should
support transparent re-factoring of some parts without needlessly impacting others.

15. Models will be structured in packages, but well-written concise prose documents are a

1 This general risk of over-specification is particularly true of non-declarative models.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 4 More information at www.kinetium.com

necessary wrapper around the models, adding rationale, examples, tables, analogies,
metaphors, and the like. So packages include documentation. Beyond documents and
traditional models, packages contain source code, compiled code, patches, requirements
(including change requests and bugs reports), tests, test results, and structured documents.
Packages even define inference rules – what you can infer from any model.

16. Models of software components provide important run-time descriptions. If a Interface
Repository linked Corba or .NET registry information to more abstract models, it could offer
run-time access to models of the platform-independent behavior of interfaces (their guarantees
and assumptions, beyond just interface signatures), connected to models of their domains. This
enables services such as traders offering intelligent matching services, run-time negotiation and
creation of cross-platform adaptors across different data and interaction protocols, and smart
agents that discover and reason about each others world views.

17. Models should include, or at least be integrated with, distribution and deployment information.
A facility which linked models to directory services could offer comprehensive descriptions
about all entities listed in those directories, and vice-versa. This could form the basis of
keeping models and the actual entities being modeled in sync as needed, through both model
deployment and model discovery, and for intelligent run-time services that understood some
parts of the specifications and mappings in the models.

18. The MDA initiative, if successful, will define a large space populated by a huge number of
models. There has to be some coherent structure on this space of models, providing a rational
and consistent way to locate, partition, and relate these models. This structure is the essence of
the “A” in “MDA”.

 Model-Driven Architecture and Integration

 Page 5 More information at www.kinetium.com

2 The Integrated Enterprise
Since MDA is about integration, here is our vision of the integrated enterprise.

An integrated enterprise is one whose multiple business areas, strategies, architectures,
organizational units, people, processes, automated systems, technology platforms, data and
information  and the organization's understanding of all of these  form a consistent,
cohesive, and adaptive whole.

2.1 Dimensions of Variation

Although this definition covers a broad range of interrelated aspects, we can largely reduce it to the
three main conceptual dimensions of variations in Figure 1: vertical – different levels of
abstraction of the same subject; horizontal – different subject areas or views that are not, of
themselves, more or less abstract than others; and variants – different systems, actual or imagined,
as-is, as-was, or as-could-be, including variants that arise within a family of related systems
configured to different needs.

Figure 1 Vertical and horizontal dimensions for integration

Vertical dimension: this comes from different levels of abstraction of the same system2, from
physical data models, logical data models, networks, applications specifications, component
assemblies, business process models, and business goals and strategies.

An interface specifies observable behavior, a class provides a particular implementation of that
interface. A large-grained component might abstract multiple tiers and specify a single entity with

2 Vertical variation often (not always) corresponds to introducing a new domain into the description of one subject
area: “A asks B to do X” abstracts away communication. “A sends a message with request X addressed to B via the
post office; the post office delivers it to B” describes the same action but includes the communication domain.

? Integration of Data? Applications?? Integration of Data? Applications?

marketing
engineering

sales

IT

servicemarketing
engineering

sales

IT

service

Different subject areas: Shared understanding, vocabulary? Different subject areas: Shared understanding, vocabulary?

Different
levels of

abstraction:
Are they

consistent?
How do they

relate?

e-Boundaries?e-Boundaries?
2 Horizontal2 Horizontal

1 Vertical
1 Vertical

3 Variants3 Variants

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 6 More information at www.kinetium.com

a user-interface and some persistent state; it is realized by a composition of a thin-client, a stateless
business-tier component, and a database. A high-level business action such as fulfill order, has its
abstract specification; it is realized by a particular detailed process involving collaboration
between multiple software systems and people. Summary or aggregate information from a data
warehouse can be “drilled down” to see detailed constituents.

These “vertical” points must relate correctly to each other (“integrated”) if the detailed levels are to
faithfully provide what their more abstract levels promise, and for platform-independent
verification or compliance test suites can be well defined.

Horizontal dimension: these are different views, one no more detailed than the other; e.g.
different subject areas or domains, whether business (like marketing, engineering, and sales) or
technology (like performance monitoring and security)3. Marketing teams track product trends and
define product requirements, while engineering teams develop new products. Each area has its own
narrow view of the enterprise. But marketing and engineering teams both deal with overlapping
views of product specifications and release dates, which raises an integration issue: do the different
areas, people, terminology, business processes, and software systems, actually work together?

More concretely, a data warehouse performs “horizontal integration”, combining data from the
marketing and engineering databases, reconciling differences in syntax, semantics, and data values.
Bridges between two technology platforms, each offering its own guarantees about clients and
servers, play the same role. So horizontal integration has analogs at all levels of the enterprise,
including applications, business processes, domains, and even business strategy.

It is worth noting that horizontal integration is needed mainly to provide vertical integration: you
build a data warehouse because the integration realizes a higher-level information model which
abstracted away the split across the data sources; vertical integration relates solutions to problems.

Variant dimension: the parts of an enterprise and its systems have many variants. Thus, models of
system variants across time (as-is and to-be), branch locations, product-family member, or
technology platform are about this dimension. This is technically similar to “horizontal” variation,
but is more concerned with configurations, variants, evolution, and evolution-focused architectural
rules and modeling standards.

2.2 Integration

Any point in the space on Figure 1 could involve both humans and machines. The dashed lines
indicate that e-business boundaries might fall at arbitrary places: any combination of subject areas
(marketing, engineering, infrastructure management) at any level of abstraction (from high-level
policy through detailed operations), all with variants and changing with time.

To integrate means to join parts while properly reconciling overlaps and differences between them.
Any two distinct points in this space represent an integration problem in this broader sense, across
different subject areas, different levels of abstraction, different technology platforms, or different
points in time. This is a complex picture, and well structured models can help people comprehend,
manage, and evolve it more effectively.

3 Such subject areas include typical business domains, like finance, engineering and marketing, as well as technology
domains such as distributed systems, systems management, or user interfaces. Subject areas share common parts.

 Model-Driven Architecture and Integration

 Page 7 More information at www.kinetium.com

3 Modeling the Enterprise
A model is a formal description of some key aspect of a system, from some viewpoint. As such, it
always presents an abstraction of the "real" thing, by ignoring or deliberately suppressing those
aspects that would not interest a user of that model. Different modeling constructs focus attention
by ignoring different things. For example, an architectural model of a complex software system
might focus on its concurrency aspects, while a financial model of a business might be concerned
with its projected revenue. Model syntax includes graphical, tabular, and formal text.

Models should be explicitly represented and managed, precise enough to at least enable
unambiguous communication analysis, and abstract enough to focus attention and provide insight.
A model is simpler to comprehend than the thing it represents; well-structured models can make
complex systems comprehensible. Modeling helps users achieve consensus about what exists or
can be built, since it provides a concrete focus to agree and disagree about. A good model does not
have to be executable, but it must be readily validated against concrete examples4.

Model ≠ UML. We can use models at all levels, from business strategy and process through
software applications, databases, and networks. More familiar models cover application
specifications, software architecture, and network and database designs, as shown in Figure 2. At
higher levels, different aspects of business strategy may be modeled in spreadsheets (numeric
metrics), QFD matrices (stakeholder objectives, software requirements, design alternatives), and
Balanced ScoreCards (establish strategic intent and motivate performance goals).

marketing

engineering

sales

IT

supportApplication Specs

Components, Objects Application Architecture

Connect
Business

to IT:
Relate

Abstract
to

Concrete

Different kinds and views

Strategy

Processes

Applications

Databases

Networks
Change Propagation

Spreadsheets
QFD Matrices

Balanced Scorecard

Database Models
Networks

Cobol Records

Business ProcessesProcedures
Information Models

Figure 2 Levels and Kinds of Models

4 A model need not be executable for instances to be checked against it. An “executable model” e.g. of shortest path, is
a program, regardless of syntax. We must be very careful about which aspects of such a model are normative, and how
we define conformance. A declarative model simply defines shortest path (“path = …; path length = …; shortest path
= no other path is shorter”), it may not be executable, but it provides a basis for verification or testing. Consider a
concurrent system with non-deterministic scheduling, where key observable properties (e.g. termination, computed
result, timing) depend on the scheduling of actors created during program execution. How would you test a 3rd party
implementation against an “executable model” which, by definition, had to make specific scheduling decisions in
order to execute?

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 8 More information at www.kinetium.com

4 What is Model-Based Specification, Design, Integration, and Refinement?
This section contains a short example of how models from different (vertical) abstraction levels, as
well as from different (horizontal) perspectives tie together. The model-based scenario covers
traditional signature-based interface descriptions, implementation-independent specifications of
assumptions and guarantees, designs of components, eventual implementations, and tests.

Interface Signatures: Signatures do not adequately specify an interface. Figure 3 shows three
specifications. Thingami would not be trusted because we don’t know what it does. Editor might
be used because we guess what it does, though subtleties of a simple operation like addElement
remain unclear. We can guess what NuclearReactorCore does but would stay away in fear.

Thingami

frob (Thing, int)
Thing fritz(int)

Thingami

frob (Thing, int)
Thing fritz(int)

NuclearReactorCore

add (ControlRod, int)
ControlRod remove(int)

NuclearReactorCore

add (ControlRod, int)
ControlRod remove(int)

Editor

spellCheck()
layout()
addElement(…)
delElement(…)

Editor

spellCheck()
layout()
addElement(…)
delElement(…)

.

 Figure 3 Signatures are not enough

Model-based specification defines behavior precisely, formalizing in the model all terms that
must be defined for those behaviors. This includes at least a definition of all inputs, outputs, and
state variables, for each operation, abstracted from concrete representation. .

Figure 4 shows how behaviors of the Editor are specified in terms of the model. We might start
with a (simplified) informal specification of the net effect of an operation such as spellCheck. This
is written in the style of a test specification that should hold upon completion of spellCheck for any
correct implementation, regardless of algorithms or data structures:

All words are correct by the dictionary.

To formalize this spec requires that terms like words, correct, and dictionary be clearly defined.
This is done in a UML type model, drawn here in the ‘attribute’ section of the Editor type since
they are abstractions of the state of the editor. Once the terms are defined clearly, the operation
specification itself can be made clear in prose, or in the Object Constraint Language (OCL) shown
at the bottom of Figure 4 as a post-condition. Moreover, the type model terms must also be used
consistently by all other parts of the specifications, such as other operations.

 Model-Driven Architecture and Integration

 Page 9 More information at www.kinetium.com

spellCheck()
layout()
addElement(…)
delELement(…)

Editor «type»

spellCheck()
layout()
addElement(…)
delELement(…)

Editor «type»

*

Element
preferredSize
position

Word Composite

*

*

dictionary

contents

*

Element
preferredSize
position

Word Composite

*

*

dictionary

contents
Element
preferredSize
position

Word Composite

*

*

dictionary

contents

every element is positioned
so that its preferred size can
be accommodated

every element is positioned
so that its preferred size can
be accommodated

every word in contents is
correct by the dictionary
every word in contents is
correct by the dictionary

Editor Type Specification
type-model = vocabularytype-model = vocabulary

operations specified in terms
of the type model “vocabulary”
operations specified in terms
of the type model “vocabulary”

type specification
usually in separate
package

type specification
usually in separate
package

Editor:: spellCheck ()
post // every word in contents

contents -> forAll (w: Word |
// has a matching entry in the dictionary

dictionary -> exists (dw: Word | dw.matches(w)))

Figure 4 Model-based specification

Model-based Design or Integration. Design is about conceiving an assembly of parts that
realizes a specification. In Figure 5 the editor is designed as an interacting editor core, spell
checker, and layout manager, whose collaboration is a valid refinement of the editor spec.

The models of these three components (spell checker probably includes a model that includes
some definition of dictionary; spell checker and core both include some model of word; layout
manager has a structural geometry model) must be integrated and mapped to the editor spec in the
“refinement” model. The refinement model is in a separate package; it imports the spec and the
design, and adds the refinement relationship and supporting mappings between the parts.

Figure 5 Model-based Design

This view is fractal. The editor core has two interfaces each with a different model-based

E-CoreE-Core
next word

replace word
next word

replace word

maximum size
resize

children

maximum size
resize

children

Spell Checker

spellCheck()

Spell Checker

spellCheck()

Layout Manager

layout()

Layout Manager

layout()
dictionary

words

Editor

spellCheck()
layout()
addElement(…)
delELement(…)

Editor

spellCheck()
layout()
addElement(…)
delELement(…)

Editor Internal Design
internal design in a separate
package from the specification

RefinementRefinement

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 10 More information at www.kinetium.com

specification. The Spell Checkable model is of an indexed sequence of words, and the Layoutable
model is of a tree of geometry objects with descendants. Each is specified independently, as shown
in Figure 6, and has its own test suite. To specify the editor core, we must include not just these
two interface specs, but also how their models are related to each other e.g. the relationship
between the layout view and the sequence of words that are spell-checked; and set up explicit or
implicit relations between their operations e.g. replace word may require re-calculation of layout.

Figure 6 Model of each Interface in the Design Collaboration

Implementation and Test: An editor core implementation might choose a concrete representation
consisting of a tree of document elements (paragraphs, words, tables, figures) combining together
their logical content with their geometry information5. Testing the Spell Checkable interface of this
implementation would require a mapping from the concrete tree structure to the word sequence
model used to specify spell checking, as shown in Figure 7.

contents

para-1 table

word1

word2
fig1

row1 row2

word3
fig2

Wordwords seq *Wordwords seq *

EditorCore <<class>>

Spell Checkable

next Word
replace Word

refinement

EditorCore <<class>>

Spell Checkable

next Word
replace Word

Spell Checkable

next Word
replace Word

refinement
words =

contents.asDepthFirstSequence -> select (e | e.isKindOf (Word))
(if written as executable Java read-only function provides testability)

“abstraction function/retrieval” - OCL or Java

words =
contents.asDepthFirstSequence -> select (e | e.isKindOf (Word))

(if written as executable Java read-only function provides testability)

“abstraction function/retrieval” - OCL or Java

Figure 7 A refinement mapping

Perspective: Note that this example illustrates both horizontal and vertical integration. It shows:

5 An alternate implementation might maintain separate representations of the model of each interface, with code to
maintain the required consistency relationships between these two representations. The typical federated enterprise
architecture is a large-scale example of this alternative architectural style.

SpellCheckable Layoutable

next word
replace word

SpellCheckable

Word
seq *

curr

next word
replace word

SpellCheckable

Word
seq *

curr

next word
replace word

SpellCheckable

Word
seq *

curr

maximum Size
resize
children

Layoutable

Elem
size

descendants *
maximum Size
resize
children

Layoutable

Elem
size

descendants *
maximum Size
resize
children

Layoutable

Elem
size

descendants *

Spell-CheckerSpell-Checker Layout ManagerLayout Manager

EditorCore

 Model-Driven Architecture and Integration

 Page 11 More information at www.kinetium.com

• Model-based specification adds a degree of precision that is absent in signature-based
interface specifications. Ambiguous and length prose explanations become crisp and
focused, and inconsistencies are uncovered quicker, since the terms used for all behaviors
must be in terms of a shared common models that defines what they mean.

• Good model-based specification are like implementation-independent test specifications –
provided they are interpreted carefully to not unduly restrict valid implementations.

• Model-based design assembles parts, each with models of its interfaces, in a way that can
be shown to refine the specification of the whole. The models of the parts have to be
related to each other (i.e. integrated) to show the relationship to the whole.

• Each interface of an individual component has its own model-based specification,
independent of its other interfaces. The specification of the entire component as a box must
relate the models of the different interfaces in ways unique to that component.

• An implementation chooses its specific data representations and algorithms. In our
example, the interfaces were specified in terms of an abstract model of state, and algorithm
details were elided in favor of a post-condition test. In order to use implementation-
independent tests we need appropriate mappings from the implementations to the
abstractions used in the specs.

This small example illustrates several aspects of the MDA goal of platform-independent models
and test specification. The MDA allows somewhat more flexibility between the platform-
independent specification of interfaces, the platform-specific form of those interfaces, and the
eventual implementation of those interfaces.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 12 More information at www.kinetium.com

5 Model-Driven Integration Challenges
Models and integration at the enterprise scale pose different challenges from models of single
software systems. One of the characteristics of the multiple-viewpoint approach outlined in Section
2.1 is that descriptions of the same or related elements can appear in different viewpoints and must
co-exist. Further, since different viewpoints can impose contradictory requirements on the system,
consistency across viewpoints becomes an issue. Figure 8 outlines some key challenges of
modeling at the enterprise scale. These challenges include federation, integration, architecture
standards via shared models, seamlessness, and synchronization.

Figure 8 Challenges of Enterprise Modeling

5.1 Federation

Do not build a single integrated model of your enterprise. Even if you did not run out of wall
space, you would not provide a natural description of any single concept to diverse horizontal or
vertical groups. A single model cannot describe Product for both sales and engineering (horizontal
separation); or include its network bandwidth and sales projection aspects (vertical separation).
Enterprise scale models must be federated, separating both horizontal areas and vertical layers.

U-1. The key modeling concept here is an improved UML package. Each package provide
its own views of the same Product, and can define those aspects that are relevant to it.
(This separation goes hand-in-hand with U-2,3,4). The same separations apply to
packages of software: different interfaces of an object are better defined separately,
interface definition packages are separated from implementation packages. Package
location is irrelevant.

Integration -
horizontal

Integration -
horizontal

marketing
engineering

sales

IT

servicemarketing
engineering

sales

IT

servicemarketing
engineering

sales

IT

servicemarketing
engineering

sales

IT

service

Federation - separate views with dependencies

Package

Package

Package

Package

Package
PackagePackage

PackagePackage

PackagePackage

PackagePackage

PackagePackage

Architecture - aspects + languages
for consistent shared models, patterns

Object-Relational map
Seamless - from biz to code

Service-Level Agreement

CombinedCombinedCombined

Package PackagePackagePackage PackagePackage

CombinedCombinedCombinedrefine

Synchronization - between
all models and “biz world”

verticalvertical

 Model-Driven Architecture and Integration

 Page 13 More information at www.kinetium.com

5.2 Integration

Separated models typically overlap in places. When engineering and marketing staff collaborate,
they must have a common vocabulary and process to work together; when a new data warehouse
pulls in information from engineering and marketing databases, the two schema must be integrated
– both examples of horizontal integration. Or, when the information gleaned from this data
warehouse is used to shape marketing and engineering strategies, the warehouse model must be
clearly related to the strategy models – an example of vertical integration. UML and MOF could
use some strengthening to support the items below.

U-2. The basic concept here of is an improved UML package import, allowing (a)
packages to share an arbitrary model fragment by importing it from a shared package and
decorating it locally with further model elements; and (b) conversely, we need to model
the “integration” of two separate packages in a single separate package that imports them
both and adds more information. The current approach of being forced to define a
subtype in order to say something more about an existing type has problems with
scalability (explosion in number of subclasses), understandability (recurring patterns of
dependent types are lost), as well as semantics (subtypes should describe subsets). There
is no reason to force everything that can be said about a type or action into a single
package: consider the separation of core functionality, reporting, event-logging, security,
and performance aspects for a placeOrder action.

U-3. Horizontal integration composes two packages into a third package, where
correspondence between elements in the two imported packages is somehow established
in the third. For example, the marketing and engineering models are imported into an
integration model package, where the two views of Product are reconciled by adding
new attributes, associations, or constraints that cut across the two models.

U-4. Vertical integration is provided by an explicit “refinement” model package that
imports and maps between concrete and abstract model packages. For example, a domain
model for marketing may assert a static relationship between product positioning and
market information. A specific realization may have separate business systems for
market information and product positioning, interacting to maintain that relationship. The
refinement package relates these two models to each other. We need to define different
refinement relations and the guarantees they preserve.

U-5. Variant integration requires having precise definition of model configurations and
builds, and identifying ‘correspondence’ between model elements across variants.
Publication, versioning, and configuration are package-based. A package is published as
a unit, and can then be imported by any other package regardless of location. Packages
are the only unit for publication. A published package is immutable and only imports
other published packages. A configuration is a published package. Builds and code
generation are integrated, at least conceptually, with configuration.

U-6. Model integration demands clear semantics. The core constructs should be simple,
with minimal constructs, and with explicit semantics: instances of objects and actions,
with corresponding object specifications and action specifications (both subject to
refinement), and specified constraints on the instances from the specifications.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 14 More information at www.kinetium.com

U-7. As far as possible, new constructs should be defined by translation to the core6, rather
than have independently defined semantics. For example, UML 2.0 asks for refinement
semantics. If the core was just objects and actions this would be simple; if other
constructs (state, activity, transition, event, …) were translatable into that core much of
our work is done. But if state, activity, transition, etc. were independently given
semantics we would have to deal with combinations of refinement across states,
activities, post-conditions, attributes, associations. In most cases, new meta-models
constructs or extensions can be defined as convenient modeling syntax (abstract or
concrete) with a translation to the core abstract syntax, easing integration and
interoperability. After all even the Corba Component Model specification expressed its
component constructs largely as translations into idiomatic patterns of standard IDL.

U-8. A fractal view of objects and actions, where zooming in exposes finer grained objects
and actions, perhaps from other domains (e.g. introduces distribution aspects where the
zoomed out view abstracted the distribution domain), greatly simplifies defining new
constructs and notations that can translate into objects and actions, and makes vertical
and horizontal integration of models simpler.

U-9. UML’s activity model and its associations with state machines is broken. Refinement
provides a much clearer definition, since what is considered as a single action at an
abstract level may need to be reified at the refined level into an object with a visible
lifecycle and states. When you realize an abstract action (e.g. purchase) with some finer
grained actions (e.g. order, deliver, pay), the refinement model needs to map some
composition of fine-grained actions to the abstract; likewise, at the realization level, you
will need to reify the (now-ongoing) action order into an object with states, since the
intermediate steps of the abstract action are now visible. An activity model then simply
shows what composition of finer-grained actions (the ovals) realize the abstract action.
The lines joining activities essentially correspond to states7 at the realization level.
Moreover, activity models should share the same generic pattern of component-port-
connector-assembly as components and classes.

U-10. At the business level, there will also be a need for modeling constructs that easily
represent things such as business rules and policies, in a way that can be clearly refined
to models of software systems with a more traditional computation model.

5.3 Shared Architecture Models

To manage models of this scale you must have a coherent modeling architecture, with standard
ways to describe shared concepts, rules, patterns, frameworks, mappings, and generators. For
example, if you develop different applications with object models mapped to relational tables, you
should use a single object-to-relational mapping architectural style from a shared model as a
refinement framework. If all your enterprise models maintain a separation of information,
engineering, and computational views and then integrate them in particular ways, this common
structure should itself be modeled in a shared architectural style model as a package pattern.

6 e.g. State = Boolean attribute + state invariant; Association = pair of inverse attributes; Activity = n-way Action;
Aggregation = tree-structured association with lifetime constraints. Layered translation is an old approach to
portability and interoperability e.g. compiling Ada and Java both to the JVM.
7 Not to transitions, as currently in UML. Profiles such as EDOC are consistent with our interpretation, and layer some
additional semantics to arcs related to communication about that state information.

 Model-Driven Architecture and Integration

 Page 15 More information at www.kinetium.com

The same principle holds for business models. When sales and information technology
departments enter into different forms of service-level agreements, they should be able to adapt a
single, generic service level agreement model. Or, all business areas and processes should follow a
common set of rules about escalation of certain types of issues.

Lastly, the same principles hold for the definition of the modeling languages themselves i.e. the
structuring of the meta-models. The UML core and MOF need to provide facilities for sharing
definitions of partial models and patterns that recur in languages and inter-language mappings.
These patterns range from fundamental (the Descriptor-Occurrence relationship between any
specification element and its corresponding instance elements), to modeling constructs (translation
of aggregation/composition into a basic association), to a standard package structure for separating
concrete syntax, abstract syntax, and semantics. The current UML core and MOF needlessly
prohibit many of these from being shared since they impose “strict” 4-level meta-modeling rules.

U-11. Effective shared definitions is key to architecture. Package imports should be
improved so a package can be extended as a unit, decorating any model fragment
(classes, instances, interactions, etc.) within that package with new properties (attributes,
associations, inheritance, postconditions, stereotypes, etc.) This allows separation of
different viewpoints or aspects of the same thing. The semantics of ‘joining’ the shared
definitions with separately introduced extensions should be made clear.

U-12. UML patterns need improvement to consolidate concepts of framework, pattern, and
template class. None of these constructs is capable of describing a pattern of refinement,
which is a cross-model pattern. They should all be unified into the concept of a package
framework – you can import that package and substitute certain elements; the result is a
composition of that package contents with your package, joined by the substitutions. The
pattern definition can parameterize any model element and identifier with substituted
elements. This construct unifies template classes, template collaborations, refinement
patterns, patterns of business process, package structure, and more.

U-13. Frameworks themselves can be checked, refined, and composed like any other model
e.g. an abstract subject-observer framework simply specifies a static invariant to be
maintained. One refinement may choose a registration and notification protocol; a further
refinement may choose a “2-way-link” framework to keep the connection.

U-14. Every patterns makes some assumptions about the context in which it is applicable,
and the result of using the pattern is valid provided those assumptions hold. This means
patterns must also specify conditions that must hold true of the substituted elements and
their context, much like a (design-time) precondition. For example, the subject-observer
pattern is applicable when subject’s attribute defines inequality (for ‘change’), and has an
equivalence with the type of its observer’s attribute (to define the result after ‘update’).

U-15. Supertypes are an important way to define shared architectural constructs. Sets of
related supertypes should be defined and extended in a way which preserves the
guarantees made by the supertypes. Unfortunately, most OMG meta-models, profiles,
and domains instead make extensive use of oclIsKindOf and oclAsType i.e. type
assertions and type casting that undermine the value of the supertypes. Arbitrarily
picking an example from the CWM spec:

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 16 More information at www.kinetium.com

context FeatureNode inv:
self.feature.oclIsKindOf(BehavioralFeature) implies
 (if self.feature.ownerScope = #instance
 then self.argument->size =
 self.feature.oclAsType(BehavioralFeature).parameters->size + 1
 else self.argument->size =
 self.feature.oclAsType(BehavioralFeature).parameters->size
 endif)

Doing this costs us in two ways. First, the recurring pattern of several dependent types is
buried in subtype OCL constraints. Secondly, there is serious duplication of OCL
constraints in subclasses that are identical except for renaming. The solution is to make
the type dependencies explicit using frameworks or package patterns.

U-16. The word “architecture” itself continues to be used with widely different meanings,
even in the context of MDA discussions. We do know this much: architecture covers
different viewpoints; architecture guides design; design is about refinement; designs and
specs are both expressed in some language; and some (parts of) design models can be
automatically generated. The concepts of architectural style, refinement, viewpoints,
viewpoint languages or meta-models, and generators should be properly integrated. We
discuss how to do this in more detail in Section 6.4.

5.4 Seamlessness

You want to smooth over the “seams” between different kinds and levels of models, such as
process, component, object, and data models, and across different business areas. This means
handling more than one kind of meta-model, and relating models that are based on different
underlying meta-models.

U-17. We must handle multiple modeling dialects, each clearly defined, with their
interrelationships clearly defined as well, and consistently relate models to each other
within and across dialects. Note that, at the meta-level, these dialects themselves form a
space much like in Figure 1. e.g. a reflective language will express a model differently
from a non-reflective one; the refinement relationship should be defined on the language
constructs (meta-models) themselves, where possible. Alternately, languages may have
mappings between them that are not refinements, and these relations could be defined in
(meta-model) packages that import the meta-models being integrated e.g. UML, IDEF0,
and EXPRESS are related in some way that must be modeled.

U-18. Once again there is a lot to gain by having a small core in the UML, such as fractal
objects and actions (Section 6.2), as it enables easier mappings to and across dialects.

5.5 Structure of Meta-Models

Given a package from your favorite tool, does the familiar box labeled
Customer represent a UML class? A MOF class? Does the <<db2>> on
the box mean IBM’s definition of the <<db2>> stereotype? Someone
else’s <<db2>>? Does the <<…>> even mean UML stereotype? Customer

name : String

<<db2>>

 Model-Driven Architecture and Integration

 Page 17 More information at www.kinetium.com

It is nice to treat a package as a collection of model elements, provided every language construct
used in that package is unambiguously identified with a definition of that construct.

U-19. A language or meta-model is defined in a package that can include the rules of
concrete syntax, corresponding abstract syntax, and semantics of each language
construct. That package can use all the usual package structuring facilities. A model – i.e.
an instance of that meta-model – must import the language definition package so every
language construct used in the model is identified with its definition in the meta-model.

Customer =?X
name = ?a

<<db2>>

UML B'Blues Profile

concrete syntax

abstract syntax

semantics

?X
?a

"<< ?S >>"

stereotype
structure

translation to other abstract syntax
(or relation to semantic domain)

<<db2>> means ...

<<cics>> means ...

?X: Class
?a: Attribute

Figure 9. Language Definition and Usage

Figure 9 sketches how this could be structured across meta-models and models.

UML concrete syntax (a class box, or a stereotype) is defined in a package. The abstract syntax
(constructs such as class and its attributes, or the inheritance structure for a stereotype) is defined
separately. The mapping of concrete syntax to abstract syntax should be explicit, indicated here by
the placeholders “?X” and “?a”. The semantics of any construct are defined either as a translation
into a lower-level abstract syntax, or by its relation to an explicit semantic domain. The former
method may be preferable to layer new constructs on a small core, where the core itself might use
an explicit semantic domain (see U-6-U-7). A particular profile is defined in its own package with
its stereotypes and other extensions. A profile is imported by a user model, so all constructs in the
user model are defined within that profile’s UML dialect.

The basic idea is quite similar to programming. When you write a source file in C++, you must (a)
indicate clearly that it is C++, and sometimes even indicate which version of the language or
compiler can handle it �; and (b) #include any header files that define macros that you use.
Facilities for packages and imports leads to a structure of both incremental language definitions
(meta-models) and language uses (models), as shown below in a figure from [Dso98].

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 18 More information at www.kinetium.com

5.6 Synchronization

One of the challenges to making MDA real is maintaining a high degree of confidence that models
remain true descriptions of the things they denote. So, models have to be kept in sync both with
each other across levels of abstraction, and with the real world that is being modeled.

This means our models must have some clear linkage to the things they designate. For example,
changes to code should be reflected as changes to models that are supposed to represent that code
(and vice versa). But this synchronization is not just a code issue. Business processes might change
without their models being updated. It's a good idea to detect such divergence and take corrective
action. This synchronization is in both directions: changes to business models should be deployed
to the actual processes, which might involve upgrades to hardware, software, and personnel.

U-20. A clear refinement relationship between concrete and abstract descriptions is
essential to define inter-model synchronization. A clear link between models and the
individuals they denote in the “real world” is essential to keep models in sync with the
world. The concept of Architectural Style (Section 6.4) lets us regularize some of the
refinement patterns that are used, and make this synchronization more practical.

5.7 Interoperability – Design and Run-Time Metadata

Design time repositories will maintain rich information about models and inter-model
relationships. Today’s run-time repositories maintain information about deployed objects and their
signature-level interfaces. However, run-times are getting increasingly flexible, with self-
description and auto-discovery of services, negotiation of protocols, and even run-time generation

 Model-Driven Architecture and Integration

 Page 19 More information at www.kinetium.com

of adaptors. Today’s commercial adapters are at the level of data types and protocols; it is entirely
feasible for more sophisticated protocol and service adapters to be generated on-the-fly by smarter
mediators. So the information needed at run-time is potentially much more than signatures.

For example, when generating the adaptors between two components, a mediator such as a smart
trader service may need to recognize the modeling language and version of the language used for
each component, uncover relationships between <<stereotypes>> used in each model, discover
that each has its own view of a shared Customer concept, and reconcile those views in the adaptor.

Agent behaviors such as negotiation need explicit machine reasoning about models as well as
about the inferences that can be drawn from a model. A smart agent needs to understand the
languages used for each model, the ontologies described in those languages and how they are
related, and what implicit conclusions can be drawn from the explicit model definition.

U-21. Both design and run-time repositories should have full access to model information,
including inter-model relationships and the mappings used to generate code.

U-22. The modeling architecture (and hence, meta-models and models) should clearly
distinguish conceptual models from callable interface specifications, such as may be used
for a design or run-time tool. Conceptual models often introduce model elements, such as
abstract state attributes) that were not meant to be exposed to a published interface.

U-23. Interoperability should not be reduced to a leas-common-denominator. Instead, it
should allow a model expressed in a given modeling language or dialect to be at least
partially understood by a machine that did not understand that entire language or dialect.
For example, a design-time search for components that meet a certain real-time spec, in a
tool that did not fully understand the real-time profile, should still retrieve candidates that
appear to meet all other search criteria. Similarly, a run-time agent that understands
attributes but not state machines, when faced with a state-machine model, should be able
to reason with the attribute-equivalents of those states. This requires that language
definitions themselves be structured to share partial language definitions and extend or
translate into other languages.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 20 More information at www.kinetium.com

6 Key Concepts and Principles Elaborated

6.1 Composition or ‘Join’ of Model Fragments

One of the keys to architecture is shared definitions and rules. You have probably surmised by now
that we want to share and reuse partial models at many levels of granularity.

• A subclass may specify a property which is also specified by a superclass; we need to ‘join’
these to define a resulting subclass value for that property. For example, it is a common
sub-typing discipline for a superclass to specify a partial guarantee for a method, and a
subclass to extend that guarantee with some addition pre/postconditions8.

• Two different patterns may be applied to a class C e.g. subject-observer, and proxy-remote,
and C’s role in each pattern imposes different requirements on C. The different patterns can
influence overlapping elements on C e.g. the roles of subject (with some interesting state
attribute) and proxy (with at most a cache of remote state) interact with each when remote
state changes. Hence we to ‘join’ what each pattern says about those elements.

• If a property of some model element is defined in two different packages, we need to be
able to ‘join’ them in a package where both are visible; this is, in fact, a special case of
applying multiple patterns.

6.2 Three Principles

Three simple core principles – abstraction, precision, and pluggable parts – combine to give more
than the sum of the parts.

Platform-independent models are about abstracting away technology details. Business process
models abstract even more details away. However, abstractions without precision are of very little
value, specially within the context of MDA, so abstractions must be precise. Modeling at this
scale, and dealing with the relationships and transformations between models, will demand shared
definitions. All models, including business models, platform-independent specs, mappings,
refinements, should be built by assembling smaller shared parts together.

Abstraction
- clear views
- technology insulation

Precision
- expose gaps early
- accurate shared

understanding

Pluggable Parts
- no duplicate work
- consistency by reuse
- quicker development

Abstract descriptions
(requirements, architecture,
specifications) become
robust, reliable, traceability

Abstract descriptions
(requirements, architecture,
specifications) become
robust, reliable, traceability

Reuse of parts includes
implementation, interfaces,
specifications, requirements,
architecture, patterns, ...

Reuse of parts includes
implementation, interfaces,
specifications, requirements,
architecture, patterns, ...

Reusable parts can be composed
reliably and predictably

Reusable parts can be composed
reliably and predictably

Consistent
Core

Consistent
Core

8 UML and MOF do not currently permit many useful partial specifications.

 Model-Driven Architecture and Integration

 Page 21 More information at www.kinetium.com

6.3 Refinement – Fractal Zooming In and Out

Figure 10 shows how any system (software or otherwise) can be modeled at a detailed, or
“zoomed-in” level; and can also be modeled at a more abstract, “zoomed-out” level. The
refinement model relates the two levels, providing full integration from domain models to code.

ClientClient

CompanyCompany

schedule

pay

deliver

Refinement
(mapping)

Refinement
(mapping)

Zoom in/out of use-case (user task)
(abstract action or detailed dialog)

Zoom in/out of objects
(external or internal view, including software)

Client

Company
buy course

ClientClient

CompanyCompany
buy course

pay
Client

Company

schedule

deliver

pay
ClientClient

CompanyCompany

schedule

deliver

Client

Companyschedule

pay

deliver

SW System

ClientClient

Companyschedule

pay

deliver

SW System

ComponentsComponents

– Fractal zoom in/out with equal
sharpness

Refinement
(mapping)

Refinement
(mapping)

Figure 10 Refinement and Zoom-in and Zoom-out

For example, a sequence of business actions, schedule, deliver, pay for a training course may be a
refinement of a single more abstract business action, buy course. Similarly, a software system may
be modeled as a single abstract object from the outside, or refined and designed internally as a set
of internal interacting parts. This lets you handle large components as simple connected objects;
and larg-grained interactions as simple actions. It also lets you zoom into components to see
architectural details of multiple tiers, with complex realizations of the simple abstract connectors.

If the refinement mappings are done well then the abstract behaviors become more "testable"; the
(non-trivial) test fixtures for this would effectively push the concrete tests and observed behaviors
up through the mappings as a 'simulation' of the abstract behaviors. For example, "company sell-
stuff to customer" is not directly observable at a concrete level. Instead, you have lots of lower
level actions (e.g. ordered, delivered, paid). A test fixture could map recognized patterns of those
concrete events to an occurrence of the abstract "company sell-stuff to customer"; and map
concrete distributed heterogeneous data representations to the abstract model attributes of
company, customer, stuff; and check abstract state changes and action sequences. Conversely, you
can define tests at the abstract level, and then “test the refinement by refining the tests”.

The basic package structure for refinement is shown in Figure 11: the abstraction and realization
models are in separate packages; the refinement package imports them, and models the refinement
relationship between them. The note marked “full model of refinement” could include classes,
attributes, associations, interactions, state charts, activity diagrams, etc.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 22 More information at www.kinetium.com

abstraction

realization

refinement

Abs
<<interface>>

interface and class is
used purely as an
example for illustration.

concrete

Abs
<<interface>>

concrete

full model of
refinement
+
justification of
design choices

Figure 11 Refinement package structure

6.4 Architecture and Viewpoints

“Architecture” is one of those slippery terms that is sometimes used to bestow instant importance
to powerpoint drawings; the MDA needs a far more precise definition, one where conformance of
an implementation to an architecture at least has a clear and unambiguous meaning. What follows
is a set of interrelated concepts that lead to a clear definition of architecture style and viewpoints.

Architecture constrains design. Architecture guides design. We know that architecture-free
designs choose random and inconsistent ways to address similar problems; and that architecture-
driven designs provide much stronger guidance in making consistent design decisions. In fact, we
can recognize that, informally,

Architecture includes the set of principles, rules, or patterns about any system that keep its
designers from exercising ‘needless creativity’.

Of course, the specific issues addressed by these rules and patterns differ at the level of business
design, distributed systems architecture, and database design. Because the term ‘architecture’ is
often used very broadly to mean some high-level description of a specific system, we will use the
term “architectural style” to mean the rules, principles, and patterns that govern the design and
evolution of that system at some level of description.

Architecture is about refinement. Refinement is a relationship between a particular design and
its specification, and includes the mappings between them and justifications for design choices
made. Designing, which is conceiving an assembly of parts that realizes a specification, is
fundamentally about refinement. So, architecture style is intimately related to refinement.

Architecture style defines spec and design language. Both specifications and designs are
expressed as models in some modeling language; the choice of language is related to the
architectural style used. For example, all designs expressed directly in IDL share something in

 Model-Driven Architecture and Integration

 Page 23 More information at www.kinetium.com

common in their architectural style. Similarly, all specifications that are expressed as UML-EDOC
profile models also share something in common in their architectural style.

Architecture style constrains refinement mapping. This follows from the previous discussions.
All designs that follow a consistent set of rules relating their EDOC specifications to their IDL
realizations, share even more of their architecture styles.

Some designs can be ‘generated’. In some limited cases, a detailed enough specification can be
transformed into a lower-level implementation automatically9; programming language compilers
do this, and it can be done at least in some part for other kinds of models.

Spectrum of styles. So, clearly there is a spectrum of architecture styles, some more constraining
than others. Consider a system in which you have Persons and some related set of Accounts, and
attributes Person.wealth and Account.balance are specified as being in sync with respect to some
derivation function. The implementation will have these objects distributed on a network. Here are
four qualitatively different architectural styles for the design:

• The style has no constraints on design or spec: You can use any language to describe the
spec and the realization, and can map between realization and specs any way you want.

• The style mandates a design language, but has no refinement constraints. This means you
must use the language constructs from that style to describe your design, but the style does
not constrain how you use those constructs to meet different parts of the spec, and so
probably does not even define any language for the spec. “EJB” is such a style.

• The style defines what language you use for the spec and the design. Additionally, the
specification of that style admits certain spec-realization correspondences, but not others.
Hence, the style defines a predicate on refinement: it does not generate the design for you,
it does have a well defined set of rules (such as may be checked in a design review, or by a
tool) that can check whether your realization and the way it maps to the spec conforms to
the style. E.g. “EJB, but with no entity beans” is an example of this kind of style.

• The style defines a full translation scheme i.e. the architectural style is fully determined,
and is essentially a function (a compiler or generator) from spec to a realization of that
spec. The correctness of the compiler’s function serves as the refinement mapping. The
least useful variants of this are when the spec language is isomorphic to the design
language e.g. adding stereotypes in the spec language for every design language construct.

Styles will not be this simple in general, and will often be composed from other styles. The style
specification in general can refer to elements of spec, realization, and the refinement mapping. A
style may choose to ignore the specification side of the refinement, in which case it only constrains
the set of realizations. A more interesting style for keeping attributes in sync could say:

Whenever:

• you have a requirement to keep 2 attributes in sync with each other (spec),

9 Although this is neither doable or practical in the general case.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 24 More information at www.kinetium.com

• and the attributes are used on 2 sides of a distribution boundary with frequent intra-
boundary references and infrequent updates relative to inter-boundary references,
(realization),

then:

• use the "2 copies + update protocol" pattern (realization).

Figure 12 shows a prototypical package pattern – specification, realization, and refinement, and its
relationship to an architectural style. You create every design– whether a business process that
implements a business requirement or a class that implements an interface – in a package, in the
context of an architectural “style” package. The style can define the spec language and design
language, including extensions like patterns or stereotypes; it can also define design rules that your
refinement must conform to. The way you design to the specification – the refinement model –
should conform to that architectural style: it is an ‘instance’ of the style, or a member of the set
specified by that style10.

• Architecture style defined in separate package
• In general, realization refines specification in a

way that conforms to the architecture style
• Style constrains realization and/or refinement

realization

• Range of “generative” options
• Completely ad-hoc (or “creative”)
• Fully defined translation (compiler)
• Some defined rules and constraints

• Range of “generative” options
• Completely ad-hoc (or “creative”)
• Fully defined translation (compiler)
• Some defined rules and constraints

specification
s1, s2, s3, ...

Architecture Style
(design elements, rules, constraints)

Architecture Style
(design elements, rules, constraints)

<<instance>><<instance>>

Architecture Style
(ports, connectors, code patterns)

s2

Architecture Style
(ports, connectors, code patterns)

s2

Architecture Style
(ports, connectors, code patterns)

s2s2

<<refines>>

Figure 12 Architecture Style and Refinement

Viewpoints. A system can be described from many viewpoints; each defines what characteristics
should be included in its views versus what issues should be ignored or treated as transparent. In
Figure 13, if the model Concurrency View (which may itself include a refinement model mapping
concurrency requirements and how they are realized) is an instance of architectural style
Concurrency Style, we say it conforms to that style. Additionally, if we believe (by gut feel, check-
list, design review, or harder stuff like full refinement verification) that the architecture is a valid
abstraction of the implementation, we say the implementation conforms to that style.

This gives us a clean definition of architecture, architecture style, and viewpoints.

10 Similar to Type denoting a set of objects, where the type specification defines required properties of those objects.

 Model-Driven Architecture and Integration

 Page 25 More information at www.kinetium.com

Full Implementation
Source Code, Database Definitions,
Modules, Hardware, Distribution, ...

Event / Property /
Method View

Functional
Requirements View

Object / Relational
Mapping View

Concurrency
View

Event / Property /
Method Style

Event / Property /
Method Style ORM StyleORM Style Concurrency StyleConcurrency Style

<<refine>>
mapping

<<refine>>
mapping <<refine>>

mapping

<<refine>>
mapping<<refine>>

mapping
<<refine>>
mapping

<<refine>>
mapping

<<refine>>
mapping <<refine>>

mapping
<<refine>>
mapping

<<refine>>
mapping

<<refine>>
mapping

Func-Req StyleFunc-Req Style

Architecture =
an Abstraction or View
of the implementation

Architecture Style =
Language + Rules
(for some viewpoint)

<<instance><<instance> <<instance><<instance>

Figure 13 Architecture and Viewpoints

6.5 Canonical Package Structures

If MDA is to model refinement explicitly, and treat architectural style as a first class modeling
construct, we arrive at a pattern of packages of specification, realization of that spec, refinement
mapping, and architectural style conformed to. Figure 14 shows this recurring pattern: a Domain
Model provides things known about the environment of the system i.e. things that can be assumed
by systems deployed in this environment. The Process Model describes specific processes, manual
and automated, using the specification of some machine(s), to define what effects that machine is
required to have on the environment, when combined in some specific way with other machines
and humans into the process.

The Machine Specification package specifies the machine independent of any particular process it
may be deployed into, including just the minimal model of its environment. This package is
distinct from the Process Model package, because the same Machine can clearly be used
differently in different environments to solve different business problems.

Businesses solve their problems with some combination of business processes that integrate
selected software applications. Clearly, you could combine many alternate processes and software
applications to solve the same essential business problems.

This continues recursively, with the machine being designed as some assembly of sub-
components, based on some component architecture (i.e. its assumed “platform” at this level of
description).

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 26 More information at www.kinetium.com

Independent of variable
human/machine process;
presumed true of this world

Domain Concepts
Essential Model

Includes minimal model of Environment

Machine Specification

Includes minimal model of Environment

Machine Specification

Machine Design

Using specs of sub-components C1, C2
And connects them using Platform spec

Machine Design

Using specs of sub-components C1, C2
And connects them using Platform spec

Specific detailed process; what
Machine is required to do to its
environment

Process Model
Detailed (uses Machine)

C2 Spec
C1 Spec

C2 SpecC2 Spec
C1 SpecC1 Spec

Machine Architecture

Rules constraining design

Machine ArchitectureMachine Architecture

Rules constraining design

RefinementRefinement RefinementRefinement

<<instance>>

Business ArchitectureBusiness Architecture

Rules of business design

<<instance>>

Platform
spec
Platform
spec

Figure 14. Canonical package structure – refinement and architecture style

Dashed arrows are normal package import; dashed arrow with <<instance>> indicates that the
refinement model conforms to the architecture style spec; dashed arrows with solid heads are
refinements, where the refinement model is in a separate package. Note that domain models are
independent of any particular vendor's software or detailed process. Product models (called
Machine spec) are based on some minimal portion of the domain model that they were designed to
address. Your actual business solution will be the result of deploying and integrating selected
products in concert with your particular business processes, to solve your domain problem.

 Model-Driven Architecture and Integration

 Page 27 More information at www.kinetium.com

7 Previously Asked Questions
Here are some questions raised by others who have read this paper, with some answers.

1. This approach described refinement as a kind of 1-to-many relationship between an object
(or, class) and it's "realization" (my term here). The object (class) in the
higher layer is mapped to one, or most likely, more objects (classes)
in the lower layer. The implication is that refinement is the only relationship allowed
between layers of abstraction.

Refinement is many-to-many. It is the primary relationship (between models at different
levels of abstraction) whose purpose is to establish that the realization meets the guarantees
made by the abstraction. It can be as formal or informal as needed.

2. Take, for sake of argument, a distributed automated teller system. At the level of
abstraction of the banking business, there are things like deposits and withdrawls.
Assuming that deposits and withdrawls are represented as "business objects" at the higher
layer of abstraction, one implementation choice at a lower level of abstraction (call it the
distributed communication layer for lack of a better name) is to map both deposits and
withdrawls onto TCP/IP packets. I'd have a hard time calling a TCP/IP packet a
"refinement" of a deposit or a withdrawl. A TCP/IP packet is a completely different concept
in a completely different "domain" (using the Shlaer-Mellor sense of the word).

A good example to make this clearer. As you point out "TCP/IP" is a domain unrelated to
Banking. But lets look more closely at the parts and how they are combined:

package Banking_Biz { ... } // pure business terms

package TCP_IP { ... } // pure technology terms

package Distributed_Banking_On_IP {
 import Banking_Biz; import TCP_IP; do mapping.
}

package Design_Review_Package {
 import Distributed_Banking_On_IP;
 import Banking_Biz;
 assert Distributed_Banking_On_IP refines Banking_Biz (with models etc.)
}

Now, if you have full confidence in your mapping of deposits to TCP/IP (e.g. you have
mapped oodles of other stuff to TCP/IP packets, tested it up the wazoo, satisfied yourself
that the <X> � TCP<X> mapping is correct for any <X>, etc.) then you would not bother
to say any more about this particular refinement; you have said all you need to in the
mapping algorithm just once in the shared architectural style, and are confident it is right.
In any case, a refinement mapping could just say "Because Joe says it's good" (seriously).

3. Certainly, deposits & withdrawls are mapped on to TCP/IP packets, but the mapping is not
one of refinement in the normal sense of the word.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 28 More information at www.kinetium.com

If I hand mapped deposit�TCP and withdraw�TCP, differently from each other and from
all the other TCP mappings I've done before (i.e. I did not have a validated architectural
style), then I would check the refinement claim in a design review or with tests.

4. A consequence of this is that the zoom-in/zoom-out approach is not nearly so clean when
the relationship between layers is many-to-many rather than one-to-many.

Refinement is a many-many relationship. Any design is a refinement of any number of
(partial) specs. Any spec has any number of possible designs. For a given design, each
design element will participate in fulfilling more than one part of the spec, and vice versa.
None of this hurts zoom-in or zoom-out at all – you are just zooming along the refinements
that interest you.

There's a nice informal concept map at http://www.catalysis.org/overview/concepts/concept-
map/graphical-concept-map6.htm, and a more detailed discussion at
www.catalysis.org/books/ocf in Section 6.1.

5. Figure 1 seems to imply that the different subject matters are at the same level of
abstraction [which does not seem right].

Figure 1 is pretty informal. More properly, descriptions A and B may be of totally
unrelated "domains" (banking and TCP), on they may overlap with neither being more
abstract than the other (sales and marketing, in which case you have to do 'horizontal
integration'), or they may be related by refinement (banking policies and rules vs. banking
detailed business processes which supposedly conform to the rules, in which case you have
'vertical integration').

6. [Are diagrams with a 1-to-1 mapping to code useful?]

Not as useful as they could be. However, if model relationships (like refinement) were
done well, and architecture style is modeled so it could define model transformations, then
the idea of code generation could be a bit more interesting. For example:

1) relationships between models (e.g. refinement) are themselves 1st class models

2) refinement is modeled (primarily) as a mapping from realization model to
abstraction model (a formalist would want various proof obligations etc.)

3) an architectural style denotes a set of <abstraction, realization, mapping> triplets

4) architectural styles are themselves specified as constraints on that set.

So, in general, the "human" still creates high-level models, defines architectural styles, and
(depending on how generative that style is) creates+generates+checks the realizations and
the refinement mappings.

7. Our existing modeling technologies are not really sufficient to generate complete code. And
I agree that advances can still be made in this area.

Yes. One reason I like the "arch-style-of-refinement" approach above is that it covers the

http://www.catalysis.org/overview/concepts/concept-map/graphical-concept-map6.htm
http://www.catalysis.org/overview/concepts/concept-map/graphical-concept-map6.htm
http://www.catalysis.org/books/ocf

 Model-Driven Architecture and Integration

 Page 29 More information at www.kinetium.com

spectrum quite well, allowing "generation" but supporting more realistic in-betweens too.

8. The concern here is that some elements of the transformation (the "architectural style")
might reasonably be task-specific, not just Java-specific.

An architectural style spec defines which abstraction-realization-mapping triplets conform
to that style. The style specification could refer to elements of all 3 parts (including task-
specific abstractions if absolutely necessary, though careful analysis will often abstract the
task-specifics to some more general characterization). Styles which only refer to certain (if
any) aspects of the abstraction are thus a special case.

9. That is, the transformation of *this* model to a Java-targeted model uses standard Java
styles for classes 1-27, and [some other] specialized transformations for classes 28-31. If
the transformation uses standard Java styles *without exception*, then the supposedly
higher-level model was a Java model in the first place.

An optimizing compiler does this kind of thing by analysis of enough of the context of each
piece of source, all the way through full-program inter-procedural analysis. So, I believe if
enough context is modeled explicitly to capture the discriminator between your classes 1-
27 vs. 28-31, this will not happen. Though that may not always be practical, the concept
holds up. Some styles could be non-trivial to specify. Worst case, a style could even
enumerate exactly what you said above �

This is one of the reasons why 'patterns' should include as part of the pattern any
assumptions about the elements substituted into that pattern and about their context. For the
popular subject-observer pattern, these assumptions would model the presence of some
state attributes A and B of subject and observer, the definition of "change" for A, and some
equivalence relation between A and B which should be satisfied when the 2 state copies are
"in sync". With these pieces of context to name and refer to, you can fully define and apply
the subject-observer pattern.

More to the point, nobody can generate adequate executable code from abstract models in
the general case. Which is why I like this arch-style definition: it admits any degree of
'generativity', including a style which is not capable of generating the realization but is
capable of a Y/N conformance check if any given abstraction + realization + mapping.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 30 More information at www.kinetium.com

8 Glossary
[To be completed]

Package. A container and namespace for model elements, including relations between those
elements.

Composition. The combining or merging of two models to produce a third, based on “joining”
elements in the two models that are supposed to correspond to each other.

Join. An operation that combines the definitions of two model elements into a third.

Framework. A package whose elements include some designated as placeholders. The framework
is applied by importing the package and substituting for those placeholders. A Framework can
define the assumptions it makes about the properties of substituted elements.

Refinement. A relation between a concrete and an abstract model of the same system, where each
abstract element is mapped to by some composition of concrete elements. More formally, you will
have some rules to guarantee that some abstract properties are faithfully maintained in the concrete
version.

Architectural style. A set of constraints on designs. A given design “conforms” to that style, or is
an “instance of” that style, if it satisfies those constraints. A code-generator or compiler is the
ultimate embodiment of a fully determined architectural style, leaving no creativity to the designer;
other architectural styles constrain, but do not fully determine, the design.

 Model-Driven Architecture and Integration

 Page 31 More information at www.kinetium.com

9 Acknowledgements
Ed Barkmeyer, Steve Cook, Sridhar Iyengar, and Steve Tockey have provided useful and
interesting comments on this paper.

 Model-Driven Architecture and Integration

© 2001 Kinetium Page 32 More information at www.kinetium.com

10 References
[ODP] The ODP Reference Model

[Dso99] Desmond Dsouza, “Enterprise Integration”, Software Development, 1999

[Soley00] Richard Soley et al, “Model Driven Architecture”, 2000

[MDA01] Model Driven Architecture - A Technical Perspective, OMG AB paper, 2001

[OOPSLA99] “Precise Component Architectures”, Desmond D’Souza and Ian Maung, 1999

[MDAUML] Papers on MDA and UML http://www.catalysis.org/omg

[Dso98] Desmond Dsouza and Alan Wills, “Objects, Components, and Frameworks with
UML – the Catalysis Approach”, online at http://www.catalysis.org/books/ocf

[Shaw9x] Mary Shaw and David Garlan, Architectures and Connectors

[Shaw96] Mary Shaw et al, “Abstractions and Implementations for Architectural
Connections”, 1996

http://www.catalysis.org/omg
http://www.catalysis.org/books/ocf

	Introduction
	The Integrated Enterprise
	Dimensions of Variation
	Integration

	Modeling the Enterprise
	What is Model-Based Specification, Design, Integration, and Refinement?
	Model-Driven Integration Challenges
	Federation
	Integration
	Shared Architecture Models
	Seamlessness
	Structure of Meta-Models
	Synchronization
	Interoperability – Design and Run-Time Metadata

	Key Concepts and Principles Elaborated
	Composition or ‘Join’ of Model Fragments
	Three Principles
	Refinement – Fractal Zooming In and Out
	Architecture and Viewpoints
	Canonical Package Structures

	Previously Asked Questions
	Glossary
	Acknowledgements
	References

