Piranhas in the Pool,
SQL Performance Killers

Investigating the effects of literal SQL on Oracle performance

John Beresniewicz
Precise Software Solutions

Contents

2Summary

Introduction
2
The Problem: Non-sharable SQL
2
Initialization Parameters
6
Testing the Performance of High-Volume Literal SQL
8
Oracle 8.1.5 Tests
12
Oracle 8.1.6 Tests
15
Analysis of 8.1.6 Results
17
Conclusion
18
Acknowledgements
19
Appendix
20

Summary

This paper investigates the effects of non-sharable SQL on Oracle performance and presents quantitative results of controlled testing of the issue. Oracle shared pool and library cache internals are discussed, as well as DBA strategies for managing performance of high-volume non-sharable SQL. The new 8.1.6 CURSOR_SHARING parameter is also tested for its effectiveness at solving these issues.

Introduction

The Oracle shared pool is a highly sophisticated mechanism designed to improve performance generally through the sharing of SQL statements, stored PL/SQL and other objects among users. The shared pool’s library cache is designed to conserve both CPU and memory resources by avoiding redundant parsing, optimization, and memory allocation steps for commonly executed SQL. These efficiencies are based on storing parsing and optimization results in complex data structures for subsequent reuse by identical SQL.

Unfortunately, it is also possible for application SQL to be particularly troublesome for the shared pool to manage. The very mechanisms designed to improve performance for sharable SQL introduce additional overhead when SQL is non-sharable, and in sufficient volume such non-sharable SQL can severely compromise database performance.

The Problem: Non-sharable SQL

The Oracle shared pool was first created in Oracle v7 to improve application performance by creating and managing sharable data structures to hold execution information for SQL and PL/SQL (10). OLTP applications in particular are characterized by embedded SQL that is essentially identical for all users and thus executed by Oracle many times. The efficiencies of sharing execution information accrue in both memory and CPU: less memory required for a single shared copy of execution information and less CPU consumed developing execution information (parsing and optimizing) once vs. many times.

The Oracle library cache is the shared pool component responsible for managing the shared execution data structures for SQL and PL/SQL (as well as other objects).

Literal SQL vs. Bind Variables

Consider a generic OLTP application in which data is inserted into and often queried essentially one row at a time. The application may issue statements resembling the following:

INSERT INTO Emp (empID, Name, MgrID) VALUES (123, 'Arlene', 123);

INSERT INTO Emp (empID, Name, MgrID) VALUES (456, 'John B', 123);

SELECT Name, MgrID FROM Emp WHERE empID = 123;

SELECT Name, MgrID FROM Emp WHERE empID = 456;

There are clearly similarities between statements: each of the INSERTs is inserting a single row into the database and each of the SELECTs is querying a row. We would expect Oracle to develop identical execution plans for the two INSERTs and likewise for the SELECTs. The statements differ, however, in specific column values that are referenced in the statements and these values appear as numeric and character literals in the statements themselves. We refer to such SQL statements as "literal SQL".

Oracle provides application developers an alternative method to literal SQL through which the same SQL statement can be used multiple times, referencing different specific column values each time. The technique involves the use of placeholders called "bind variables" in the SQL statements themselves. Bind variable versions of the above SQL would resemble the following:

INSERT INTO Emp (empID, Name, MgrID) VALUES (:bv1, :bv2, :bv3);

SELECT Name, MgrID FROM Emp WHERE empID = :bv1;

Prior to each statement execution specific values are attached, or bound, to the placeholder variables so that the statements will reference the correct data. The bind variable SQL exhibits a notational efficiency in that a single textual representation of each statement suffices for all specific variable combinations, whereas each literal SQL statement is textually different from its logical clones.

SQL Processing

When an SQL statement is received by Oracle a number of steps take place before actual execution. The specific steps depend on whether a sharable version of the statement is located in the library cache. A general outline of these steps is:

1. Library cache handle (identifier) is computed from text of the statement.

2. Handle is used to check for library cache object (LCO) of a matching statement.

3. If usable library cache object found (cache hit) it is pinned and executed. Done.

If no usable LCO found (cache miss):

4. Call shared pool memory manager to obtain memory.

5. Hard parse and optimize the SQL and create LCO.

6. Pin and execute LCO. Done.

Steps 2 through 6 all involve various latching and pinning activities. In particular, the library cache latches protect a number of activities and the shared pool latch is required to accomplish step 4.

Oracle is designed so that only steps 1,2 and 3 are required when users execute SQL that is identical to previously executed SQL and for which a library cache object can be located. Finding a matching object depends on matching library cache handles. These handles are rapidly computed from the pure text of the statement in step 1, no parsing is done at this point. Similarly, steps 2 and 3 are designed to support rapid and concurrent execution through the use of multiple library cache latches mapped to an array of hash chains.

Steps 4 and 5 are required when no matching library cache object is found, so Oracle creates one for subsequent reuse by the same or other users. In step 4 the shared pool's generic memory manager is tasked to supply chunks of memory to hold the various components of the library cache object. This happens under protection of the single shared pool latch, where free lists of available memory chunks are searched for correctly sized pieces. If sufficient memory chunks cannot be located, unpinned chunks of re-creatable shared pool memory will be LRU flushed to make room. Step 5 involves the development of the library cache object contents required to execute the statement. The SQL is parsed and optimized and various privilege and dependency information is looked up and captured. This step involves considerable code path and can be CPU intensive. In the sense that the library cache is designed to avoid step 5 as much as possible it can be thought of as a kind of CPU cache (as opposed to the buffer cache where data is saved to avoid physical I/O).

The Literal SQL Problem

We have seen that the library cache is designed to efficiently share and execute SQL that is textually identical to previously executed SQL. With literal SQL, however, the embedded literal values result in textually unique statements and the library cache search will not result in a hit. Thus, steps 1 through 6 will be required for each literal SQL statement, including the expensive shared pool memory allocation, parsing and optimization steps. For literal SQL the code path overhead of the library cache is purely that, overhead: no savings of CPU or memory are realized.

When the volume of literal SQL is small, the extra CPU cycles and memory are usually not enough to impact performance. However, when applications rapidly generate large volumes of literal SQL, additional overhead can be incurred as follows:

· Additional pressure on library cache latches.

· Fragmentation of shared pool free memory causes longer free list searches, increasing contention for shared pool latch.

· Significant CPU consumption due to extra parsing, optimization, and latch spinning.

Thus, we see that the very mechanisms designed to improve OLTP performance and scalability are effectively compromised and become a performance drag when presented with high volumes of literal SQL. An insidious aspect of the problem is that it often goes overlooked or undetected during application development and testing, surfacing only after production deployment under full transaction loads. Of course, this is the worst possible scenario for a business as repairing an application after deployment is the most costly and risky time to do so.

Oracle 8.1.6 introduced a new initialization parameter named CURSOR_SHARING intended to provide the DBA with a “silver bullet” for the literal SQL problem. This parameter can be set to force Oracle to parse literals out of the SQL in step 1, replacing it with a bind variable version of the statement. The bind versions will compute identical library cache handles and locate a sharable LCO in step 2.

Where does it come from?

Since the shared pool and library cache have been part of Oracle since version 7, it is fair to ask why this problem is still a concern today? My sense is that traditional client-server tools, applications and developers have for the most part adopted the widespread use of bind variables. Today, however, we are confronted with a new computing paradigm and a plethora of new tools and languages to support it: the world wide web.

Applications written for the web (using Visual Basic, Java, etc.) often dynamically generate SQL in response to click-streams using literal values scraped from browser HTML pages. The result is literal, non-sharable SQL. In addition, these web applications have an essentially limitless potential user community and thus are capable of generating large volumes of literal SQL.

Although I cannot prove the above theory beyond the several cases I know of, anecdotal evidence suggests that applications with literal SQL problems became much more common during 1999. Ask yourself what happened in 1999 that could cause a tidal shift in application characteristics and there is only one logical answer: the web.

Performance Effects

Oracle performance can be severely compromised by large volumes of literal SQL. Some of the symptoms that may be noticed are:

· System is CPU bound and exhibits an insatiable appetite for CPU.

· System appears to periodically “hang” after some period of normal operation.

· Latch contention on shared pool and library cache latches.

· Increasing the shared pool size delays the problem but it re-occurs more severely.

Identifying the Problem

An Oracle instance suffering from too much literal SQL will likely exhibit some of the symptoms above. There are several investigations the DBA can use to help confirm that this is indeed happening in the instance.

Library Cache Hit Ratio

The library cache hit ratio should be very high (98%) when SQL is being shared and will remain low regardless of shared pool sizing adjustments when SQL is chronically non-sharable. Use the following query to determine the hit ratios by namespace in the library cache.

SELECT namespace

 ,(100*gethitratio) hit_ratio

 FROM v$librarycache;

The “SQL AREA” namespace will be the one affected by literal SQL.

SQL Parse-to- Execute Ratio

The following query displays the percentage of SQL executed that did not incur an expensive hard parse. Literal SQL will always be fully parsed, so a low percentage may indicate a literal SQL or other SQL sharing problem.

SELECT 100 * (1 - A.hard_parses/B.executions) noparse_ratio

 FROM

 (select value hard_parses

 from v$sysstat

 where name = 'parse count (hard)') A

 ,(select value executions

 from v$sysstat

 where name = 'execute count') B;
Again, when this ratio is high Oracle is sparing CPU cycles by avoiding expensive parsing and when low there may be a literal SQL problem.

Latch Free Waiters

A telltale sign that the instance is suffering library cache and shared pool problems is active latch contention with sessions waiting on the “latch free” wait event. The following query will select all current sessions waiting for either the shared pool or library cache latches.

SELECT sid, event, name latch

 FROM v$session_wait w

 ,v$latch l

 WHERE w.event = 'latch free'

 AND l.latch# = w.p2

 AND l.name IN (‘shared pool’,’library cache’);

When this query selects more than 5-10% of total sessions there is likely very serious performance degradation taking place and literal SQL may be the culprit.

Finding Literal SQL

We can attempt to locate literal SQL in the V$SQL fixed view by grouping and counting statements that are identical up to a certain point based on the observation that most literal SQL becomes textually distinct toward the end of the statement (e.g. in the WHERE clause). The following query returns SQL statements having more than 10 statements that textually match on leading substring.

SELECT S.sql_text

 FROM v$sql S

 ,(select substr(sql_text,1,&&size) sqltext

 ,count(*)

 from v$sql

 group by substr(sql_text,1,&&size)

 having count(*) > 10

) D

 WHERE substr(S.sql_text,1,&&size) = D.sqltext;

The SQL*Plus substitution variable &&size can be adjusted to vary the text length used to match statements, as can the value 10 used to filter by level of duplication. Note that this query is expensive and should not be executed frequently on production systems.

Initialization Parameters

The following Oracle initialization parameters have an important impact on library cache and shared pool performance.

SHARED_POOL_SIZE

Total size of the shared pool. This parameter is most often adjusted in response to poor library cache hits-to-gets or reloads-to-pins ratios. In fact, many Oracle instances are probably configured with SHARED_POOL_SIZE set too large when application SQL is not highly sharable. Optimally, this setting should be large enough to retain all the reusable library cache objects plus enough to accommodate the maximum total of concurrent non-sharable object sizes.

_KGL_BUCKET_COUNT

This parameter is an index that can be used to set the initial size of the library cache’s hash bucket array to a prime number. The array is automatically resized dynamically by Oracle in response to demand for more library cache objects, however this resizing operation can negatively impact performance while it takes place (10). This performance interruption can be avoided by setting _KGL_BUCKET_COUNT in advance. The following table (2) shows the size of the hash bucket array corresponding to _KGL_BUCKET_COUNT values.

_kgl_bucket_count
Hash Buckets

0
509

1
1021

2
2039

3
4093

4
8191

5
16381

6
32749

7
65521

8
131071

Table 1: Hash buckets for _kgl_bucket_count index values

An additional advantage of setting this parameter is that the hash bucket array size will remain a prime number when resizing is avoided. According to Steve Adams (2) the resizing operation simply doubles the current size of the array which will result in non-prime array sizes. Library cache handles are assigned to hash buckets using a simple modulo hash function (10) that works best when applied using primes.

Steve Adams supplies a nice script called KGL_BUCKET_COUNT.SQL that can be used to determine an appropriate setting for this index. Run the script after a normal production transaction load has developed on the instance. See (3) to obtain this script.

_KGL_LATCH_COUNT

The number of child library cache latches, each latch serializes access to a group of the hash buckets determined by simple modulo function (10) as follows:

latch# = (bucket#(object handle) MOD _kgl_latch_count)

As always when modulo hashing is involved, prime numbers provide the best assurance of an even distribution of assignments. Therefore it is probably best if _KGL_LATCH_COUNT is a prime number, i.e. if the current setting is 4 then perhaps 3 or 5 are better choices. Note also that on single-CPU systems there is no gain from setting this value away from the default of 0 (one library cache latch and no child latches).

CURSOR_SHARING

CURSOR_SHARING is a new initialization parameter in Oracle 8.1.6 that is designed to help manage the kinds of problems with non-sharable SQL investigated in this paper. CURSOR_SHARING can take the following values:

· EXACT = Library cache object matching based on exact SQL (or PL/SQL) text match as in pre-8.1.6 Oracle.

· FORCE = Oracle automatically substitutes bind variables to replace literals in SQL statements before library cache object matching takes place, causing increased sharing of literal SQL.

When CURSOR_SHARING is set to FORCE Oracle adds an extra layer of parsing that identifies statements as equivalent if they differ only in the values of literals, hashing them to identical library cache objects. We will see that under the right circumstances this setting can help solve the performance problems of literal SQL. However, not all applications will benefit from forced cursor sharing. Please see (9) for a discussion of the appropriate use of this new initialization parameter.

Testing the Performance of High-Volume Literal SQL

The problem of high-volume literal SQL and the explanation provided above are all well and good, however I became interested in demonstrating and quantifying these issues under controlled circumstances. Anecdotal evidence suggests that a number of DBAs have been wrestling with this issue in relation to specific applications they are charged with supporting. I wanted to implement a generic test environment in which the problem could be replicated and studied. This experimental and quantitative approach had the following objectives:

· Demonstrate that the problem is generic and not application-specific.

· Quantify the severity of the problem.

· Corroborate the explanation of the problem's root causes.

· Investigate the effectiveness of different strategies for managing the problem.

Testing Requirements

The test environment had to satisfy a number of requirements to meet these objectives. Some of the most important are discussed below.

Literal and non-literal SQL

The tests must measure performance of both literal and non-literal versions of the SQL for comparison purposes. The non-literal SQL should use bind variables and bind/execute the same variable values as used for the literal SQL.

Reproducible Results

The test environment should be completely controlled by and dedicated to the testing process. There should be no user SQL activity other than the test SQL. Multiple test runs using the same parameters should yield close to identical results.

Adjustable Execution rates

The rate at which SQL is generated and issued to Oracle should be adjustable so that performance under different transaction volumes can be studied.

Multi-user simulation

Since latch contention is a major symptom of the problem under investigation, multiple user sessions must be simulated in order to induce and study this contention.

NDS or DBMS_SQL

Oracle8 provides two methods for dynamically generating and submitting SQL using PL/SQL, and there may be performance differences between them. Therefore, the tests should allow for SQL generation using either of these mechanisms.

The SQLSlammer Procedure

I developed a PL/SQL package called LibC with routines to facilitate the generation of controllable parse rates of literal and non-literal SQL. The core component of this package is a procedure called SQLSlammer, the specification of which is listed below:

/*

|| ---

|| master SQL slammer routine

|| ---

*/

PROCEDURE SQLslammer

 (stmts_per_slam_IN IN POSITIVE

 ,total_slams_IN IN POSITIVE

 ,slam_sleeptime_IN IN NUMBER

 ,stmt_size_IN IN POSITIVE

 ,TFuse_rand_comment_IN IN BOOLEAN := TRUE

 ,TFuse_bindvars_IN IN BOOLEAN := FALSE

 ,TFuse_NDS_IN IN BOOLEAN := TRUE

 ,rand_seed_IN IN INTEGER := rand_seed

);

Listing 1: SQLSlammer procedure specification.

The parameters for SQLSlammer can be used to control the volume and kind of SQL that is generated, as well as the method used to generate the SQL. The routine uses a pseudo-random number generator to create random-like but repeatable tests. An explanation of each of the parameters follows.

stmts_per_slam_IN

The procedure generates batches of SQL statements and each batch is called a "slam". This parameter controls the number of statements in each batch.

total_slams_IN

The procedure loops until this many batches have been processed.

slam_sleeptime_IN

The procedure will "sleep" between batches for this many seconds. Adjustable sleep times are necessary to better simulate user-generated SQL where there is latency between statements.

stmt_size_IN

The procedure will pad the statement out to this length using an embedded comment, allowing investigation of the impact of larger and smaller statements on the shared pool.

TFuse_rand_comment_IN

The statement will be padded with a randomized comment, making it unique.

TFuse_bindvars_IN

Boolean that when TRUE causes the procedure to generate statements using bind variables in the WHERE clause, otherwise the statements are literal SQL and effectively unique.

TFuse_NDS_IN

Boolean that when TRUE causes the procedure to generate SQL using Native Dynamic SQL (NDS), otherwise the DBMS_SQL built-in package is used.

rand_seed_IN

A seed for the pseudo-random number generator used to make the literal SQL unique.

Test SQL

The SQL generated by SQLSlammer is extremely simple, purposefully so. I did not want the statement to be particularly difficult to parse or optimize, nor to require significant buffer cache resources or the potential to induce physical disk I/O. The objective was to isolate the stress on Oracle to the library cache and shared pool memory management mechanisms as much as possible.

Bind variable version

SELECT /* comment: $$$$$ */ "DUMMY" FROM dual WHERE dummy = :HV;

Literal SQL version

SELECT /* comment: $$$$$ */ "DUMMY" FROM dual WHERE dummy = ‘12345’;

The pseudo-random number generator that produced values for the literal had a cycle length of over 1 million values.

Test Script

A critical requirement of the testing framework was to simulate multiple users, as latch contention was one of the main issues under investigation. I enlisted the Oracle job queue to help meet this requirement and devised a SQL*Plus script that does the following:

· Shutdown and restart Oracle to pick up any initialization parameter changes and begin each test identically.

· Disable the Oracle job queue background processes.

· Submit a number of identically configured SQLSlammer jobs to the Oracle job queue. SQL*Plus variables are defined to hold SQLSLammer parameter values and simplify test configuration changes.

· Collect before test performance metrics.

· Enable enough job queue processes to run all the jobs simultaneously.

· Execute an identical SQLSlammer procedure in the foreground and measure elapsed time.

· Collect after test performance metrics.

This testing framework allowed for a controllable number of identical processes to be initiated each generating the same workload in the background as done by the foreground process. A subtle yet critical element was that each of the SQLSlammer jobs was forced to generate its own stream of literal SQL by initializing the random number generator with the job number.

It was helpful that in Oracle8 the instance can be stopped and restarted from SQL*Plus and also that both JOB_QUEUE_PROCESSES and CURSOR_SHARING can be set using the ALTER SYSTEM command. This allowed the entire test to be controlled from a single SQL*Plus script. The actual test script is listed in the Appendix.

Performance Metrics

The test script captures a number of relevant performance data points before and after each test run. Some of the more important metrics captured are noted below.

elapsed time

The elapsed time in seconds of the foreground run. The symmetric nature of the transaction load across all sessions in a test makes this a good measure of overall system response time.

latch free wait time

The total time waited (in seconds) on the latch free wait event across all sessions during the test run.

latch impact

A metric proposed by Steve Adams in (1) to estimate the "relative impact of latch sleeps on overall performance". The experimental procedure focussed on the impact of both library cache and shared pool latches.

latch sleep rate

The ratio of latch sleeps to latch gets indicating the amount of contention for the latch (1). The sleep rate of the library cache and shared pool latches was monitored.

flushed chunks, pins and releases

Several measures of shared pool LRU list activity as discussed in (1). Pinned chunks are removed from the list and released chunks are added to the MRU end of the list. Chunk flushes take place when new library cache objects cannot allocate sufficient space from the free lists and must age out chunks to make room.

executions

Total number of SQL statements executed during the test as reported by V$SYSSTAT.

parse count (hard)

Total number of hard parses performed during the test as reported by V$SYSSTAT. Hard parses involve creation of a new library cache object for the SQL or PL/SQL.

CPU used

Total CPU consumption by all Oracle processes during the test as reported by V$SYSSTAT.

parse time CPU

Total CPU consumed parsing by all Oracle processes during the test as reported by V$SYSSTAT.

APT Scripts

Many of the above performance metrics were collected using APT scripts supplied by Steve Adams on his web site (3). In particular, the following scripts proved very useful:

· kgl_bucket_count.sql

· shared_pool_free_lists.sql

· shared_pool_lru_stats.sql

· latch_sleeps.sql

· resource_waits.sql

Experienced DBAs with difficult performance tuning issues are well advised to pay an occasional visit to this site for the latest tips and techniques from Mr. Adams.

Oracle 8.1.5 Tests

The first series of tests were conducted on an Oracle 8.1.5 database running under Windows NT. The testing objectives were as follows:

· Confirm and quantify the inverse relationship between shared pool size and performance under severe pressure from literal SQL.

· Verify that latch contention for shared pool and library cache latches are involved in the performance degradation of larger shared pools.

· Investigate literal SQL performance differences between using DBMS_SQL and Native Dynamic SQL.

· Quantify the scalability differences between applications using literal SQL vs. bind variables.

Shared Pool Size and Performance

On the surface, it is counter-intuitive that under pressure from large volumes of literal SQL Oracle performance can degrade as the shared pool size is increased. Normally more memory is better in all things computer related, so why should this be different? The explanation is that memory usually assists performance by eliminating physical disk access. However, in the case of the shared pool and literal SQL an inverted CPU-memory tradeoff develops where more memory actually results in larger data structures to manage with more management overhead due to the non-sharing of library cache objects. This overhead is CPU intensive, so with enough SQL pressure the system becomes CPU bound and performance suffers drastically.

One of the main purposes of this experimental investigation was to quantitatively verify this unusual phenomenon under controlled conditions. Certainly there is plenty of anecdotal evidence from DBAs that this inverse relationship between memory and performance exists for some applications, but others without these problems may remain skeptical in the absence of hard facts.

The first series of tests was simply to record response time variations under pressure from a fixed transaction volume of literal SQL as the shared pool size was progressively increased. Separate test runs using Native Dynamic SQL (NDS) and the DBMS_SQL built-in package were made to evaluate any performance differences between these methods of dynamically generating SQL.

The following figure shows the results of this test series.

[image: image1.wmf]178

184

193

216

223

202

215

229

242

252

150

200

250

300

10

20

30

40

50

shared pool size (MB)

elapsed time secs

NDS

DBMS_SQL

Figure 1: Performance of literal SQL using NDS and DBMS_SQL vs. shared pool size.

Both DBMS_SQL and NDS showed significant degradation in response time performance as the shared pool size was increased from 10 to 50 megabytes (25% and 31% worse respectively).

Also, NDS consistently outperformed DBMS_SQL for dynamic SQL processing. Probably this is because of the additional latching and pinning overhead associated with the package-based DBMS_SQL implementation. This result is good news for developers as NDS is also much easier to use.

Shared Pool Size and Latch Impact

In addition to measuring performance, metrics on the shared pool and library cache latches were collected to help confirm the explanation that much of the performance degradation of larger shared pools is due to increased contention for these latches and in particular the single shared pool latch.

The following figure illustrates that increasing shared pool size can exacerbate latching problems under high parse rates of literal SQL.

[image: image2.wmf]0

2000

4000

6000

8000

10000

10

20

30

40

50

shared pool size (MB)

latch impact

library cache

shared pool

Figure 2:Relationship of shared pool size to latching problems under high literal SQL parse rates.

These results are consistent with the explanation in (1) that rapid escalation of shared pool latch contention is due to longer free list searches under the latch resulting from an increased volume of small free chunks in the pool.

Scalability Testing

System scalability is a big concern these days, especially for web-based applications where the potential (and hoped for) user community is essentially limitless. One symptom of the literal SQL problem is that it can severely throttle application scalability. This is primarily due to the great appetite for CPU cycles exhibited by high-volume literal SQL applications. Once the system becomes CPU bound, additional transactions will bog down response time.

The following chart displays the relationship of response time to transaction volume under Oracle 8.1.5 for transactions using both literal SQL and bind variables.

[image: image3.wmf]0

20

40

60

80

100

120

2

3

4

5

6

7

8

9

10

transaction volume

elapsed time (secs)

literals

bind vars

Figure 3: Scalability of literal SQL vs. bind variables.

Here we can see that both the literal and bind variable SQL showed some scalability under increased transaction volume. The literal SQL showed relatively constant response time up to three transaction volume units whereas the bind variable SQL did not begin degrading until five volume units, after which there was linear degradation in performance for increased volume. Thus, the bind variable implementation scaled to more than twice the transaction volume as the literal SQL. The eventual linear degradation in performance was also less severe in the case of bind variables. This also is an indication of much better scalability properties: the system can sustain a much higher transaction volume for a given response time tolerance.

Oracle 8.1.6 Tests

In order to test the new CURSOR_SHARING system parameter it was necessary to upgrade the test environment to version 8.1.6 of Oracle. The entire 8.1.5 test suite was not re-executed, however some comparison runs were made and interesting differences noted between the versions.

8.1.6 Test Configurations

The testing regimen consisted of running 5 different SQLSlammer configurations against an 8.1.6 database on Windows NT. The following initialization parameter settings were common across all the tests:

SHARED_POOL_SIZE = 15M

_KGL_BUCKET_COUNT = 4

_KGL_LATCH_COUNT = 0

The shared pool was modestly sized but not oversized so as to avoid severely stressing the shared pool for the literal SQL runs. The KGL bucket count was fixed in advance to avoid incurring performance bumps due to hash bucket resizing. The test machine was a single-CPU Pentium so multiple KGL latches would not be helpful (this was confirmed by some preliminary testing).

The following table shows the SQLSlammer parameter settings for the five test configurations. The transaction rate and number of users were the same for all tests while the variations were in the use of CURSOR_SHARING, bind variables, and Native Dynamic SQL or DBMS_SQL.

Test #
BINDS?
NDS?
CURSOR SHARING
JOBS (USERS)
STMTS
SLAMS
SLEEP

SECS

0
FALSE
FALSE
EXACT
10
5
1000
.02

1
FALSE
TRUE
EXACT
10
5
1000
.02

2
TRUE
TRUE
EXACT
10
5
1000
.02

3
FALSE
TRUE
FORCE
10
5
1000
.02

4
FALSE
FALSE
FORCE
10
5
1000
.02

Table 2: 8.1.6 SQLSlammer test configurations

The transaction volume was sufficient to cause the system to become CPU-bound during each of the tests, so the results represent relative performance under duress.

Finally, an additional test not noted in the table was executed to compare performance of the shared pool under stress from literal SQL when the pool is oversized. For this test, the shared pool was sized at 50M and the same SQLSlammer parameter values used as in the 8.1.5 testing.

8.1.6 Test Results

The test suite certainly produced a lot of interesting data to consider. There were significant differences between the tests in a number of key performance indicators. The following table summarizes the 8.1.6 test results.

TEST 0
TEST 1
TEST 2
TEST 3
TEST 4

elapsed time (secs)
121
100
51
45
60

latch free wait time (secs)
222.3
183.2
24.6
9.7
25.4

library cache latch impact
5,222
4,244
1609
590
801

library cache latch sleep rate
0.28%
0.24%
0.10%
0.09%
0.12%

shared pool latch impact
1,299
1,418
0
0
0

shared pool latch sleep rate
0.07%
0.08%
0.00%
0.00%
0.00%

flushed chunks
150,912
144,904
0
0
0

pins and releases
742,949
736,368
100,215
37,203
23,651

lib cache load lock wait time
0
62.1
0
0
0

executions
52,920
53,077
52,709
52,665
52,708

parse count (hard)
50,242
50,274
195
189
194

CPU used
230.3
194.5
103.9
91.7
121.4

parse time CPU
58.5
59.8
9.1
12.1
11.8

Table 3: 8.1.6 test results

Analysis of 8.1.6 Results

The 8.1.6 test results confirm several conclusions drawn from the 8.1.5 testing and provide quite definitive proof of the value of CURSOR_SHARING. In addition, some interesting new questions are raised by some unexpected observations.

Effect of Bind Variables

The advantage of using bind variables rather than literal SQL is observed by comparing Test 1 and Test 2 results:

· Test 2 elapsed time improved 100% over Test 1.

· Test 2 library cache latch impact was much reduced vs. Test 1.

· Test 2 had no shared pool latch impact vs. significant impact for Test 1.

· Test 1 had many more shared pool pins and chunk flushes.

· Test 1 used more CPU for parsing and overall.

The use of bind variables (resulting in identical SQL) creates many fewer library cache objects and rapid hashing to the matching object. The library cache latch is thus released more quickly, reducing the latching impact of the library cache latch.

Increased sharing of library cache objects reduced the demand for shared pool memory allocations to the point that contention for this latch was eliminated by the use of bind variables. The negligible pressure on the shared pool is reflected in the fact that no chunk flushing was induced in Test 2.

As expected, CPU utilization considerably reduced through the use of bind variables, confirming the original design intent of the library cache.

Effect of CURSOR_SHARING

A primary purpose of the 8.1.6 testing was to assess the impact the new CURSOR_SHARING system parameter and its potential for helping DBAs manage ill-behaved applications with high parse rates of literal SQL. Comparing Test 1 to Test 3 and also Test 0 to Test 4 serves this goal.

Comparing these Test results, CURSOR_SHARING exhibits advantages similar to those obtained using bind variables in Test 2:

· Reduced library cache impact.

· Negligible shared pool activity.

· Reduced CPU demands.

In fact, Test 3 produced the best elapsed time of all tests in spite of the fact that all the SQL was literal. Thus, it is clear that CURSOR_SHARING can be used to greatly enhance performance of applications that produce high volume literal SQL and thus is a great advantage for the DBA saddled with such applications.

CURSOR_SHARING vs. Bind Variables

Comparing Test 2 and Test 3 reveals that CURSOR_SHARING = FORCE showed significantly better performance than bind variables in both elapsed time and reduced library cache latching impact. This surprising result deserves further investigation to produce an adequate explanation. Library cache latch impact was significantly reduced as well as shared pool pins and releases. Parsing CPU time increased some but overall CPU was reduced. Perhaps the additional parsing involved in forced cursor sharing also enables increased sharing of shared pool memory heaps.

Native Dynamic SQL vs. DBMS_SQL

The tests also allow some comparison of Native Dynamic SQL (NDS) vs. the DBMS_SQL built-in package to implement dynamic SQL processing. Under both exact (Test 0 vs. Test 1) and forced (test 3 vs. Test 4) cursor sharing, NDS significantly outperformed DBMS_SQL. This result is the same as that observed under the 8.1.5 testing discussed above.

Latch Impact Improvements

A surprise result of the 8.1.6 investigation was the observation that shared pool and library cache latching are significantly reduced in impact over 8.1.5 when the shared pool is oversized and literal SQL is parsed in volume. The table below shows comparative results for a 50MB shared pool using DBMS_SQL to generate literal SQL with CURSOR_SHARING = EXACT.

8.1.5 Result
8.1.6 Result

library cache latch sleep rate
0.17%
0.09%

shared pool latch sleep rate
0.24%
0.05%

latch free wait time (secs)
162.2
53.3

elapsed time (secs)
252
195

Table 4: Latch impact of literal SQL in oversized shared pool under 8.1.5 and 8.1.6

Clearly there have been improvements in the 8.1.6 code in addition to those implemented for forced cursor sharing. Reliable sources (2) indicate that library cache latching modifications have been made in 8.1.6 as well as shared pool free list management improvements.

Conclusion

The library cache and shared pool memory manager are integral components of the Oracle server designed to create efficiencies and thereby improve performance through the caching and reuse of CPU-intensive processing. Applications characterized by high volumes of literal (non-sharable) SQL can compromise these efficiencies, induce additional overhead and degrade performance. Experimental results confirm that this is the case and support the explanation that contention for the shared pool and library cache latches plays a major role in this problem.

The DBA should not assume poor library cache performance is curable by increasing the shared pool size; experimental results confirm anecdotal reports that this can exacerbate problems caused by non-sharable SQL. Rather, developers should be educated about the use of bind variables and these techniques should be brought to bear on the new generation of web applications.

Finally, the new CURSOR_SHARING initialization parameter introduced in Oracle 8.1.6 addresses and corrects the performance impact of literal SQL by converting it to bind variable format before library cache object matching is undertaken. Results show that this new feature does indeed correct for the performance penalty of literal SQL and promises to be a “silver bullet” for DBAs saddled with pathologically non-sharable SQL. Production 8.1.5 instances supporting web applications generating dynamic SQL should be expeditiously upgraded to take advantage of this feature.

References

1 Adams, Steve: Oracle8i Internal Services, O'Reilly & Associates, 1999.

2 Adams, Steve: personal correspondence.

3 Adams, Steve: www.ixora.com.au/, Ixora web site.

4 Ault, Michael: Diving Into the Shared Pool, Oracle Internals, 1999.

5 Feuerstein, Steven: Guide to Oracle8i Features, O'Reilly & Associates, 1999.

6 Feuerstein, Dye and Beresniewicz: Oracle Built-in Packages, O'Reilly & Associates, 1998.

7 Oracle Corporation: Main issues affecting the Shared Pool on Oracle 7 and 8, Bulletin ID 62143.1, Oracle Metalink (support.oracle.com), 1999.

8 Oracle Corporation: Internal Latch Contention, Document ID 107963.963, Oracle Worldwide Customer Support, 1995.

9 Oracle Corporation: Oracle8i Designing and Tuning for Performance, Release 2 (8.1.6), 1999.

10 To, Lawrence and Manalac, Roderick: Shared Pool Internals, Center of Expertise, Oracle Worldwide Customer Support, 1996.

About the Author

John Beresniewicz is technology manager at Precise Software Solutions (www.precise.com). He is one of the principal designers and developers of the Diagnostic Center for Oracle. John has been working with Oracle for over 12 years, primarily as a DBA and PL/SQL developer. He is co-author of the books Oracle Built-in Packages and Oracle PL/SQL Built-ins Pocket Reference (O'Reilly & Associates, 1998,1999) and a member of the IOUG-A University Masters Classes faculty. John is a frequent speaker at Oracle user groups and conferences large and small.

Acknowledgements

This article was originally published in the Oracle Internals newsletter (vol.2, no. 8) and is reprinted with permission of Auerbach Publications (www.auerbach-publications.com) and with special thanks to Don Burleson.

Appendix

Library Cache and Shared Pool Testing Script

The following listing shows the SQL*Plus script used to execute tests and gather performance statistics. Different testing scenarios are achieved by changing values of the test control variables.

rem **

rem * Exercises the library cache and shared pool using

rem * multiple identical SQLslammer procedures running

rem * under the Oracle job queue as well as in foreground.

rem * Gathers performance stats using various scripts,

rem * mostly from Steve Adams (www.ixora.com.au/)

rem **

rem **

rem ** reinitialize by bouncing instance

rem **

connect internal

startup force nomount;

alter database mount;

alter database open;

connect jmb/jmb

rem **

rem ** test control parameters

rem **

DEFINE numjobs = 9

DEFINE lowjob = 100

DEFINE stmts_per_slam = 5

DEFINE total_slams = 1000

DEFINE slam_sleeptime = .02

DEFINE stmt_size = 50

DEFINE TFuse_rand_comment = FALSE

DEFINE TFuse_bindvars = FALSE

DEFINE TFuse_NDS = FALSE

DEFINE CURSOR_SHARING = EXACT

rem **

rem ** initial SQL*Plus settings

rem **

set verify off

set timing off

set serveroutput on size 100000

set numwidth 12

rem **

rem ** disable job queue

rem **

ALTER SYSTEM SET job_queue_processes = 0;

rem **

rem ** remove previous jobs

rem **

DECLARE

 lowjob INTEGER := TO_NUMBER(&&lowjob);

 hijob INTEGER := TO_NUMBER(&&lowjob)+TO_NUMBER(&&numjobs);

BEGIN

 FOR jobrec IN (select job from user_jobs)

 LOOP

 BEGIN

 DBMS_JOB.REMOVE(jobrec.job);

 EXCEPTION

 WHEN OTHERS THEN NULL;

 END;

 END LOOP;

END;

/

rem **

rem ** set NLS date format for implicit date conversion

rem **

ALTER SESSION SET NLS_DATE_FORMAT='YYYY:MM:DD:HH24:MI:SS';

rem **

rem ** submit jobs

rem **

DECLARE

 lowjob INTEGER := TO_NUMBER(&&lowjob);

 hijob INTEGER := TO_NUMBER(&&lowjob)+TO_NUMBER(&&numjobs);

BEGIN

 FOR jobno IN lowjob..hijob

 LOOP

 DBMS_JOB.ISUBMIT

 (job => jobno

 ,what => 'BEGIN libC.SQLslammer'||

 ' (stmts_per_slam_IN => &&stmts_per_slam'||

 ' ,total_slams_IN => &&total_slams'||

 ' ,slam_sleeptime_IN => &&slam_sleeptime'||

 ' ,stmt_size_IN => &&stmt_size'||

 ' ,TFuse_rand_comment_IN => &&TFuse_rand_comment'||

 ' ,TFuse_bindvars_IN => &&TFuse_bindvars'||

 ' ,TFuse_NDS_IN => &&TFuse_NDS'||

 ' ,rand_seed_IN => job'||

 '); END;'

 ,next_date => TO_CHAR(SYSDATE,'YYYY:MM:DD:HH24:MI:SS')

 ,interval => null

);

 END LOOP;

-- modify next_date for low and hi job, will run these in foreground

DBMS_JOB.NEXT_DATE(TO_NUMBER(lowjob),TO_CHAR(SYSDATE+1,'YYYY:MM:DD:HH24:MI:SS'));

--DBMS_JOB.NEXT_DATE(TO_NUMBER(hijob),TO_CHAR(SYSDATE+1,'YYYY:MM:DD:HH24:MI:SS'));

 --

 SYS.DBMS_SHARED_POOL.KEEP('LIBC','P');

 SYS.DBMS_SHARED_POOL.KEEP('SYS.DBMS_SQL','P');

 SYS.DBMS_SHARED_POOL.KEEP('SYS.STANDARD','P');

 SYS.DBMS_SHARED_POOL.KEEP('SYS.DBMS_STANDARD','P');

 SYS.DBMS_SHARED_POOL.KEEP('SYS.DBMS_LOCK','P');

 SYS.DBMS_SHARED_POOL.KEEP('SYS.DBMS_UTILITY','P');

 COMMIT;

END;

/

rem

rem set cursor_sharing

rem

ALTER SYSTEM SET CURSOR_SHARING = &&CURSOR_SHARING;

spool libCrpt.txt

prompt . SQL Slammer test run report

prompt .

prompt . Total SQLslammer jobs: &&numjobs

prompt . Stmts per slam: &&stmts_per_slam

prompt . Total slams: &&total_slams

prompt . Sleeptime between slams: &&slam_sleeptime

prompt . Statement size: &&stmt_size

prompt . Use random comments? &&TFuse_rand_comment

prompt . Use bind vbls? &&TFuse_bindvars

prompt . Use NDS? &&TFuse_NDS

prompt . cursor_sharing? &&CURSOR_SHARING

show sga

col KGL_parm_setting format a40

SELECT name||' : '||value KGL_parm_setting

 FROM sys.all_parms

 WHERE name IN ('_kgl_latch_count','_kgl_bucket_count');

rem **

rem ** gather stats and reports for begin of run

rem **

SELECT name, value

 FROM v$sysstat

 WHERE name IN ('recursive cpu usage'

 ,'CPU used by this session'

 ,'parse time cpu'

 ,'parse time elapsed'

 ,'parse count (total)'

 ,'parse count (hard)'

 ,'execute count'

);

@@SA_shared_pool_free_lists.sql

@@SA_shared_pool_lru_stats.sql

rem **

rem ** enable job queue to start test

rem **

ALTER SYSTEM SET job_queue_processes = &&numjobs;

BEGIN

 DBMS_LOCK.SLEEP(10);

END;

/

col RUN_DATE new_value begin_date

SELECT TO_CHAR(SYSDATE) RUN_DATE

 FROM dual;

set timing on

prompt

prompt Running foreground test...

rem **

rem ** run the low and high jobs in foreground

rem **

DECLARE

 lowjob INTEGER := TO_NUMBER(&&lowjob);

 hijob INTEGER := TO_NUMBER(&&lowjob)+TO_NUMBER(&&numjobs);

BEGIN

 null;

 DBMS_JOB.RUN(lowjob);

 --DBMS_JOB.RUN(hijob);

END;

/

SELECT TO_CHAR(SYSDATE) END_DATE

 ,86400*(SYSDATE - TO_DATE('&&begin_date')) RUN_SECONDS

 FROM dual;

rem **

rem ** gather stats and reports for end of run

rem **

SELECT name, value

 FROM v$sysstat

 WHERE name IN ('recursive cpu usage'

 ,'CPU used by this session'

 ,'parse time cpu'

 ,'parse time elapsed'

 ,'parse count (total)'

 ,'parse count (hard)'

 ,'execute count');

@@SA_kgl_bucket_count.sql

@@SA_shared_pool_free_lists.sql

@@SA_shared_pool_lru_stats.sql

@@SA_latch_sleeps.sql

@@SA_resource_waits.sql

spool off

set timing off

Listing 2: SQL*Plus script to stress test library cache and shared pool

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

� EMBED Excel.Sheet.8 ���

1

[image: image4.wmf]0

20

40

60

80

100

120

2

3

4

5

6

7

8

9

10

transaction volume

elapsed time (secs)

literals

bind vars

[image: image5.wmf]0

2000

4000

6000

8000

10000

10

20

30

40

50

shared pool size (MB)

latch impact

library cache

shared pool

[image: image6.wmf]178

184

193

216

223

202

215

229

242

252

150

200

250

300

10

20

30

40

50

shared pool size (MB)

elapsed time secs

NDS

DBMS_SQL

_1027901697.xls
Chart4

		10		10

		20		20

		30		30

		40		40

		50		50

library cache

shared pool

shared pool size (MB)

latch impact

2748

2621

2941

3679

3331

4172

3987

7519

4319

9111

Sheet1

		

								2		3		4		5		6		7		8		9		10

						literals		31		32		42		54		63		73		85		93		105

						bind vars		20		22		24		25		29		34		39		45		49

								10		20		30		40		50

						library cache		2748		2941		3331		3987		4319

						shared pool		2621		3679		4172		7519		9111

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

bind vars

literal SQL

transaction volume

elapsed time secs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0

		0		0

		0		0

		0		0

		0		0

library cache

shared pool

shared pool size

latch impact

0

0

0

0

0

0

0

0

0

0

Sheet3

		

		

_1027955853.xls
Chart2

		2		2

		3		3

		4		4

		5		5

		6		6

		7		7

		8		8

		9		9

		10		10

literals

bind vars

transaction volume

elapsed time (secs)

31

20

32

22

42

24

54

25

63

29

73

34

85

39

93

45

105

49

Sheet1

		

						2		3		4		5		6		7		8		9		10

				literals		31		32		42		54		63		73		85		93		105

				bind vars		20		22		24		25		29		34		39		45		49

Sheet1

		

literals

bind vars

transaction volume

elapsed time (secs)

Sheet2

		

Sheet3

		

_1027901668.xls
Chart6

		10		10

		20		20

		30		30

		40		40

		50		50

NDS

DBMS_SQL

shared pool size (MB)

elapsed time secs

178

202

184

215

193

229

216

242

223

252

Sheet1

		

								2		3		4		5		6		7		8		9		10

						literals		31		32		42		54		63		73		85		93		105

						bind vars		20		22		24		25		29		34		39		45		49

								10		20		30		40		50

						library cache		2748		2941		3331		3987		4319

						shared pool		2621		3679		4172		7519		9111

										10		20		30		40		50

								NDS		178		184		193		216		223

								DBMS_SQL		202		215		229		242		252

Sheet1

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

		0		0

bind vars

literal SQL

transaction volume

elapsed time secs

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0		0

		0		0

		0		0

		0		0

		0		0

library cache

shared pool

shared pool size

latch impact

0

0

0

0

0

0

0

0

0

0

Sheet3

		0		0

		0		0

		0		0

		0		0

		0		0

NDS

DBMS_SQL

shared pool size (MB)

elapsed time secs

0

0

0

0

0

0

0

0

0

0

		

		

