
Predicting the Performance of 3 Tier systems.

A quick method for performing low precision estimates

Ian Carney

Senior Principal Consultant

Technical Architecture

Oracle Consulting

Dedication

This paper is dedicated to my PhD supervisor John Kay, of the School of Molecular and Medical Biosciences, University of Wales, Cardiff. A good training in experimental technique is never wasted.

Summary

This whitepaper describes a method for producing a quick estimate of the performance of a 3-Tier system. The key features of this method are:

1) Define the business problem, business scenarios, workload and associated data you will be using before you do anything else. Decide on:

· What is the question you are trying to answer, and to what degree of precision you should answer it. A high precision answer requires more time to produce than a low precision one.

· What is included and what is not, e.g. is your test confined to database server, or is a full end to end test required

· What business scenarios make up the workload - e.g. month end order entry.

· What transactions make up the workload - can you simplify by including only the key transactions, or the heavy transactions for example? Are you modelling peak or "normal" workload

· What data will be used, and where you will get it from

· Hardware and software to be used

· Team roles and responsibilities

· Duration and resources required

· Agree all of this with your customer

2) Design the transactions to be used in the test. Specify

· Frequencies of transactions

· Relative Frequencies for each possible call method, if a service can be called in more than one way

· Ensure that correct data is used - no duplicate rows inserted, valid rows queried, all data must meet all constraints (for values and relationships)

3) Use a queuing model to optimise server design. Establish the response times for each service (and each method of calling a service) in the absence of queuing. Calculate a weighted mean response time (the sum of (frequency*response time) divided by the total number of the calls) for each server in your system. (A server is an executable collection of services). Use this and the performance targets together with a queuing model to define a server/queue architecture that meets the performance targets.

4) Use Linear Regression to establish the unit cost of a transaction. Vary the transaction rate for each service, running in isolation, and determine the slope of the regression line. This is the cost of performing one transaction per unit time. Do this for different resource pools (e.g. total CPU utilisation or logical reads)

5) Use a simple arithmetic model to model resource utilisation:

total cost = (c1 * f1) + (c2*f2)…….(cn* fn)

where c1..cn are the unit costs of services produced by regression analysis, and f1..fn are the frequencies of each service/ You can model different business scenarios by changing the service mix and transaction frequencies.

6) Translate the predicted resource utilisation into a risk assessment. Since we are dealing with a low precision estimate, absolute values for resource utilisation can be mis-interpreted. Use the following picture as a guide:

[image: image1.wmf]High Risk

Low Risk

High Utilisation

Low Utilisation

7) Confirm your results and models by running all the transactions in a scenario together at the target frequencies and record resource utilisation. This should approximate your predictions. If not re-visit your models.

8) If any single resource pool is high risk (utilisation approaches 100%) consider an more detailed investigation. This will take more time (and money) to complete, but will give a more precise result. The format of these tests is similar to a conventional stress test or benchmark. It requires much more detailed analysis than that required for this approach.

9) The logical i/o rate may be correlated with CPU utilisation for query only servers. If this is the case, then you can use this as a metric for performance prediction.

Contents

3Dedication

Summary
4
Contents
8
Introduction
10
Basic concepts
11
Precision and risk
11
Regression analysis
12
Ratio modelling
14
Tuxedo and Queues
16
Test data
22
The Method
24
Introduction
24
Phase 1 - Preparatory Phase
25
What is the question and how well do you want in answered
26
What is the workload?
27
Data usage
31
Design Transactions
36
Phase 2 - Server Design
39
Low volume runs
40
Target Response times
42
Analysis of results
42
Model Predictions
51
Phase 3 - Regression Analysis and Ratio Modelling
55
Parameters Measured
56
How many users?
58
Regression Analysis
58
Deliverables from this phase
65
Ratio Modelling
66
Using Logical Read Rates as a Predictor of Performance
78
Phase 4 - Combined Workload and Detailed Investigation
83
Combined workload
83
Detailed Investigation
84
Appendix - Tools used
86
References
89

Introduction

This white paper describes an approach the Transaction Processing Service Line within Oracle Consulting has developed for estimating the resource utilisation of a 3 tier system on the database server. The first section describes some basic concepts that we used in developing this approach, followed by a discussion of the risks and assumptions used.

The second section describes the experimental techniques used to produce performance estimates. The last section describes the tools we used to carry out the investigation

The method arose out of a need to answer to basic questions for a customer who was developing a 3 tier, Oracle*Forms / Tuxedo/ Oracle database based billing system. The customer wanted to know:

· Will the application architecture scale to meet the customer’s throughput requirements within the hardware and software constraints?

· Will it scale to meet future, and indeterminate, requirements
In order to answer these questions we determined the cost of running each Tuxedo service, and then modelled the production workload. We then presented an overall risk assessment, showing the risk that the target server could or could not support the expected workload.

Our approach is a reductionist approach, in which we break down the system into small pieces, and evaluate the behaviour of the pieces in isolation. We then use a model to predict the behaviour of the whole system. Our method does not include the workload generated by applications outside of our test scenarios (batch work for example). This load would need to be factored in if it runs at the same time as the measured workload.

Our approach means that we can model hypothetical workload profiles. This was important for the customer, as the nature of their business is changing due to legislative and market changes.

The planning and design of the tests form a large part of this whitepaper. Time spent defining test data and transactions in advance will mean that the actual process of testing runs more smoothly.

The examples used in the paper illustrate points, and are not derived from actual testing.

Basic concepts

Precision and risk

Shallahamer(1995) discusses various approaches to predicting system capacity and throughput. One of the key concepts in this paper is precision, or more simply "When is enough, enough?". The paper discusses the conflict between precision (how well should you trust the results of a study), time and resources.

The approach in this paper is closest to Shallahamer's Limited Performance Assurance Test. In this class of test, a limited amount of effort is used to produce a low precision result, and to indicate if and where further study is required.

Low precision is neither good nor bad in itself. We are using a low precision estimate to describe the risk that a particular application will not be supported by a given hardware and software environment, early in the life cycle of a project. More detailed, and precise, studies can come later, when more realistic test cases and data are available.

We will predict how much of an available resource will be used by the application. For example, if we predict on the basis of our tests that the total cpu utilisation is 85%, then we will conclude that there is a high risk that the machine cannot support the application load. If we predict total cpu utilisation of 5%, then we will conclude that there is a low risk that the host machine cannot support the application load. We will not make any statements like this:

"We predict that the total CPU requirements for this application will be 44.3%, with an i/o rate of 5563 reads/sec"

We do not have the data to make this kind of statement. We will make a statement like this:

"We predict on the basis of our tests that there is a low risk that the host machine will not have enough cpu capacity to support the application. We predict, however, that there is a high risk that the disk i/o subsystem will not be able to support the application load" based on the test results.

Regression analysis

Regression analysis is a way of looking at the relationship between paired sets of data. In this context, the pairs of data are transaction rate, and the measured value for some resource utilisation, such as total cpu utilisation, at that transaction rate.

Regression analysis takes the data points, and derives the best line through these points. The line is described by the equation:

y = m*x + c

where x is the transaction rate, y is the value for the resource utilisation at this transaction rate. The slope of the line is given by m, and c is the intercept on of the line on the y axis:

[image: image2.wmf]Total CPU Utilisation (%)

Service Calls/minute

Figure 1 - By measuring the cpu utilisation as the service call rate is measured, you can derive the unit cost of a transaction from the slope of the line. You can also extrapolate the line to predict the resource utilisation at a higher transaction rate.

The strength of the relationship between the two sets of data is described by a correlation coefficient. A value of zero for a correlation coefficient implies that there is no relationship between the data sets. As the value of the coefficient tends towards 1 (or -1 for a downwards slope), then the strength of the relationship increases. A value of 1 (or -1) implies perfect correlation.

You should remember that correlation does not mean causation. Simply because two sets of data show a good correlation does not mean that one causes the other. It just means that that the two values are related.

Once you know these parameters, you can use them to predict the value of data. In this paper, we use the slope , equivalent to the unit cost of a transaction, to predict the utilisation of the resource at different transaction rates.

Please refer to the references for two good introductory statistics books which describe these issues in more detail.

Ratio modelling

The ratio modelling technique used in this paper is a based on the summation method of Shallahamer (1995) and the ratio modelling technique of Cook et. al. (1997).

The basic technique is simple. Define the unit cost of the service calls in a test scenario (such as the daily peak in customer order processing). Work out the total cost of all the transactions (unit cost * volume) and add the total costs for each service together to give the overall resource cost. Expressed in an equation:

R = (c1 * n1) + (c2 *n2) ……. (cn * nn)

Where

· R is the overall resource cost

· c is the unit cost of a service call

· n is the expected service call volume.

For example, imagine a simple application made of 5 services, Add Customer, Amend Customer, Delete Customer, Record Order and Issue Invoice. The unit costs of each service were measured using regression analysis:

Service
Unit Cost

(%CPU/call/minute)
Target Volume

(calls/minute)
Total Service Cost

(%CPU)

Add Customer
0.1
25
2.5

Amend Customer
.056
50
2.8

Delete Customer
1.8
0.1
0.18

Record Order
.52
15
7.8

Issue Invoice
.67
10
6.7

Overall Cost
19.98

Table 1 - Unit costs of transactions and their target rates. Multiplying these values gives us the cost of supporting each transaction at the target rate. Adding the total costs for each transaction gives us the overall cost to support the target workload.

The units for cpu utilisation look a little odd. We express cpu utilisation in term of so many percent ("I ran the test and measured cpu utilisation as 44%" for example). We measure transaction rate as a number of transactions per unit time (25 Add Customer transactions per minute, for example). The unit cost of a transaction is expressed as the amount of cpu it takes to support a transaction rate of 1 per minute in this case. The units are therefore %CPU/call/minute.

Tuxedo and Queues

In Tuxedo, a business function is carried out by a service. A service performs a well defined business event, such as record an order, or debit an account. Services are grouped into servers as part of the design process. A server is an executable program which contains several services.

Each server has a queue associated with it. Requests for a service to do something are placed in the queue, and the server will respond to these requests by carrying out the appropriate service. The simplest server/queue structure contains a single server and a single queue. There is a one to one correspondence between the server and the queue:

[image: image3.wmf]Requests

Queue

Server

Responses

Figure 2 - A Single Server Single Queue design

This is known as a Single Server, Single Queue, often abbreviated to SSSQ.

Multiple servers can be associated with a single queue, in a configuration known as Multi-Server Single Queue, abbreviated to MSSQ:

[image: image4.wmf]Requests

Queue

Server

Responses

Server

Server

Figure 3 - An MSSQ design with one queue and three servers

The behaviour of a queue based system as the transaction throughput increases is (to me at least) non-intuitive. The response time stays relatively constant until a threshold value for the request rate (the rate at which service calls are made) reaches a threshold value. After this value, the response time rises exponentially:

[image: image5.wmf]Response Time

Request Rate

Threshold value

Figure 4 - The non-linear response of a queue based system as the request rate increases.

This means that you should aim to keep the transaction rate below the threshold value for each server. You can do this in a Tuxedo environment by changing the number of servers, and the way servers and queues are organised. Determining the shape of this curve, and the threshold value is a key feature of our modelling process.

Increasing the number of servers decreases the load on a single server, and changing the number of servers per queue affects their performance characteristics.

The performance characteristics of each type of queuing structure are different. Very generally, an MSSQ setup will handle higher transaction rates for a given number of servers, but the rise in response time is steeper once the threshold transaction rate is reached. The graph below shows the theoretical behaviour for two server configurations:

[image: image6.wmf]0.000

0.200

0.400

0.600

0.800

1.000

1.200

0

1

2

3

4

5

7

8

9

10

11

12

13

14

15

16

17

18

20

21

throughput

response time

case 1 response time

case 1 requirement

case 2 response time

case 2 requirement

Figure 5 - Theoretical Response Time Graphs for SSSQ (Case 1) and MSSQ (Case 2) as throughput varies. The SSSQ case cannot support more than around 9-10 calls/unit time within the target response time of 1 second. The MSSQ case can support around 16 calls/unit time within the target response time. Both cases had 10 servers, but the MSSQ case was organised as 2 queues, each with 5 servers.

Both have the same number of servers (10), but one is configured as an MSSQ configurations with 2 queues, each with 5 servers, whilst the other was configured as an SSSQ configuration of 10 queues, each with one server. The MSSQ configuration could support a higher transaction rate within the performance targets than the SSSQ configuration.

You should design your Tuxedo configuration to support your target transaction rate before you reach the threshold value. The first stage of the testing process is designed to determine this before the actual work of determining resource consumption is measured. Please refer to Carney, (1998) for more details on queuing theory and server design.

We have used a queuing model to help define the optimal queuing architecture. The use of this model is described in the “Tools” section of this paper.

Test data

The data that you use for the performance testing has an impact on the test results. You need to need data that reflects the production data as closely as possible, both in terms of quantity and in quality.

In term of quantity, ideally you should use as much data as you plan to use in production. The problem with this is that you may not be able to get obtain this amount of data for your tests, or have enough storage capacity to store it. If you don’t use enough data, then you run the risk of:

· using cached data - you never access disks, but simply work with data in memory in the SGA

· the access path to the data is different to that that would be used in the production system. This may be because different indexes are used, or the index structures used are smaller (less levels) than those in the production system

The closer to the production volume that your test data gets, the more representative your results become. You should aim for a

minimum of around 2 to 5% for a large table (greater than 250,000 rows). You may want to increase this for smaller tables to ensure a good distribution of data, and to ensure that you actually access the disk subsystem.

 By quality, we mean data that is similar to the production data in terms of:

· key ranges, both for primary and foreign keys. This is allied to the data volume requirement, in that you must have enough data to ensure a good spread of primary keys (e.g. customer numbers). You also need to have a realistic distribution of foreign keys (such as product classes or status types) so that the distribution

· Correct distribution of parent/child structures. You need to make sure, for example, that the number of order lines per order is similar in your test system to that of the live system

· Conformance to constraint rules, including primary, secondary and check constraints, as well as optionality.

· Other business rules not supported by constraints.

The Method

Introduction

The method that we have designed uses the basic concepts described above to measure and model the performance of 3 tier systems. The method has the following phases:

· Phase 1 - Preparatory Phase - During this phase you define the business scenarios and associated workload to be supported an associated transactions, along with the data to be used and the hardware and software environments.

· Phase 2 - Server Design - In this phase you use the queuing model to optimise the server/queue design in order to support the target workload.

· Phase 3 - Regression Analysis and Ratio Modelling - You use regression analysis and ratio modelling to estimate the resource utilisation for the business scenarios defined in phase 1. This phase is where the actual test runs are carried out.

· Phase 4 - Combined Workload and Detailed Investigation -You confirm the results of the predictive study by running a mixed workload comparable to one of the business scenarios. If any resource is heavily used, you may wish to carry out a more detailed investigation (if you have the time and resources to do this)

We have designed the method so that the outputs of one phase are used by the next phase. You can skip parts of the method if you have the input data for the next. For example, you may know, or make a rough guess (at reduced precision!), for the mean weighted response time for a server. In this case, you could skip the calculation of this item, and could even play "what if" games by varying the number.

The method is applicable to both large and small systems. You are limited by your ability to build a database of the correct size, and by your ability to generate transactions at a high enough rate.

The method is suited to use throughout the project life-cycle. Early in the project life-cycle you will probably be using prototype applications and generated data. Precision will be low. Later on in the life-cycle you may be able to use real applications and real data. In this case precision will be higher.

Phase 1 - Preparatory Phase

In this phase you define the problem that you are going to solve. In order to do this you need to know the following information:

· What is the question?

· How well do you want it answered?

· How much time have we got?
· The workload

· Performance targets

· Data to be used

· Hardware and Software environment

The Aim methodology has a very good collection of document templates for documenting this phase of the project. Refer to the AIM documentation, or methods.us.oracle.com for more information on this.

What is the question and how well do you want in answered

Before starting your testing programme, you need to understand in detail what your customer is expecting from the tests. In order to do this, you need to define and agree the scope of the tests with your customer. The scope should define:

· What is included, for example

· just the database server?

· full end to end system test?

· client performance

· What is not included

· Which scenarios make up the workload.

· What data will we use
· What degree of precision will be produced
· Resource availability and time scales
· Roles and responsibilities
· Hardware and software to be used for the project
If you do this first, before you do anything else, then you and your customer will both understand what is to be done, who will do it and when it is to be done by. This will help avoid any misunderstandings as the tests progress.
This method is designed to answer capacity related questions with a low degree of precision in a short amount of time. If your customer wants high precision answer, then you could still use this method, but you should carry out a more detailed analysis of the workload and supporting data. As in any other form of capacity planning, the more detailed your analysis and representative your test cases, the more reliable your results will be.

What is the workload?

Your customer wants you to estimate the performance of their system at a given workload. You need to specify this in enough detail so that you can simulate it in your models later. Your customer may make a statement along the lines of "I need to be able to support my business application on the new server - will it do it?" Your job is to translate this statement into a list of transactions that make up the target workload.

Workload characterisation is a complex subject, and a full discussion of this is outside the scope of this paper. The AIM methodology has a comprehensive set of techniques and templates (under Performance Testing) that you can use. The Systems Performance Group also have a good set of tools that you can use.

Business Scenarios

The first stage in the process is to describe the business scenarios that you will model. Workload varies with time (Shallahamer, 1996):

Figure 6 - Application load varies with time. In order to be sure of supporting all throughput requirements we should model peak throughput

In the retail industry, for example, there is a peak in business in November and December, related to Christmas buying. A utility customer call centre may experience a peak in calls following a storm that has brought power lines down. If we model peak throughput, then we will sure that we can support any workload.

The fist step in characterising the workload is therefore to define the business scenarios that make up the peak load cases. There may be more than one peak in activity, and may be difficult to decide which is the heaviest hitter. In this case, you may have to define both cases, and use the modeling tools to predict resource utilisation.

Typical business scenario might be:

· The peak in customer call volume following a major storm

· The quarter end peak in order entry

· The daily dispatch routine

Which transactions

Once you have defined the business scenarios, you need to break these down into service calls an associated transaction rates. In the scenario "quarter end order entry" you may have the following transactions:

Transaction
Rate (calls/min)

Query Customer
200

Record New Order
120

Insert Order Line
400

Calculate Price
500

Calculate Discount
500

Item Code Lookup
600

Item Price Check
450

Customer Account Check
60

Update Customer Account
100

Discount Code Lookup
400

Post Order Details to Shipping
125

This transaction mix describes the workload for the parent scenario. You may wish to shorten this list in order to simplify the testing process. You can use either:

· All transactions

· this can be very accurate, but very time consuming, and may be more appropriate during the detailed investigation phase.

· Key transactions

· if key business processes in a scenario are handled, then the business will perform to acceptable levels.

· Heavy transactions

· if heavy processes in a scenario are handled then the business will perform to acceptable levels.

· A mix of key and heavy transactions

· effective if the combination is right, but this approach may take more time to define than you have.
Which choice you make is essentially a judgement call, and may depend on the application code that you have available at the time you carry out the test. In a recent engagement we chose to use only the key transactions because these were available to us in a prototype form.

Data usage

Once the component transactions have been described, then you need to map these against data items. This mapping tells you the basic tables that you must populate in order to support a business scenario. Referential integrity constrains may add tables to this list, to provide key values for reference data (such as price ranges or fault codes for example).

This process is easy if the application system is documented in Designer2000. You can simply read the module data usages to obtain the appropriate tables, and use the data modeling tools to work out which other tables you require for referential integrity. In the worst case, you may have to trawl through source code and the Oracle Data Dictionary to derive this information. You should consolidate the data items used by all modules into a single list, and calculate the number of rows you need to build:

Table
No. rows in production
No of rows for test (5%)
No of rows for test (2%)

Orders
10,000,000
500,000
200,000

Order Lines
55,000,000
2,750,000
1,100,000

Dispatch Notes
10,000,000
500,000
200,000

Dispatch Lines
55,000,000
2,750,000
1,100,000

Customers
750,000
37,500
15,000

Customer Accounts
2,100,000
105,000
42,000

Locations
500,000
25,000
10,000

Customer Payments
7,500,000
375,000
150,000

Items
100,000
5,000
2,000

Payment Types
5
5
5

Periods
13
13
13

Product Groups
25
25
25

Account Types
10
10
10

Table 2 - Number of tables rows needed for testing. The table shows the number of rows expected in the production database, and the number of rows you need to generate to produce a database holding either 5% or 2% of this volume. These are the minimum sizes that you should consider using. Note that for reference tables (such as Payment Types) you should use the production volume, as these are generally low.
The table shows the number of rows in the live database, and the number of rows needed to create either 5% or 2% of these numbers for a test database. You should regard these as am absolute minimum for data volumes. However, because of time or space availability, you may not be able to use much more than these volumes.

Ideally you should use more than this. If you can use a copy of the real database then you are sure that you are using realistic data and volumes.

You can then use this information to calculate the amount of space that you need for each table, using one of the standard sizing methods (such as the one in the Server Administrators Guide. Don't forget to include indexes in your sizing calculation!

Build database

You should use the sizing and usage data to build a database for your tests. This should be laid out in a similar manner to the live database, in terms of object to tablespace mapping, and tablespace to file mapping. You should build a create script that creates all the schema objects in the correct places with appropriate storage clauses. I suggest that you follow Milsap's (199x) guidelines for space management when creating objects.

Populate the database

You have two basic choices when deciding how to populate the database:

· Use real data

· Use synthetic data

In an ideal world, you would always use real data, since this corresponds exactly with the live database. In the real world, this is probably not available, especially if you are carrying out this exercise early in the project life-cycle. In this case, you will have to generate the data. There area number of tools available for this, some available commercially, and some available internally to Oracle. Examples of commercial products are Datatect (www.datamaker.com) or Testbase(www.tenerus.com). We have used Gertrude, part of the SPG Validate toolset, to generate data. Refer to the Tools section for more information.

Whatever tool you use, make sure that your test data follows the guidelines discussed earlier in the paper.

Referential Integrity

If your database as referential integrity constraints enabled, then you need to consider the order in which you create test data. For example, in the following schema:

You would need to insert rows in the order:

1. Business Area

2. Item

3. Customer

4. Order

5. Item Status

6. Order Line

if referential integrity constraints were to be followed. If your data model is documented in Designer2000, then working out the dependencies is relatively simple. If not, then you may have to work through the constraint tables in the Oracle Data Dictionary. This can be a difficult task if you have to work with a large number of tables.

Design Transactions

The workload characterisation describes the transactions (or more correctly service calls) and transaction frequencies that make up your test case. You need to generate service calls for each service at the correct frequencies.

Catalogue the data needed by each service call:

Transaction
Input Data
Relative Frequency(%)

Query Customer
Query by either:

1)Customer Name

2) Customer ID

3) ZIP Code

4) Social Security Number

5) Account Number
50

20

5

15

10

Record New Order
Customer ID, Account Number, Ship to Location, Order Date, Payment Method, Credit Approved Flag
100

Insert Order Line
Order Number, Line Number, Item Number, Quantity, Stock Price, Discounted Price, Line Status
100

Calculate Price
Item Number, Quantity, Business Area
100

Calculate Discount
Item Number, Quantity, Customer ID, Discount Scheme
100

Item Code Lookup
Lookup via

1)Item Code

2)Business Area
90

10

Item Price Check
Item Code
100

Customer Account Check
Check via

1)Customer ID, Location

2)Account Number
80

20

Update Customer Account
Customer Id, Account Balance, Transaction Date
100

Discount Code Lookup
Item Number, Business Area
100

Table 3 - Transactions, Input details and relative frequencies. This table shows how are called, If the services can be called in more than one way, the table shows the relative frequencies for each call method. The item numbers in the "Input Data" column are referred to as the Call Method for each service in the rest of this paper.

The table shows each service in the test scenario, and the input data for each call. Certain services can be called in more than one way, for example the Query Customer service can be called in 5 ways. The Relative Frequency column shows the percentage of the total calls that each call method is used. The Query Customer service is called using Customer Name 50% of the time. This information will be used when you tests, and will form the basis for the transactions used in later phases.

Your transactions will either query, insert, update or delete rows in the database. You need to generate transactions later that access data correctly. You should consider now how you will:

· ensure you have valid search criteria, such that a service call returns data.

· ensure that key constraints are met by new data. This means that you should:

· insert rows that do not exist. This may be complicated where you are inserting child records, such as an order line. You need to certain that you are inserting an order number that exists, but with a line number that does not

· Any update must be to a valid value

· Any delete must be to a row that can be deleted, for example you may not be able to delete an order if order lines exist

· Check constraints must be obeyed, for example you must insert columns with valid values.

· Ensure that any business rules not implemented as constraints are obeyed.

Knowing this information in advance will make the subsequent testing easier.

Phase 2 - Server Design

Phase 2 of the method is concerned with designing optimal server configurations which minimise queuing at the server level. Queuing theory was discussed in the introduction, in Carney (1998) and in Jain (1991).

The objective of this phase is to specify a server/queue configuration which meets the response time requirements for each service with the minimum number of servers.

The process used is:

· run a series of service calls at a low rate (say 5-10%) of the production rate, and measure the mean response time. Check that there is no queuing. If there is, reduce the transaction rate until you see no queuing.

· Use this response time to design server configurations.

Low volume runs

These runs measure the response time of each service in isolation at a low frequency. The response time observed will then be used in queuing model to design a server configuration.

The transaction rate should be low enough such that you do no see any queuing. A reasonable transaction rate to start with is 10% of the expected rate. If you see queuing, using the middle tier monitoring tools, then reduce the rate and re-run.

In order to submit service calls at the correct rate, you need to introduce a delay (or think time) between transactions. You can calculate this using the equation:

think time = 1/transaction rate

If the transaction rate was 1 every 10 seconds, then the transaction rate is 0.1 transactions per second. The think time is 1/0.1, or 10 seconds. The tool we have used (tilly - see tools section) generates random think times between 0.5 and 2.0 times this transaction rate, in order to simulate real users more accurately. We need to calculate these times for each service.

Some services may be called in more than one way. This will be important in subsequent phases, but all that needs to be done for this phase is to run each call method at a low rate. Use 10% of the overall rate, and check if there is queuing. Build a table of the required rates and think times. I have expressed thinks times in seconds for clarity:

Transaction
Call Method
Test Rate (txns/min)
Min Think

Time (secs)
Max Think Time (secs)
Resp Time (secs)

Query Customer
1

2

3

4

5
20

3.0
6.0
.28

.13

.19

.14

.21

Record New Order

12
2.5
10.0
.08

Insert Order Line

40
0.75
3.0
.12

Calculate Price

50
0.60
2.4
.21

Calculate Discount

50
0.60
2.4
.37

Item Code Lookup
1

2
60
0.5
2.0
.18

.27

Item Price Check

45
0.74
2.67
.32

Customer Account Check
1

2
6
5.0
20.0
.29

.33

Update Customer Account

10
3.0
12.0
.19

Discount Code Lookup

40
0.75
3.0
.17

Post Order Details to Shipping

12.5
2.4
9.6
.13

Table 4 - Low Frequency Tests, showing the low frequency test rate to be used in the tests, the minimum and maximum think times needed to produce this rate, and the observed response time at this transaction rate. Transaction rates marked with a (*) were reduced as queuing was seen during the tests. The call method refers to the calling method described in Table 3.

Table 4 shows the test plan for the series of services described earlier. Note that for some the services, test rates lower than the 10% value were used, as this higher rate generated queuing.

Target Response times

The target response times for the service calls in production is 1 second for queries and 1.5 seconds for updates.

Analysis of results

Weighted mean response time calculation

In a Tuxedo based system, individual services are grouped into a single executable program called a server. This server runs when a client program executes a given service. Requests for all services within a server are placed in the queue, and executed in turn. The server is subject to the sum of the individual requests for it's component services, and the mean response time is the weighted mean for each service call, including the different call methods for services that can be called in multiple ways.

The weighted mean is calculated using the equation:

Rm = Load Factor1 + Load Factor2….Load Factorn

 c1 + c2….Cn

where Rm is the weighted mean response time, c1..cn are the call rates for each service, and the Load Factor for each service, given by the formula:

Call Rate * Measured Response Time

For services that have multiple call methods, you need to include each call method as a separate entry in the calculation. The call rate for each call method is given by the formula:

Parent Call Rate * Relative Frequency

where the Parent Call Rate is the call rate of the parent service, and the Relative Frequency is the proportion of the total calls that use the particular call method.

In our example scenario described in tables 3 and 4, the designer chose to place all query only services in one server (Query_Server) and all the DML services in a second server (DML_Server). We can use the data in the earlier tables to calculate the relative transaction rates and weighted mean response time.

Relative Transaction Rates

Transaction
Call Method
Parent Call Rate (txns/min)
Relative Frequency (%)
Actual Call Rate (txns/min)

Query Customer
1

2

3

4

5
200

50

20

5

15

10
100

40

10

30

20

Record New Order

120
100
120

Insert Order Line

400
100
400

Calculate Price

500
100
500

Calculate Discount

500
100
500

Item Code Lookup
1

2
600
90

10
540

60

Item Price Check

450
100
450

Customer Account Check
1

2
60
80

20
48

12

Update Customer Account

100
100
100

Discount Code Lookup

400
100
400

Post Order Details to Shipping

125
100
125

Table 5 - Calculation of the relative transaction rates for different call methods, based on the relative frequencies of calling methods. This table shows the breakdown of the services with multiple call frequencies into their different calling methods, with the appropriate calling frequencies. These calling frequencies are used in the calculation of the weighted mean response time.

Weighted Mean Calculation, Query_Server

Transaction
Call Method
Parent Call Rate (txns/min)
Actual Call Rate (txns/min)
Resp Time (secs)
Load Factor

Query Customer
1

2

3

4

5
200

100

20

10

30

20
0.28

0.13

0.19

0.14

0.21
28.0

2.6

1.9

4.2

4.2

Calculate Price

500
500
0.21
105.0

Calculate Discount

500
500
0.37
185

Item Code Lookup
1

2
600
540

60
0.13

0.17
70.2

10.2

Item Price Check

450
450
0.32
144.0

Customer Account Check
1

2
60
48

12
0.29

0.33
13.92

3.96

Discount Code Lookup

400
400
0.17
68.0

Total Call Rate
2710 tpm
Total Load Factor
641

Mean Response Time (secs)
0.24

Table 6 - Calculation of the weighted mean response time for the Query_Server server process. The Load Factor for each service, or service call method, is the product of the actual call rate and the measured response time from Table 4. The Load factor is an intermediate number in the calculation of the weighted mean, but is proportional to the amount of time the server process will spend servicing requests for the appropriate service. The total call rate is simply the sum of the individual service call rates. The weighted mean response time is the overall load factor divided by the total call rate for the server process.

Weighted Mean Calculation, DML_Server

Transaction
Call Method
Parent Call Rate (txns/min)
Actual Call Rate (txns/min)
Resp Time (secs)
Load Factor

Record New Order
n/a
120
120
0.08
9.6

Insert Order Line

400
400
0.12
48.0

Update Customer Account

100
100
0.19
19.0

Post Order Details to Shipping

125
125
0.13
16.25

Total Call Rate
745 tpm
Total Load Factor
92.85

Mean Response Time (secs)
0.125

Table 7 - Weighted Mean Calculation for the DML_Server server. The details for this calculation are the same as for the calculations in table 6

Tables 6 and 7 show the Weighted Mean calculations for the Query_Server and DML_Server Tuxedo servers. The Load Factor is the product of the Actual Call Rate and the Measured Response Time for each type of service call. The Total Call Rate is the sum of the individual call rates, and the Total Load Factor is the sum of the individual Load Factors. The Weighted Mean Response Time is the Total Load Factor divided by the Total Call Rate, and represented the average response time for all calls made to the parent server process.

The Weighted Mean Response Time is used as one of the input parameters to the Queue Design. If you do not know this value, then you can use different values and try out different scenarios based on the queuing model, at much reduced precision.

Queue design

The queuing model of Milsap (1996) requires five input parameters in order to produce a response time graph. These are:

· the response time of the server

· the required response time

· the transaction rate

· the number of queues

· the number of servers per queue

We know the first three parameters as a result of the initial phase of testing and the user requirements. We will use the Weighted Mean Response Time as the value for the server response time. We will vary the number of queues and servers in order to produce a configuration which meets our throughput requirements at minimal cost.

The units of time for the response time and transaction rate need to be the same for the model. We will convert our throughput from transactions/minute to transactions/second for use in the model (by dividing the rate in tables 6 and 7 by 60). This means that our target transaction rate for the Query_Server process is 45.17 calls/second, and 12.42 calls/second for the DML_Server. I quoting these figures to this precision in order to minimise rounding errors in the calculation, and am not implying that the data is known to this accuracy.

Model Predictions

Single Server Single Queue (SSSQ) Configuration

Figure 7 - Predicted response time graphs for two SSSQ Query_Server configuration. Case1 had 11 servers, Case 2 had 22 servers

Figure 7 shows the predicted response time for two SSSQ configurations for the Query_Server server. Case 1 has 11 servers, calculated as the Total Call Rate/Mean Response Time. The graph shows that this number of servers cannot support the required throughput of 45 calls/second, and the predicted response time exceeds the target response time at a throughput of around 30 calls/sec.

 Case 2 shows the predicted response curve for an SSSQ configuration of 22 servers. This is able to support the target transaction rate, and exceeds the target response time at a rate of 66 calls per second. The target transaction rate is on the flatter portion of the curve, and I would choose a configuration like this in order to provide a response time 'cushion' , before small increases in throughput cause large increases in response time.

Multiple Server Single Queue (MSSQ) Configuration

In many 3 tier environments, multiple servers can be associated with a single queue, as described earlier in this paper. In addition multiple copies of the queue/server construct can be created. The graph below (Figure 8), shows the behaviour of an MSSQ configuration compared to the 22 server SSSQ configuration described above:

Figure 8 - Predicted response time graphs for an MSSQ configuration compared to the 22 Server configuration of figure 7. Case 1 is the SSSQ configuration of 18 servers, Case 2 is an MSSQ configuration of 3 queues, each with 5 servers

The graph shows that 15 servers (3 queues each with 5 servers) can support the required transaction rate in an MSSQ configuration, compared to 22 for an SSSQ setup. The MSSQ configuration also returns shorter response times up to around 55 transactions per second (Using Queuing Theory to Design 3 Tier Systems (Carney, 1998)). The MSSQ configuration exceeds the response time requirement at around transactions per second, again giving a 'cushion' if the transaction rate rises.

A similar process should be carried out for each server process on the system. I'll leave the DML_Server modelling for you as an exercise.

Phase 3 - Regression Analysis and Ratio Modelling

The objectives of this phase are to establish the unit cost of a transaction, equivalent to the cost of a transaction rate of 1 per unit time, in terms of a resource pool, and then to apply the unit costs to a simple arithmetic model in order to produce an overall resource utilisation figure. This is then translated into a risk assessment that the particular resource pool cannot support the workload modelled.

The basic approach is to take the server configurations designed in phase 1 and run each service in isolation at varying transaction rates. The resource utilisation of a particular resource is measured as the transaction rate varies. The resource utilisation is plotted against transaction rate. The slope of the line is the unit cost of a service call, equivalent to a call rate of one call per unit time.

If the service can be called in more than one way, then the transaction mix should correspond to the expected mix, as described in table 3. Alternatively, if more detail was required, then you could treat each calling method as a separate run, and measure the resource utilisation of each as if they were separate services.

The approach described here assumes that the Tuxedo services and associated database are running on the same server. You would need to measure resource utilisation on both machines if the Tuxedo services were located on a separate machine to the database server.

Parameters Measured

During a test run, there will generally be an initial ramp up phase as client processes start to submit service calls, followed by a steady state period during which the number of calls submitted per unit time is relatively constant. The steady state phase is followed by a decay phase, as client services shut down at the end of their transaction load. You should measure resource utilisation during the steady state phase.

The basic resource pools affected by a query based servers on the host machine are:

· Total CPU utilisation - how much of the available CPU capacity is the application using during the steady state phase of a run

· Logical I/O rate generated per minute during the steady state phase of a run - how may logical I/O's does the application generate. We have chosen logical I/O's over physical because the physical I/O rate is dependent on many factors which may be different in production, such as buffer pool size or data distribution. Logical I/O's are a direct measure of the number of blocks accessed by a query. You can estimate the physical I/O rate by assuming a value for the cache hit rate in production. I suggest that you use a low value for the cache hit rate (say 70%) for safety reasons.

· Response time - this should be relatively constant over the range of transaction rates used. If the response time increases as the transaction rate increases, then you are porbaly seeing either queuing for the server, or some resource has become limiting.

I have not included memory as a parameter to measure, primarily because the number of server processes is fixed, and does not change significantly as the number of transactions submitted increases.

In addition to these parameters, additional parameters are needed to measure the amount of work generated by DML services. I suggest that you use:

· block changes - the average number of block changes made per minute during the steady state phase of each run

· redo writes - the number of writes to the redo logs during the steady state phase of each run

How many users?

In a 3 tier system, the middle tier and associated database server are not aware of the number of client processes (i.e. users) submitting service calls. In theory you could generate the required load using a single client process, as we are observing the behaviour of the middle tier and database. We are not concerned with the client to middleware interaction. Your customer may not be happy with this, as they perceive the run as a single user run. You may not be able to simulate the total number of expected users, perhaps because of limitations in the capacity of the machine you are using to simulate users.

Somewhere in the middle is a compromise number - enough to convince your customer that you are performing a multi-user test, but low enough to fit on your client simulation machine. This is not strictly a technical issue, but more a customer perception problem. In a recent engagement we used 50 simulated client processes, generating the required transaction load, instead of the projected 300 concurrent users for production. Our customer was happy with this approach, and the client simulation machine was able to support this workload.

Regression Analysis

Test Design

The object of regression analysis is to determine the unit cost of a transaction. You do this by varying the transaction rate and measuring resource utilisation as described above. The objective is not to stress the test machine such that it runs out of resource, but simply to run transactions at a rate high enough to be able to measure resource utilisation, but no so high as to make the resource limiting.

The correct choice of rates will be somewhat empirical , since you will not know in advance how much of a resource pool a service will use. A good place to start is the target transaction rate, and run tests at 0.25, 0.5, 1.0 and 1.5 times this value. For example, in Table 1, the Query Customer service has a target rate of 200 calls/min , giving transaction rates of 50, 100, 200 and 300 calls/min.

You may need to adjust these rates if the resource utilisation is either too low to measure, or too high that the available capacity is fully used. You may also need to run a small number of tests as 'ranging shots' before running the actual tests. These will provide guidelines as to the transaction rates you should use.

You need a minimum of two points to describe a straight line. In a perfect world this would be all the data you need for your analysis. Unfortunately, we live in an imperfect world, and we will need more points than this. I suggest that you use a minimum of 4 points, and use the standard error of the correlation coefficient (see below -it's not that difficult!), to test the validity of the data. If the points are widely scattered (big standard error) you need more points to be sure of your results. If you see poor correlation with more points, then you should investigate the cause.

 I have only described the modelling of CPU utilisation and read rates in the example calculations. You should use the same techniques for modelling the other parameters you measure.

Analysis of results

Carry out test runs for each service in isolation using the test rates you decided on in the previous section. Measure resource utilisation during the steady state phase of each run, and plot this against transaction rate. The slope of the line gives the unit cost of the transaction. You can use a spreadsheet or statistical calculator to work out the slope, intercepts and regression coefficient. You do not need to use a fully featured statistical package, or even work out the data by hand. You could even eyeball the slope and intercepts. Be careful not to fall into the trap of taking the values for the constants as very precise estimates without considering the strength and standard error of the correlation coefficient.

Query only services

Table 8 show the test results for the Query Customer service, which are plotted in Figure 9.

Transaction Rate (calls/min)
Average Response time (secs)
Total CPU utilisation (%)
Logical Reads/min

50
0.20
1.10
1068

100
0.19
2.50
1600

200
0.22
4.00
3254

300
0.20
5.31
3940

unit cost

0.01627
12.0305

correlation coefficient

0.989
0.985

Table 8 - Test Results for the Query Customer service. Response Time, Total CPU Utilisation and Logical Read Rate were measured as the transaction rate was varied.

Figure 9 - Plot of the performance data shown in table 8.

The results show that both total cpu utilisation and logical read rate increase with transaction rate, and that the relationship is linear. The slope of the line gives us the unit cost, i.e. the cost of performing a transaction rate of 1 call/minute.

The correlation coefficient for both lines was close to 1, indicating that the correlation is good.

You should produce similar data for each service in your scenario, and determine the slope and correlation coefficient for each resource pool measured.

DML services

The process is similar for DML transactions. Run each service at different transaction rates, and measure resource utilisation at each transaction rate. You need to make sure that your transactions use valid data, as discussed earlier. Your transactions should:

· Insert data that does not exist in the database already, in order to avoid failures due to primary key violations. This may be complicated for parent / child data (what line number do you use for an order line?)

· Delete data that does exist in the database, to ensure that you incur the full cost of deletion activity. Be aware that referential integrity may prevent deletion if dependant rows exist for a parent record

· Query data that exists, to ensure that data is returned

· Update returned data to valid values to ensure that constraints are obeyed.

Given these provisos, the process of running the tests is the same as for the query only services. Table 9 shows the results of a series of tests using the Update Customer Account service call.

Txn rate (calls/min)
Response time (secs)
Total CPU Utilisation(%)
DB Block Changes/min
Logical Reads /min
Redo Writes /min

200

6.93
683
1742
6.40

400

11.41
887
3087
8.43

800

15.63
2312
5341
11.1

1200

26.65
2784
8631
14.7

unit cost

0.01870
2.28627
6.767034
0.008072

correlation coefficient

0.982
0.976
0.981624
0.997633

Table 9 - Test Results for the Update Customer Order Service. In this case transaction rates in excess of the expected production rate were used because the unit cost of a transaction was very low.

 In this particular case, transaction rates in excess of the expected production volume were used because the unit cost of a transaction was found to be very low. Running the transaction at higher volumes makes the values of the measured parameters larger, reducing the impact of random error. If the production transaction rates had been used, then the measured data would be difficult to distinguish from background "noise" on the system.

Again, good correlation was seen between transaction rate and the measured value for the parameters.

Strength of the correlation coefficient

As with all observations, the correlation coefficient is subject to error, especially given a sample size of 4 points. We are concerned with knowing if the correlation coefficient arose by chance, or is a true indicator of the strength of the relationship between pairs of values.

The uncertainty in the regression coefficient is described by the standard error of the coefficient. Assuming that the error in the regression coefficient in normally distributed, then there is a 95% probability that the true value for the regression coefficient lies within a range of (2 standard errors.

The standard error of the regression coefficient is given by the equation:

SEr = 1 - (r)2

 (n

Where SEr is the standard error of the regression coefficient, r is the observed regression coefficient, and n is the number of observations that were used to produce the regression coefficient,

The minimum value observed for the correlation coefficient in a recent engagement was 0.85.

So, for a sample size of 4, the standard error of this coefficient is:

SEr = 1 - (.852)

 2

The standard error of this correlation coefficient is 0.139. The upper limit for the value of the correlation coefficient is (2 * .139) + 0.85, or 1.128. Since the value of the coefficient cannot exceed 1.o, we can say that the upper value of the coefficient is 1.0. The lower value is 0.85 - (2*.139), or 0.57.

This means that there is a 95% probability that the true value for the worst correlation coefficient was in the range 0.57 to 1.00. This still indicates positive correlation.

The best correlation coefficient observed was 0.999, indicating that there is a 95% probability that the true value lies in the range 0.995 to 1.00.

These values support the conclusion that the correlation coefficients are good, given the small sample sizes used.

The strong correlation between transaction rate and the performance measures means that we can use this relationship as a predictive tool. We can predict the resource utilisation for a given transaction rate based on this data, within the context of the tested application and environment.

If the correlation coefficients had been close to zero, or had a large standard error, we would have concluded that the data were not good enough to base our predictive models on. We would have then repeated the process, and gathered more data points. If, after this re-analysis, we had still found poor correlation, and could not find an obvious cause, then would have had to conclude that the parameters we measured where not a good basis for our models. We would have had to find another parameter to use.

Deliverables from this phase

The major deliverable from this phase of testing is the unit cost of each transaction for the various resource pools measured. These data items are then used by the ratio model to produce total resource utilisation estimates, which are then translated into a risk assessment for presentation to the customer. Supporting data include the correlation coefficients, showing that the relationships between transaction rates and resource utilisation are real, and the constant response times of the ranges used in the tests, showing that no resource had become limiting,

Ratio Modelling

Calculation of scenario costs

This section uses the performance data collected during the previous tests, and uses a simple linear model to predict the overall resource utilisation for each resource pool by the services that make up a scenario. The total cost of a given resource (for example cpu capacity) is given by the equation:

total cost=(unit cost of s1*s1 transaction rate)

 +(unit cost of s2*s2 transaction rate)……

 +(unit cost of sn*sn transaction rate)

where s1, s2… sn are the services, and the unit cost is the unit cost derived from the regression analysis described earlier in the report.

Table 10 shows the ratio modelling for the query only services described above.

Service
Unit Cost (%CPU/txn/min)
Target Rate (txn/min)
Total Cost

(%CPU util)

Query Customer
0.01627
200
3.25

Calculate Price
0.00934
500
4.67

Calculate Discount
0.01624
500
8.12

Item Code Lookup
0.00567
600
3.40

Item Price Check
0.01258
450
5.66

Customer Account Check
0.01307
60
0.784

Discount Code Lookup
0.007425
400
2.97

Overall CPU Utilisation (%)
29

Table 10 - Ratio Model of CPU usage for the Query Services. The unit costs are taken from table 8

The table shows the unit cost in terms of total CPU utilisation for each service in the scenario. These costs are multiplied by the transaction frequency to give the total cost for each service in the scenario. The total costs are then added together to produce an overall estimate of the overall resource consumption (CPU capacity in this case) by the services in the scenario.

You can summarise this information in a pie chart . Figure 10 shows a pie chart of the data in the previous table.

Figure 10 - Pie Chart showing CPU utilisation broken down by service call costs.

A pie chart is a visual way of presenting the tabular data, and shows how resource utilisation is broken down by each service call. It shows which services are the heaviest users of the particular resource pool, and which might be targets for optimisation if resource utilisation has to be reduced.

The next table shows the CPU utilisation calculation for the DML services.

Service
Unit Cost (%CPU/txn/min)
Target Rate (txn/min)
Total Cost

(%CPU util)

Record New Order
0.00733
120
0.88

Insert Order Line
0.00960
400
3.84

Update Customer Account
0.01870
100
1.87

Post Order Details to Shipping
0.01216
125
1.51

Overall CPU Utilisation (%)
8.0

Table 11 - Ratio Model of CPU usage for the Query Services.

You should repeat the modelling process for each resource pool in the scenario, and for each class of service (query or DML) using the regression analysis data.

The end result of the process is an estimate for the overall resource consumption produced by the services that make up the scenario.

You should produce a similar table for each resource pool, and each class of service, in the scenario. Add the numbers for each service class together to produce the final result where each service class (query only or DML) produced a value:

Service Class
CPU Utilisation (%)
Logical Reads/min

Query Only Services
29
23446

DML Services
8
3429

Total
37
26875

Table 12 - Adding the results of resource pools measured in both classes of servers.

 A pie chart of the CPU utilisation (Figure 11) shows how CPU utilisation is split between the two classes of service:

Figure 11 - Split of CPU utilisation between Query Only and DML Services.

Again the use of a pie chart make it easier to see how load is split between the two classes of service. In this case, the bulk of the CPU load was generated by the Query Only services.

Our model predicts that the CPU utilisation in the live system will be 37%, and that the transaction load will generate a logical I/O rate of 26,875 logical reads per minute. We need to translate this logical I/O rate into a physical I/O rate in order to assess the disk subsystem risk. Since I/O rates for disks are generally quoted in seconds, we also need to convert the rate to reads/second. The physical I/O rate per second is given using the formula:

logical I/O rate *(100 - cache hit rate%)

--

 60 * 100

We have used a value of 70% for the Oracle cache hit ratio when calculating physical i/o rates from logical i/o rates. We believe that this is reasonable, based on experience with real OLTP systems, and is on the low side of generally observed values. This calculation gives a value of 134 reads per second for the physical i/o rate.

Modelling Other Scenarios

The regression analysis produces the unit cost of a service call. We can use this to model other business scenarios. Imagine that the example company runs promotions on certain items to customers with a good credit history. This has the effect of increasing the number of orders taken, but decreases the number of customer queries, customer account checks and discount promotions. The new transaction rates are:

Transaction
Rate (calls/min)

Query Customer
150

Record New Order
250

Insert Order Line
750

Calculate Price
750

Calculate Discount
200

Item Code Lookup
750

Item Price Check
450

Customer Account Check
30

Update Customer Account
100

Discount Code Lookup
120

Post Order Details to Shipping
250

Table 13 - Transaction Frequencies in the Special Promotions Scenario

We can simply plug the new transaction rates into the ratio models and produce a low precision estimate. Since we have not changed (or even run) the Tuxedo configuration, we must assume that the Tuxedo configuration can support, or be changed to support, the new workload profile.

Table 14 shows the ratio modelling for CPU utilisation by the query only services in the Special Promotions Scenario. Table 15 shows the same calculation for the DML services.

Service
Unit Cost (%CPU/txn/min)
Target Rate (txn/min)
Total Cost

(%CPU util)

Query Customer
0.01627
150
2.44

Calculate Price
0.00934
750
7.00

Calculate Discount
0.01624
200
3.25

Item Code Lookup
0.00567
750
4.25

Item Price Check
0.01258
450
5.66

Customer Account Check
0.01307
30
0.39

Discount Code Lookup
0.007425
120
0.89

Overall CPU Utilisation (%)
24

Table 14 - Ratio Modelling for CPU utilisation by the query only services in the Special Promotions scenario

Service
Unit Cost (%CPU/txn/min)
Target Rate (txn/min)
Total Cost

(%CPU util)

Record New Order
0.00733
250
1.83

Insert Order Line
0.00960
750
7.20

Update Customer Account
0.01870
100
1.87

Post Order Details to Shipping
0.01216
250
3.04

Overall CPU Utilisation (%)
14

Table 15 - - Ratio Modelling for CPU utilisation by the DML services in the Special Promotions scenario

The model shows that the CPU utilisation in the new scenario falls for the Query Only services, but rises for the DML Services. The total CPU utilisation in the new scenario is predicted to be 38%. The prediction can be made very quickly using the new transaction frequencies and the regression data. The calculations should be repeated for each resource pool you are interested in.

A note on precision

You should note that these predictions are quick and easy to produce once the base regression data but are of low precision. They serve as a general indication that the machine will or will not support the workload modelled. The resource utilisation values should be expressed as a risk assessment before presentation to your customer.

Risk Assessment

The combined regression/ratio modelling approach produces low precision estimates quickly. If you present the results of the analysis as numbers (e.g. 38% CPU utilisation) you run the risk of your audience assuming a degree of precision that does not exist.

In order to avoid this risk, you should translate your resource utilisation estimates into a verbal statement of risk (e.g. "I predict that there is a low risk that there will production machine will not have enough CPU capacity to support the initial workload, but a medium to high risk that it will not support the expected transaction volume in 3 years time").

Risk is a sliding scale of values. If you predict that your application will use all of the available CPU power, then there is a high risk that the host machine will not support the application load. If you predicted that the application load would consume less than 0.1% of the available CPU capacity then there is a low risk that the host machine cannot support the application load, as shown in Figure 12:

Figure 12 - Sliding scale of utilisation and risk

In between these two extremes is a gradation in risk. The nearer the utilisation of a resource pool is to 0%, the lower the risk. The closer to 100%, then the higher the risk.

Scenario risks

The modelling showed that the total CPU utilisation predicted for the production scenario was 37%. This is towards the low end of the risk scale, but some way from 0%. I would conclude from this that the risk was low to medium that the machine does not have sufficient CPU capacity.

The model predicted a read rate of 134 reads/second. If we assume that the data was striped over 6 disks, each capable of sustaining 40 I/O's per second without queuing, then the utilisation of these disks would be:

 134 * 100 percent

40 * 6

or 58% (ignoring the write rate from the DML transactions, which in real life you should include). I would conclude that there is a medium risk that the disk I/O subsystem cannot support the expected load. I would translate this as something to watch, but not life threatening.

The risks associated with this scenario would therefore be:

Resource
CPU
Disk Reads

Total Risk
Low
Medium

You should include each resource pool measured in this overall risk statement.

Using Logical Read Rates as a Predictor of Performance

In an Oracle based system, the logical read rate will be correlated to CPU utilisation, since a large proportion of the work that Oracle does is concerned with block manipulation. We can use this fact as the basis for a supplementary modelling technique, useful early in the project life-cycle.

The regression analysis data shows this correlation. If we plot the total CPU utilisation against the logical read rate for query services, then we obtain the following graph:

Figure 13 - The correlation between logical I/O rate and total CPU utilisation. The slope of the line is 729 logical reads/min per %CPU utilisation, with a correlation coefficient of 0.95

The logical read rate increases in a linear fashion over the range measured, with a correlation coefficient of 0.95. The good correlation between the two sets of data does not imply that one causes the other, but it does mean that if we know one value we can derive a value for the other. The slope of the line, for this set of data in the target environment, was 729 logical reads/min per %CPU utilisation, or expressed more clearly, a logical read rate of 729 reads/min corresponds to a CPU utilisation rate of 1%.

We can use this information to make predictions of the CPU utilisation based on a knowledge of the expected I/O rate generated by a transaction. Imagine that you are designing new Tuxedo services for an application, and you need to know quickly how the new services will impact the host machine. You can use this technique to carry out a very quick assessment of the impact. Again, this will be a low precision estimate, and will be applicable only to the machine that you collected data for.

The new service will retrieve an order and it's associated order lines. The expected call rate is 300/minute.

Estimating block reads

The database will hold 3 million orders, each of which will have on average 5 order lines. We know from normal sizing calculations that 400 order number index entries will fit on a page, and 300 (order number, line number) index entries will fit on a page.

It will take around 4 block reads to fetch the parent order:

Figure 14 - Block Accesses needed to fetch an order line. The first access is to the head of the tree, followed by two access to reach the leaf block. The second level of the tree can hold 400*400, 0r 160,000 entries. The third level can hold 400*400*400, or 64,000,000 rows. We have 3 million rows, so we can surmise that the index is three level deep. Once the leaf block has been found, one more access is needed to fetch the order row.

The process for fetching the order lines is similar. In this case, we can fit 300 rows onto an index block, so the second level will hold 300*300, or 90,000 rows. The third level of the index will hold 300*300*300 or 27,000,000 rows. Again it will take 3 block reads to reach the leaf node. The leaf node will be read once for each order line, and each of these reads will be followed by an additional read to get the order line. For 5 order lines, this is equivalent to 10 reads. There will be one further read of the leaf block, as Oracle finds the next order number in the index.

This means that a total of 14 reads are needed to fetch all the order lines for an order. Our new service therefore generates a total of 18 block reads per call to return an order and it's lines.

The expected call rate is 300/min. so the logical read rate is 300*14, or 4200 logical reads per minute.

We know from the slope of the CPU vs read rate graph that 1% CPU utilisation corresponds to a logical read rate of 729/min. If we divide the predicted rate by the slope of the line, we obtain an estimate of the CPU utilisation for the service call. This is 5.8% for our new service. This figure can then be used in the scenario modelling and risk assessment models described above.

Another note on precision

This technique is based on derived data, and has a low statistical confidence. You should only regard the estimates produced by this method as initial 'ballpark' figures, and only apply them to the environment in which the data was obtained. The simple correlation will break down if your new service does a large amount of calculation compared to database accesses. Having warned you, the technique allows you to predict the performance of a service call that hasn't been written if you understand the data model and how the service uses data. As such the technique will be useful in the early stages of design an build, for production approximate estimates of resource utilisation.

Phase 4 - Combined Workload and Detailed Investigation

Combined workload

You will have estimated systems performance during the previous phases of the method. This process has been based on running services in isolation, and deriving the unit cost of a service call. There is a risk that this approach misses any complex interactions, or contention between services. In this phase of the process you should choose a scenario, and then generate a mixed workload that contains all the transactions in the scenario, at the transaction rates you expect in the scenario. Run this workload, and measure resource utilisation. Ideally, the measured work load should be similar to the workload you predicted for this scenario using the modelling techniques. If it is not, you may have to investigate the cause of the discrepancy, and rerun your tests with the new scenarios.

Detailed Investigation

If the results of the earlier phases of testing showed that there was a high risk that the test environment could not support the expected workload, then you should perform a more detailed investigation. This investigation should deliver an answer with higher precision than the predictions made using these regression/ratio modelling. The approach is described by Shallahamer (1995) as a Classic Performance Assurance Test, and is what most people would regard as a 'Benchmark' test.

A Classic Performance Assurance Test will require more time (and money) than the techniques described in this paper, but will return a more precise estimate of the resource utilisation profile for the test application. The testing will require much more detailed preparation, including:

· a detailed workload characterisation

· production quality data

· production data volumes

· production application code

· a realistic testing environment

before testing begins. A major objective of this type of testing is to simulate reality as closely as possible so that your results are representative of real life. The closer you can simulate reality, the more precise your results will be.

The actual process of carrying out a Classic Performance Assurance Test is well documented elsewhere. Please refer to the Shallahamer (1995) paper, and the Systems Performance Group website for more information on this process.

Appendix - Tools used

We have used a number of tools from the Systems Performance Group within Oracle Consulting Services. You can obtain these tools from their website spg.us.oracle.com. The tools we used were:

· pm2 - this is a set of UNIX and sql scripts that gather operating system and Oracle statistics as a test is run, and which then store the data in tables for later analysis. The toolkit contains a comprehensive set of reporting tools, making it easy to analyse the run time data.

· SPG Validate tools - the SPG Validate toolset
(Holt, 1997)is a comprehensive collection of tools, document templates and approach associated with system testing and validation. We have used the following tools from this set to carry out engagements:

· gertrude - getrude is a data generation program which produces data based on the basic Oracle dictionary table and constraint definitions. The data generated by gertrude will comply with all the constraints defined in the dictionary, but will be meaningless, random data. You can control the generation process through a number of parameters

· tilly - tilly is a transaction generation program which generates transactions to be executed by the playback program (see below). Tilly is driven by a short control fil;e which describes the transactions to be generated. Data used by tilly can come from the generated database, or be specified in the control file. Tilly randomises think times between an upper and a lower limit to mimic reality.

· playback client - the playback program which takes the tilly generated transaction file, and actually runs the transactions. The playback client can call a straight Oracle 2 tier client, or act as a 3-tier Tuxedo client. The program is customisable for other environments.

· Queuing model - the queuing model used is a general queuing model, implemented as an Excel spreadsheet. It can model MSSQ and SSSQ configurations, and produces graphical and tabular output. Using this tool you can very quickly compare the behaviour of different queue/server architectures.

The testing architecture we used is shown in figure 15:

Figure 15 - Testing environment based on the SPG tools, Tuxedo and Oracle.

References

Ian Carney, 1998, Using Queuing Theory to Design 3 Tier Systems, Oracle Corporation White Paper, www.scalable.us.oracle.com

Dave Cook, Ellen Dudar and Craig Shallahamer, 1997, The Ratio Modelling Technique, Oracle Corporation White Paper, 1997, http://www.orapub.com

Jeff Holt, 1997, System Validation and Stress Testing, an Introduction to SPG Validate, available from spg.us.oracle.com

Raj Jain, 1991, The Art of Computer Systems Performance Analysis, Wily, ISBN 0-471-50336-3

Cary Milsap, 1996, An EXCEL base queuing model, available from spg.us.oracle.com.

Derek Rowntree, 1981, Statistics Without Tears - A Primer for Non-Mathematicians, Allyn and Bacon, ISBN 0-02-404090-8

Craig Shallahamer,1995, Predicting Computing System Capacity and Throughput, Oracle Corporation White Paper, http://www.orapub.com

Page: 1

_1077343159.vsd

_1077343163.xls
Sheet: Chart1

Sheet: Query Customer

Sheet: Calculate Price

Sheet: Sellocn13

Sheet: Selord33

Sheet: Acdtl33

Sheet: Perf01

Sheet: Perf02

Sheet: Perf03

Sheet: Perf04

Sheet: Sheet9

Sheet: cps vs disk

Sheet: block changes vd cpu

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

Query Customer

Calculate Price

Calculate Discount

Item Code Lookup

Item Price Check

Customer Account Check

Discount Code Lookup

3.25

4.67

8.12

3.4

5.66

0.784

2.97

Service Name

Query Customer

Txn rate

CPU %

Log Reads

unit cost

0.01627457627118644

12.030508474576271

correlation coefficient

0.9888104955925167

0.9852545735116766

intecept

0.5828813559322037

510.54237288135596

cpu vs disk (cpu=x)

slope

729.0559936730881

correl

0.990546088494618

Service Name

SELPER23

Total

Logical

Txn rate

CPU %

Read/min

unit cost

0.009336949152542373

3.437423728813559

correlation coefficient

0.980682180645888

0.9871343292092428

intercept

0.8618644067796608

212.7966101694915

cpu vs disk (cpu=x)

slope

348.19589972859535

correl

0.9520144650230418

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

SELLOCN13

Txn rate

CPU %

Log Reads

unit cost

0.0010214

3.76016

correlation coefficient

0.9979236633151315

0.8537460428218488

intecept

3.6500000000000004

81078.5

cpu vs disk (cpu=x)

slope

3809.6932828995023

correl

0.9395649913717072

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

SELORD33

Txn rate

CPU %

Log Reads

unit cost

2.346E-4

0.98379

correlation coefficient

0.9972810196365862

0.9916251355758012

intercept

1.0984999999999996

-4343.8499999999985

cpu vs disk (cpu=x)

slope

4209.175620406892

correl

0.9924610569708647

20000.0

20000.0

30000.0

30000.0

50000.0

50000.0

60000.0

60000.0

5.6

13429.0

8.5

28275.0

12.5

43142.0

15.33

55185.0

Service Name

ACDTL33

Txn rate

CPU %

Log Reads

unit cost

8.327551020408164E-4

11.48461224489796

correlation coefficient

0.9607113306971229

0.8833276965002156

intercept

2.1379591836734697

-38823.89795918368

cpu vs disk (cpu=x)

slope

12912.895914082475

correl

0.82907571958895

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

PERF01

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

2.9048458149779735E-5

0.035444933920704844

0.032310132158590306

0.0021797356828193834

correlation coefficient

0.8781964786396794

0.9620023840281223

0.8783635606490042

0.9955667500566702

Service Name

PERF02

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

2.9541740674955597E-5

0.005609183673469388

0.10836224489795919

4.6938775510204083E-4

correlation coefficient

0.7364015193524551

0.9999916107907965

0.9911086866175768

0.9965865554006947

Service Name

Update Customer Account

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

0.00747864406779661

0.9145084745762712

2.706813559322034

0.003228813559322038

correlation coefficient

0.9816239849148117

0.9755656819915891

0.9816239849148117

0.9976333111320582

Service Name

PERF04

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

4.807E-4

0.00402

2.49403

3.647E-4

correlation coefficient

0.9711445037572212

0.910537531542341

0.9605833626418357

0.9836295336714617

Query Customer

3.25

Calculate Price

4.67

Calculate Discount

8.12

Item Code Lookup

3.4

Item Price Check

5.66

Customer Account Check

0.784

Discount Code Lookup

2.97

cpu

log reads

slope

7366.372652479927

correl

0.8679961690780073

intercept

-16491.407454151995

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

cpu

blocks

correl

-0.4207126938985434

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service

Unit Cost

Target rate

Cost

_1077343165.vsd

_1077343168.vsd

_1077343169.doc
��

Generator

File

Transaction

Generator

Data

Report

Summary

Report

Report

Report

Report

Driver

Query

Driver

DML

HP Client

HP V2200

Driver

Driver

DML

Client

DML

Client

Driver

Driver

Query

Client

Query

Client

Win95 Forms

Prototype

Application Servers

Tuxedo /T

Database

_1077343167.xls
Sheet: Chart1

Sheet: Sheet1

Sheet: Sheet2

Sheet: Sheet3

Sheet: Sheet4

Sheet: Sheet5

Sheet: Sheet6

Sheet: Sheet7

Sheet: Sheet8

Sheet: Sheet9

Sheet: Sheet10

Sheet: Sheet11

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

7.652674404893108

4.193009138746248

2.6282410119284063

1.0138510221092465

4.923796939033335

2.703702944189575

1.543616441853035

0.6806483533574685

12.4

3.050615875925894

1.7113329399935888

0.8140928905124226

1.1794696075427167

0.6865910333961415

0.41622778520066206

0.17495449537941143

4.910725648725268

2.761631079226082

2.12

0.6371397037723036

11.34

7.281478594359928

4.493851396248836

1.8057563815673938

9.742169497835345

5.053491216390074

2.5031089826370927

1.5882526821457013

6588.0

2892.5325478358873

1995.9382218862258

1388.6170126805503

3350.4791376563194

2570.974446632236

1100.0

364.50095111191985

9252.333638831593

1732.4191367004237

1369.0

888.0

1300.0

565.0510614480055

265.0546654809888

90.00296664990995

4100.0

2333.5497081075046

1508.788662574964

501.84153808141735

6196.461602138057

5739.508308088088

2621.4833589716814

456.2632069834475

9066.557155277522

2588.604754440854

2198.409844971161

576.3763286234077

Query Customer

0.01627

150.0

2.4405

Calculate Price

0.00934

750.0

7.005

Calculate Discount

0.01624

200.0

3.248

Item Code Lookup

0.00567

750.0

4.2524999999999995

Item Price Check

0.01258

450.0

5.661

Customer Account Check

0.01307

30.0

0.3921

Discount Code Lookup

0.007425

120.0

0.891

23.890099999999997

Record New Order

0.00733

250.0

1.8325

Insert Order Line

0.0096

750.0

7.199999999999999

Update Customer Account

0.0187

100.0

1.87

Post Order Details to Shipping

0.01216

250.0

3.04

13.942499999999999

cpu util

reads/min

Target rate

 %CPU

Target rate

 %CPU

Target rate

 %CPU

qc

cd

ipc

300.0

4.875

5.3535244446099135

750.0

12.18

13.559372255630677

675.0

8.49

9.216775177553977

200.0

3.25

2.9764075519895767

500.0

8.12

8.101701640849429

450.0

5.66

4.837237538600209

100.0

1.625

1.8459769114338616

250.0

4.06

4.641393386726054

225.0

2.83

2.511728332137153

50.0

0.8125

0.712647755561157

125.0

2.03

1.9570842228264063

112.5

1.415

1.4655617586476104

Target rate

 %CPU

Target rate

 %CPU

Target rate

 %CPU

60.0

0.784

cp

icl

cac

750.0

7.005

7.049465948286391

900.0

5.1

5.507077845663932

90.0

1.1760000000000002

1.241901267036203

500.0

4.67

4.217871794175539

600.0

3.4

3.0168472041074796

60.0

0.784

0.7751370448912713

250.0

2.335

2.615436594727743

300.0

1.7

1.9394611229012266

30.0

0.392

0.3987467269575353

125.0

1.1675

0.9927567880402719

150.0

0.85

0.7604120979157977

15.0

0.196

0.1888336462325956

Target rate

 %CPU

dcl

600.0

4.455

4.746702415133728

0.007971858339680124

0.9075398405479329

400.0

2.97

2.7828716197843137

200.0

1.485

1.4890873119947927

100.0

0.7425

0.682737780560903

750.0

7.652674404893108

7342.9101099548025

500.0

4.193009138746248

2265.3655065883268

250.0

2.6282410119284063

2000.5541301474777

125.0

1.0138510221092465

1195.3354829238529

600.0

4.923796939033335

3155.4952005912282

400.0

2.703702944189575

2399.205517335006

200.0

1.543616441853035

1476.304180266115

100.0

0.6806483533574685

387.84687277859905

12001.914687357817

600.0

3.050615875925894

1799.8016162610008

300.0

1.7113329399935888

1100.7788602891583

150.0

0.8140928905124226

649.8952731287732

90.0

1.1794696075427167

916.5027736641949

60.0

0.6865910333961415

651.6134953444912

30.0

0.41622778520066206

257.5816625725986

15.0

0.17495449537941143

87.94113833169382

600.0

4.910725648725268

4298.716116657262

400.0

2.761631079226082

2374.06581537738

624.0145991868746

100.0

0.6371397037723036

641.2463457790939

7745.83844950536

500.0

7.281478594359928

5592.187561892761

839.8227525843898

0.9022020025492801

-303.43789157186484

250.0

4.493851396248836

2681.0114503833447

125.0

1.8057563815673938

678.0243892828468

675.0

9.742169497835345

7642.101501124263

450.0

5.053491216390074

3197.758414665231

225.0

2.5031089826370927

1901.2203910278595

112.5

1.5882526821457013

429.5421595611251

7.652674404893108

4.193009138746248

2.6282410119284063

1.0138510221092465

4.923796939033335

2.703702944189575

1.543616441853035

0.6806483533574685

12.4

3.050615875925894

1.7113329399935888

0.8140928905124226

1.1794696075427167

0.6865910333961415

0.41622778520066206

0.17495449537941143

4.910725648725268

2.761631079226082

2.12

0.6371397037723036

11.34

7.281478594359928

4.493851396248836

1.8057563815673938

9.742169497835345

5.053491216390074

2.5031089826370927

1.5882526821457013

6089.716159501237

2936.03862346245

2154.7611224526895

922.5791560126672

3269.9005566671945

2933.2695478929795

1369.4315926481167

342.78918551281794

10674.750469661685

1872.1051884500973

926.7989466820086

602.8407782690396

886.0197029741175

654.1610808881162

271.492853061326

87.61386697473509

3615.766470147113

2232.556358138262

1108.7260940069814

586.0662345359665

6179.948182855566

6808.04036099133

2752.525112775293

1179.8994865231166

7132.698188163745

2580.8824189473917

1931.3927548815873

1071.0038373930513

750.0

7.652674404893108

6588.0

500.0

4.193009138746248

2892.5325478358873

250.0

2.6282410119284063

1995.9382218862258

125.0

1.0138510221092465

1388.6170126805503

600.0

4.923796939033335

3350.4791376563194

400.0

2.703702944189575

2570.974446632236

200.0

1.543616441853035

1100.0

100.0

0.6806483533574685

364.50095111191985

9252.333638831593

600.0

3.050615875925894

1732.4191367004237

300.0

1.7113329399935888

1369.0

150.0

0.8140928905124226

888.0

90.0

1.1794696075427167

1300.0

60.0

0.6865910333961415

565.0510614480055

30.0

0.41622778520066206

265.0546654809888

15.0

0.17495449537941143

90.00296664990995

600.0

4.910725648725268

4100.0

400.0

2.761631079226082

2333.5497081075046

1508.788662574964

100.0

0.6371397037723036

501.84153808141735

6196.461602138057

500.0

7.281478594359928

5739.508308088088

250.0

4.493851396248836

2621.4833589716814

729.1285133167769

24.296145152548434

0.958828840075075

125.0

1.8057563815673938

456.2632069834475

675.0

9.742169497835345

9066.557155277522

450.0

5.053491216390074

2588.604754440854

225.0

2.5031089826370927

2198.409844971161

112.5

1.5882526821457013

576.3763286234077

_1077343164.xls
Sheet: Chart2

Sheet: Query Customer

Sheet: Calculate Price

Sheet: Sellocn13

Sheet: Selord33

Sheet: Acdtl33

Sheet: Perf01

Sheet: Perf02

Sheet: Perf03

Sheet: Perf04

Sheet: Sheet9

Sheet: cps vs disk

Sheet: block changes vd cpu

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

DML Services

Query Services

8.0

29.0

Service Name

Query Customer

Txn rate

CPU %

Log Reads

unit cost

0.01627457627118644

12.030508474576271

correlation coefficient

0.9888104955925167

0.9852545735116766

intecept

0.5828813559322037

510.54237288135596

cpu vs disk (cpu=x)

slope

729.0559936730881

correl

0.990546088494618

Service Name

SELPER23

Total

Logical

Txn rate

CPU %

Read/min

unit cost

0.009336949152542373

3.437423728813559

correlation coefficient

0.980682180645888

0.9871343292092428

intercept

0.8618644067796608

212.7966101694915

cpu vs disk (cpu=x)

slope

348.19589972859535

correl

0.9520144650230418

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

SELLOCN13

Txn rate

CPU %

Log Reads

unit cost

0.0010214

3.76016

correlation coefficient

0.9979236633151315

0.8537460428218488

intecept

3.6500000000000004

81078.5

cpu vs disk (cpu=x)

slope

3809.6932828995023

correl

0.9395649913717072

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

SELORD33

Txn rate

CPU %

Log Reads

unit cost

2.346E-4

0.98379

correlation coefficient

0.9972810196365862

0.9916251355758012

intercept

1.0984999999999996

-4343.8499999999985

cpu vs disk (cpu=x)

slope

4209.175620406892

correl

0.9924610569708647

20000.0

20000.0

30000.0

30000.0

50000.0

50000.0

60000.0

60000.0

5.6

13429.0

8.5

28275.0

12.5

43142.0

15.33

55185.0

Service Name

ACDTL33

Txn rate

CPU %

Log Reads

unit cost

8.327551020408164E-4

11.48461224489796

correlation coefficient

0.9607113306971229

0.8833276965002156

intercept

2.1379591836734697

-38823.89795918368

cpu vs disk (cpu=x)

slope

12912.895914082475

correl

0.82907571958895

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

PERF01

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

2.9048458149779735E-5

0.035444933920704844

0.032310132158590306

0.0021797356828193834

correlation coefficient

0.8781964786396794

0.9620023840281223

0.8783635606490042

0.9955667500566702

Service Name

PERF02

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

2.9541740674955597E-5

0.005609183673469388

0.10836224489795919

4.6938775510204083E-4

correlation coefficient

0.7364015193524551

0.9999916107907965

0.9911086866175768

0.9965865554006947

Service Name

Update Customer Account

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

0.018696610169491524

2.286271186440678

6.767033898305085

0.008072033898305091

correlation coefficient

0.9816239849148117

0.9755656819915892

0.9816239849148117

0.9976333111320583

Service Name

PERF04

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

4.807E-4

0.00402

2.49403

3.647E-4

correlation coefficient

0.9711445037572212

0.910537531542341

0.9605833626418357

0.9836295336714617

Query Customer

3.25

Calculate Price

4.67

Calculate Discount

8.12

Item Code Lookup

3.4

Item Price Check

5.66

Customer Account Check

0.784

Discount Code Lookup

2.97

DML Services

8.0

Query Services

29.0

cpu

log reads

slope

7366.372652479927

correl

0.8679961690780073

intercept

-16491.407454151995

cpu

blocks

correl

-0.4207126938985434

Service

Unit Cost

Target rate

Cost

_1077343161.xls

_1077343162.xls
Sheet: Query Customer

Sheet: Calculate Price

Sheet: Sellocn13

Sheet: Selord33

Sheet: Acdtl33

Sheet: Perf01

Sheet: Perf02

Sheet: Perf03

Sheet: Perf04

Sheet: Sheet9

Sheet: cps vs disk

Sheet: block changes vd cpu

Sheet: Sheet12

Sheet: Sheet13

Sheet: Sheet14

Sheet: Sheet15

Sheet: Sheet16

Service Name

Query Customer

Txn rate

CPU %

Log Reads

unit cost

0.01627457627118644

6.0152542372881355

correlation coefficient

0.9888104955925167

0.9852545735116766

intecept

0.5828813559322037

255.27118644067798

cpu vs disk (cpu=x)

slope

364.52799683654405

correl

0.990546088494618

Service Name

SELPER23

Total

Logical

Txn rate

CPU %

Read/min

unit cost

0.009336949152542373

3.437423728813559

correlation coefficient

0.980682180645888

0.9871343292092428

intercept

0.8618644067796608

212.7966101694915

cpu vs disk (cpu=x)

slope

348.19589972859535

correl

0.9520144650230418

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

SELLOCN13

Txn rate

CPU %

Log Reads

unit cost

0.0010214

3.76016

correlation coefficient

0.9979236633151315

0.8537460428218488

intecept

3.6500000000000004

81078.5

cpu vs disk (cpu=x)

slope

3809.6932828995023

correl

0.9395649913717072

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

SELORD33

Txn rate

CPU %

Log Reads

unit cost

2.346E-4

0.98379

correlation coefficient

0.9972810196365862

0.9916251355758012

intercept

1.0984999999999996

-4343.8499999999985

cpu vs disk (cpu=x)

slope

4209.175620406892

correl

0.9924610569708647

20000.0

20000.0

30000.0

30000.0

50000.0

50000.0

60000.0

60000.0

5.6

13429.0

8.5

28275.0

12.5

43142.0

15.33

55185.0

Service Name

ACDTL33

Txn rate

CPU %

Log Reads

unit cost

8.327551020408164E-4

11.48461224489796

correlation coefficient

0.9607113306971229

0.8833276965002156

intercept

2.1379591836734697

-38823.89795918368

cpu vs disk (cpu=x)

slope

12912.895914082475

correl

0.82907571958895

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service Name

PERF01

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

2.9048458149779735E-5

0.035444933920704844

0.032310132158590306

0.0021797356828193834

correlation coefficient

0.8781964786396794

0.9620023840281223

0.8783635606490042

0.9955667500566702

Service Name

PERF02

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

2.9541740674955597E-5

0.005609183673469388

0.10836224489795919

4.6938775510204083E-4

correlation coefficient

0.7364015193524551

0.9999916107907965

0.9911086866175768

0.9965865554006947

Service Name

PERF03

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

7.089830508474576E-4

0.016816949152542372

27.067786440677967

3.228813559322037E-4

correlation coefficient

0.9998642915825491

0.9095142381405718

0.9998642915825491

0.9976333111320582

Service Name

PERF04

DB Block

Logical

Redo

Txn rate

CPU %

Changes

Reads

Writes

unit cost

4.807E-4

0.00402

2.49403

3.647E-4

correlation coefficient

0.9711445037572212

0.910537531542341

0.9605833626418357

0.9836295336714617

cpu

log reads

slope

7366.372652479927

correl

0.8679961690780073

intercept

-16491.407454151995

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

cpu

blocks

correl

-0.4207126938985434

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

Service

Unit Cost

Target rate

Cost

_1077343160.xls
Sheet: Chart2

Sheet: UI

Sheet: qAPI

Sheet: graph

Sheet: req

Sheet: MMm fcns

Sheet: macros

Sheet: bugs

0.0

0.0

0.0

0.0

4.4

4.4

4.4

4.4

8.8

8.8

8.8

8.8

13.200000000000001

13.200000000000001

13.200000000000001

13.200000000000001

17.6

17.6

17.6

17.6

22.0

22.0

22.0

22.0

26.4

26.4

26.4

26.4

30.799999999999997

30.799999999999997

30.799999999999997

30.799999999999997

35.199999999999996

35.199999999999996

35.199999999999996

35.199999999999996

39.599999999999994

39.599999999999994

39.599999999999994

39.599999999999994

43.99999999999999

43.99999999999999

43.99999999999999

43.99999999999999

48.39999999999999

48.39999999999999

48.39999999999999

48.39999999999999

52.79999999999999

52.79999999999999

52.79999999999999

52.79999999999999

57.19999999999999

57.19999999999999

57.19999999999999

57.19999999999999

61.59999999999999

61.59999999999999

61.59999999999999

61.59999999999999

65.99999999999999

65.99999999999999

65.99999999999999

65.99999999999999

70.39999999999999

70.39999999999999

70.39999999999999

70.39999999999999

74.8

74.8

74.8

74.8

79.2

79.2

79.2

79.2

83.60000000000001

83.60000000000001

83.60000000000001

83.60000000000001

0.23980815347721823

1.0

0.23980815347721823

1.0

0.26525198938992045

1.0

0.2518891687657431

1.0

0.2967359050445104

1.0

0.26525198938992045

1.0

0.3367003367003367

1.0

0.2801120448179272

1.0

0.38910505836575876

1.0

0.2967359050445104

1.0

0.4608294930875576

1.0

0.3154574132492114

1.0

0.5649717514124294

1.0

0.3367003367003367

1.0

0.7299270072992698

1.0

0.3610108303249097

1.0

1.0309278350515463

1.0

0.38910505836575876

1.0

1.0

0.42194092827004215

1.0

1.0

0.46082949308755755

1.0

1.0

0.5076142131979695

1.0

1.0

0.5649717514124293

1.0

1.0

0.6369426751592355

1.0

1.0

0.7299270072992696

1.0

1.0

0.8547008547008543

1.0

1.0

1.0309278350515463

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Queueing Model User Interface

qAPI 1.3e (96/10/16)

Prepared for Detriot Edison

March 5th 1998

Ian Carney

Senior Principal Consultant

TP Service Line

name

value

unit

description

client

Detriot Edison

name of client for whom analysis is prepared

author_team

TP Service Line

affiliation of preparer of this report

author_name

Ian Carney

name of preparer of this report

author_title

Senior Principal Consultant

title of preparer of this report

repdate

March 5th 1998

date printed on this report

Queueing Model Application Program Interface

qAPI 1.3e (96/10/16) - Cary Millsap, Oracle

name

value

description

unit_job

unit_job

service call

units in which requests are expressed

unit_time

unit_time

sec

units in which time is expressed

unit_svc

unit_svc

sec/service call

units of time per unit of request

unit_thput

unit_thput

service call/sec

units of requests per unit of time

value

name

case1

case2

unit

description

colorcode

case1

case2

color code for graph

case

case1

11 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

case2

22 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

connotative name to identify the model parameters

n

queues

queues1

11.0

queues2

22.0

queues

number of queues

m

servers

servers1

1.0

servers2

1.0

servers

number of servers per queue

l

sysarrivals

sysarrivals1

45.17

sysarrivals2

45.17

service call/sec

avg system-wide job arrival rate

arrivals

arrivals1

4.106363636363636

arrivals2

2.053181818181818

service call/sec

avg job arrival rate per queue

m

svcrate

svcrate1

4.17

svcrate2

4.17

service call/sec

avg service rate per job on one server

R

resptimereq

resptimereq1

1.0

resptimereq2

1.0

sec/service call

required avg response time per job at expected load

svctime

svctime1

0.23980815347721823

svctime2

0.23980815347721823

sec/service call

avg service time per job on one server

W

qdelayreq

qdelayreq1

0.7601918465227817

qdelayreq2

0.7601918465227817

sec/service call

avg queueing delay per job at expected load

utilization

0.9847394811423589

0.49236974057117944

avg utilization per server per queue

Erlang C

0.9847394811423588

0.49236974057117944

Erlang's C formula

qdelay

15.47447756080853

0.23259897557582024

sec/service call

expected queueing delay per job at expected load

capqdelay

20.356016223524158

0.30597404673538503

qdelay as a proportion of qdelayreq

p

p_success

0.061764226346350926

percentile2

0.9015014313017471

p_fail

0.9382357736536491

0.09849856869825291

% of arrivals with queueing delays > qdelayreq

pqdelay

0.0

0.0

sec/service call

p-percentile queueing delay per job at expected load

cappqdelay

0.0

0.0

pqdelay as a proportion of qdelayreq

r

sysutilization

0.9847394811423589

0.49236974057117944

overall system utiilzation at sysarrivals rate

t

effthput

3.2

3.2

service call/sec

effective throughput for a single queue

nt

effsysthput

effsysthput1

35.2

effsysthput2

70.4

service call/sec

effective system-wide throughput

capthput

0.7792782820456056

1.5585565640912111

effsysthput as a proportion of sysarrivals

name

value

description

zoom

zoom

TRUE to zoom in on the knee in the graph

l_prec

l_prec

0.1

precision of effthput calculation

frmax

frmax

1.25

max height of graph relative to resptimereq

center

center

0.8

location of graph knee relative to x-axis endpoints

ndx

ndx

20.0

of data points used to plot throughput graph

x

x

70.4

approximate effective throughput

xmin

xmin

0.0

throughput graph x-axis min value

xmax

xmax

83.60000000000001

throughput graph x-axis max value

dx

dx

4.4

graphical precision of effsysthput

rmax

rmax

1.25

max y-axis value shown on graph

infinity

infinity

1.0E300

a very large number -- "Excel infinity"

qapi_rev

qapi_rev

1.3e

queueing API revision

qapi_revdate

qapi_revdate

35354.0

queueing API revision date

qapi_revision

qapi_revision

qAPI 1.3e (96/10/16)

queueing API printable revision

qapi_author

qapi_author

Cary Millsap, Oracle

queueing API author

Queueing Model Predictions

qAPI 1.3e (96/10/16)

Prepared for Detriot Edison

March 5th 1998

Ian Carney

Senior Principal Consultant

TP Service Line

Case 1: 11 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

Case 2: 22 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

Vertical Axis:

Response time (sec/service call) = service time + queueing delay

Horizontal Axis:

Throughput (service call/sec)

Queueing Model Predictions

qAPI 1.3e (96/10/16)

Prepared for Detriot Edison

March 5th 1998

Ian Carney

Senior Principal Consultant

TP Service Line

Detailed Queueing Model Results

Case 1: 11 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

system

per queue

formatted

req'd

average

average

average

average

per-

Erlang's

average

average

average

average

arrival

arrival

service

service

queue

C

queueing

response

response

response

normalized

normalized

rate

rate

rate

time

utilization

formula

time

time

time

time

x

y

slope

0.0

arrival rate

sssq

mssq

0.0

0.0

4.17

0.23980815347721823

0.0

0.0

0.0

0.23980815347721823

0.23980815347721823

1.0

0.0

0.19184652278177458

0.0

0.0

0.0

4.4

0.4

4.17

0.23980815347721823

0.09592326139088729

0.09592326139088729

0.0254438359127022

0.26525198938992045

0.26525198938992045

1.0

0.05263157894736842

0.21220159151193635

0.3867463058730736

4.4

16.588

17.468

8.8

0.8

4.17

0.23980815347721823

0.19184652278177458

0.19184652278177458

0.05692775156729216

0.2967359050445104

0.2967359050445104

1.0

0.10526315789473684

0.23738872403560835

0.4785555179497679

8.8

29.656

33.176

13.200000000000001

1.2000000000000002

4.17

0.23980815347721823

0.2877697841726619

0.2877697841726619

0.09689218322311849

0.3367003367003367

0.3367003367003367

1.0

0.15789473684210525

0.26936026936026936

0.6074593611685593

13.200000000000001

39.204

47.124

17.6

1.6

4.17

0.23980815347721823

0.38369304556354916

0.38369304556354916

0.14929690488854053

0.38910505836575876

0.38910505836575876

1.0

0.21052631578947367

0.311284046692607

0.7965517693144154

17.6

45.232000000000006

59.312

22.0

2.0

4.17

0.23980815347721823

0.47961630695443647

0.47961630695443647

0.2210213396103394

0.4608294930875576

0.4608294930875576

1.0

0.2631578947368421

0.3686635944700461

1.0902114077713427

22.0

47.74

69.74

26.4

2.4

4.17

0.23980815347721823

0.5755395683453237

0.5755395683453237

0.32516359793521116

0.5649717514124294

0.5649717514124294

1.0

0.31578947368421045

0.4519774011299435

1.5829623265380524

26.4

46.727999999999994

78.40799999999999

30.799999999999997

2.8

4.17

0.23980815347721823

0.671462829736211

0.671462829736211

0.49011885382205167

0.7299270072992698

0.7299270072992698

1.0

0.36842105263157887

0.5839416058394159

2.5073198894799757

30.799999999999997

42.19600000000001

85.316

35.199999999999996

3.1999999999999997

4.17

0.23980815347721823

0.7673860911270983

0.7673860911270982

0.7911196815743281

1.0309278350515463

1.0309278350515463

1.0

0.4210526315789473

0.8247422680412371

4.575212581834602

35.199999999999996

34.144

90.46399999999998

39.599999999999994

3.5999999999999996

4.17

0.23980815347721823

0.8633093525179856

0.8633093525179856

1.5145778114350619

1.7543859649122802

1.0

0.47368421052631565

39.599999999999994

22.572000000000003

93.85199999999999

43.99999999999999

3.9999999999999996

4.17

0.23980815347721823

0.9592326139088728

0.9592326139088728

5.642544787699241

5.8823529411764595

1.0

0.5263157894736841

43.99999999999999

7.480000000000013

95.47999999999999

48.39999999999999

4.3999999999999995

4.17

0.23980815347721823

1.05515587529976

1.0

1.0E307

1.0E307

1.0

0.5789473684210524

48.39999999999999

4.8399999999999995E-306

95.34799999999998

52.79999999999999

4.799999999999999

4.17

0.23980815347721823

1.1510791366906472

1.0

1.0E307

1.0E307

1.0

0.6315789473684209

52.79999999999999

5.2799999999999994E-306

93.456

57.19999999999999

5.199999999999999

4.17

0.23980815347721823

1.2470023980815346

1.0

1.0E307

1.0E307

1.0

0.6842105263157893

57.19999999999999

5.719999999999999E-306

89.804

61.59999999999999

5.599999999999999

4.17

0.23980815347721823

1.3429256594724217

1.0

1.0E307

1.0E307

1.0

0.7368421052631576

61.59999999999999

6.159999999999999E-306

84.39200000000004

65.99999999999999

5.999999999999999

4.17

0.23980815347721823

1.438848920863309

1.0

1.0E307

1.0E307

1.0

0.7894736842105261

65.99999999999999

6.599999999999999E-306

77.22000000000001

70.39999999999999

6.3999999999999995

4.17

0.23980815347721823

1.5347721822541966

1.0

1.0E307

1.0E307

1.0

0.8421052631578946

70.39999999999999

7.039999999999999E-306

68.288

74.8

6.8

4.17

0.23980815347721823

1.630695443645084

1.0

1.0E307

1.0E307

1.0

0.894736842105263

74.8

7.48E-306

57.595999999999975

79.2

7.2

4.17

0.23980815347721823

1.7266187050359714

1.0

1.0E307

1.0E307

1.0

0.9473684210526315

79.2

7.920000000000001E-306

45.14399999999998

83.60000000000001

7.6000000000000005

4.17

0.23980815347721823

1.8225419664268587

1.0

1.0E307

1.0E307

1.0

1.0

83.60000000000001

8.360000000000001E-306

30.931999999999967

Queueing Model Predictions

qAPI 1.3e (96/10/16)

Prepared for Detriot Edison

March 5th 1998

Ian Carney

Senior Principal Consultant

TP Service Line

Detailed Queueing Model Results

Case 2: 22 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

system

per queue

formatted

req'd

average

average

average

average

per-

Erlang's

average

average

average

average

arrival

arrival

service

service

queue

C

queueing

response

response

response

normalized

normalized

rate

rate

rate

time

utilization

formula

time

time

time

time

x

y

slope

0.0

0.0

0.0

4.17

0.23980815347721823

0.0

0.0

0.0

0.23980815347721823

0.23980815347721823

1.0

0.0

0.19184652278177458

4.4

0.2

4.17

0.23980815347721823

0.047961630695443645

0.047961630695443645

0.012081015288524849

0.2518891687657431

0.2518891687657431

1.0

0.05263157894736842

0.20151133501259447

0.18363143238557783

8.8

0.4

4.17

0.23980815347721823

0.09592326139088729

0.09592326139088729

0.0254438359127022

0.26525198938992045

0.26525198938992045

1.0

0.10526315789473684

0.21220159151193635

0.20311487348749577

13.200000000000001

0.6000000000000001

4.17

0.23980815347721823

0.14388489208633096

0.14388489208633093

0.04030389134070895

0.2801120448179272

0.2801120448179272

1.0

0.15789473684210525

0.22408963585434175

0.22587284250570253

17.6

0.8

4.17

0.23980815347721823

0.19184652278177458

0.19184652278177458

0.05692775156729216

0.2967359050445104

0.2967359050445104

1.0

0.21052631578947367

0.23738872403560835

0.2526826754440654

22.0

1.0

4.17

0.23980815347721823

0.23980815347721823

0.23980815347721823

0.07564925977199315

0.3154574132492114

0.3154574132492114

1.0

0.2631578947368421

0.2523659305993691

0.28456692471145484

26.4

1.2

4.17

0.23980815347721823

0.28776978417266186

0.28776978417266186

0.09689218322311846

0.3367003367003367

0.3367003367003367

1.0

0.31578947368421045

0.26936026936026936

0.3228924364571047

30.799999999999997

1.4

4.17

0.23980815347721823

0.3357314148681055

0.3357314148681055

0.1212026768476915

0.3610108303249097

0.3610108303249097

1.0

0.36842105263157887

0.2888086642599278

0.36951950309351034

35.199999999999996

1.5999999999999999

4.17

0.23980815347721823

0.38369304556354916

0.38369304556354916

0.14929690488854053

0.38910505836575876

0.38910505836575876

1.0

0.4210526315789473

0.311284046692607

0.42703226622090507

39.599999999999994

1.7999999999999998

4.17

0.23980815347721823

0.4316546762589928

0.4316546762589928

0.18213277479282394

0.42194092827004215

0.42194092827004215

1.0

0.47368421052631565

0.33755274261603374

0.4991052225451085

43.99999999999999

1.9999999999999998

4.17

0.23980815347721823

0.4796163069544364

0.4796163069544364

0.22102133961033932

0.46082949308755755

0.46082949308755755

1.0

0.5263157894736841

0.36866359447004604

0.5911061852262337

48.39999999999999

2.1999999999999997

4.17

0.23980815347721823

0.52757793764988

0.52757793764988

0.2678060597207513

0.5076142131979695

0.5076142131979695

1.0

0.5789473684210524

0.40609137055837563

0.711127745678263

52.79999999999999

2.3999999999999995

4.17

0.23980815347721823

0.5755395683453236

0.5755395683453237

0.32516359793521105

0.5649717514124293

0.5649717514124293

1.0

0.6315789473684209

0.45197740112994345

0.8718345808597876

57.19999999999999

2.5999999999999996

4.17

0.23980815347721823

0.6235011990407673

0.6235011990407673

0.39713452168201724

0.6369426751592355

0.6369426751592355

1.0

0.6842105263157893

0.5095541401273884

1.0939580409514558

61.59999999999999

2.7999999999999994

4.17

0.23980815347721823

0.6714628297362109

0.6714628297362109

0.49011885382205145

0.7299270072992696

0.7299270072992696

1.0

0.7368421052631576

0.5839416058394157

1.4133618485285195

65.99999999999999

2.9999999999999996

4.17

0.23980815347721823

0.7194244604316545

0.7194244604316545

0.614892701223636

0.8547008547008543

0.8547008547008543

1.0

0.7894736842105261

0.6837606837606834

1.8965624805040855

70.39999999999999

3.1999999999999997

4.17

0.23980815347721823

0.7673860911270983

0.7673860911270982

0.7911196815743281

1.0309278350515463

1.0309278350515463

1.0

0.8421052631578946

0.8247422680412371

2.678650101330516

74.8

3.4

4.17

0.23980815347721823

0.815347721822542

0.815347721822542

1.0588931452240808

1.2987012987012991

1.0

0.894736842105263

79.2

3.6

4.17

0.23980815347721823

0.8633093525179857

0.8633093525179857

1.5145778114350634

1.7543859649122817

1.0

0.9473684210526315

83.60000000000001

3.8000000000000003

4.17

0.23980815347721823

0.9112709832134294

0.9112709832134294

2.4628945492254877

2.7027027027027057

1.0

1.0

Throughput Requirements

qAPI 1.3e (96/10/16)

Prepared for Detriot Edison

March 5th 1998

Case 1: 11 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

Case 2: 22 x M/M/1 queues: per-queue arrival rate=45.170 service call/sec, per-server service rate=4.170 service call/sec

Required throughput and observed average service times

CPU

case 1

case 2

txn/hr

case 1

case 2

request type

observed average service time (sec/service call)

observed avg CPU utilization (percent)

estimated avg CPU service time (sec/service call)

required response time limit (sec/service call)

required CPU-only time limit (sec/service call)

throughput requirement (txn/hr)

throughput conversion unit

throughput requirement (service call/sec)

txn 1

0.496

0.2

0.09920000000000001

1.5

0.30000000000000004

2.777777777777778E-4

0.2777777777777778

0.2777777777777778

txn 2

1.203

0.2

0.24060000000000004

1.5

0.30000000000000004

2.777777777777778E-4

0.8333333333333334

0.2777777777777778

txn 3

0.304

0.2

0.0608

1.5

0.30000000000000004

2.777777777777778E-4

0.2777777777777778

1.1111111111111112

required throughput (service call/sec)

5000.0

6000.0

1.3888888888888888

1.6666666666666667

weighted average service time (sec/service call)

0.17636000000000004

0.09716666666666667

weighted average required response time (sec/service call)

0.30000000000000004

0.3

Enhancement Requests

Prepared for Detriot Edison

March 5th 1998

1.0

Use percentile in the maxlambda() function to restrict the effective throughput not on average response

time, but on nth percentile response time. Check to see if percentile=50 yields the same answer as we're

accustomed to seeing today from maxlambda() with no percentile information.

The q-percentile response time is not equal to the q-percentile queue delay plus the average service time.

The reason is that service will often take longer than the average service time. If this happens at the same

time as a long queueing delay time, the total response time will actually exceed Er+qpw(q). Right now, I

don't know how to calculate this effect.

Some analysis: The difficult part here is that there's not much way of knowing the variance on the service

rate distribution. If we did, we could actually find the (1-sqrt(q))*100-percentile service time, call it S, and

add that to the (1-sqrt(q))*100-percentile queueing delay (wait) time, call it W. The net effect would be

this. The probability P(s>S)=sqrt(q). The probability P(w>W)=sqrt(q). Then the probability P(s>S and

w>W)=sqrt(q)^2=q, which yields the (1-q)-percentile response time.

Enhancement Requests

Prepared for Detriot Edison

March 5th 1998

1.0

Use percentile in the maxlambda() function to restrict the effective throughput not on average response

time, but on nth percentile response time. Check to see if percentile=50 yields the same answer as we're

accustomed to seeing today from maxlambda() with no percentile information.

The q-percentile response time is not equal to the q-percentile queue delay plus the average service time.

The reason is that service will often take longer than the average service time. If this happens at the same

time as a long queueing delay time, the total response time will actually exceed Er+qpw(q). Right now, I

don't know how to calculate this effect.

Some analysis: The difficult part here is that there's not much way of knowing the variance on the service

rate distribution. If we did, we could actually find the (1-sqrt(q))*100-percentile service time, call it S, and

add that to the (1-sqrt(q))*100-percentile queueing delay (wait) time, call it W. The net effect would be

this. The probability P(s>S)=sqrt(q). The probability P(w>W)=sqrt(q). Then the probability P(s>S and

w>W)=sqrt(q)^2=q, which yields the (1-q)-percentile response time.

_1077343154.vsd

_1077343156.doc
��

case 2 requirement

case 2 response time

case 1 requirement

case 1 response time

response time

throughput

21

20

18

17

16

15

14

13

12

11

10

9

8

7

5

4

3

2

1

0

0.000

0.200

0.400

0.600

0.800

1.000

1.200

_1077343157.vsd

_1077343155.vsd

_1077343152.vsd

_1077343153.vsd

_1077343150.vsd

