Alon Peled, Palcom Systems Ltd, 17 Rabina st, Tel-Aviv 69395

Tel: 050-262457, 03-6431821, Email: alon@peled.com Web: www.peled.com

Index Organized Tables

When should they be used?

Written by: Alon Peled (www.peled.com)

Original February 6th 2002

Version 1.5 March 9th 2002

Abstract

The Oracle database provides us with more than one way to achieve the same goal. Each problem has more than one solution and each restriction has more than one workaround. Since Oracle8, even table organization can be done in more than one-way: Heap or IOT (Index Organized Table). Every DBA has asked himself more than once: When and where would the use of an IOT be helpful?

This paper is all about understanding, using, and taking advantage of IOT.

The latest version can be found at www.peled.com
21.
Introduction

32.
Drawbacks of index usage

33.
Index Organised Tables (IOT)

44.
Feature Comparism

45.
On the racetrack – which one is faster?

Error! Bookmark not defined.6.
Conclusion

87.
Syntax

108.
References

119.
Acknowledgments

1110.
About the Author

Disclaimer: The following information is a personal opinion and should not be used on production systems without adequate testing. The author will have no responsibility for any damages that may occur while implementing any of the features described in this document.

1. Introduction

Since the early versions of Oracle, table data organization was done in one way: heap. All rows were piled into the data blocks with no order and no connection between them. In order to escalate retrieval time DBAs were able to add indexes as required. Queries that search a specific row or range of rows had to go through the following steps:

A. Read the index segment.

B. Search the correct key through the B*tree index tree.

C. Get the relevant Rowids

D. Access the table’s correct data block using Rowids.

Diagram D1 describes the index + Heap organization.

[image: image1.jpg]
2. Drawbacks of index usage

2.1 Storage: Index creation uses additional storage space. The index segment has to store the key value and the rowid that would point to the correct data block.

2.2 Performance: Each DML operation (Insert, Delete or update of the key column) or a query using the index has to perform the following two tasks:
First - read the index segment into memory and only then get the data block from the disk.
Second - update the table block and the index block.
3. Index Organized Tables (IOT)

In order to solve some of the above-mentioned issues, Oracle has developed a new way to organize tables:

The data will be stored in the table in the same way as it would be stored in an index. The table behaves like an ordinary table with an additional index, only that there is no need for an external index to speed up row search.

The rows are already in the correct order and interlinked between them. Theoretically, the IOT needs less storage space and less physical IO for exact or range search. In order to speed up performance, DBAs who want to speed up performance have the ability to direct some of the non-key columns to another tablespace. By doing so, the number of blocks which store the key values can be reduced.

Diagram D2 describes the IOT organization method:

[image: image2.jpg]
4. Feature Comparism

Feature
Heap Table
Index organized table

Unique row identification
Rowid
Primary key

Row duplication
Allowed
A primary key is a must

Can be part of a cluster
Yes
No

Contain LONG and LOB datatypes
LONG and LOB
LOB only

Manipulation by applications
Normal
Normal, Same as Heap

Distributed SQL
Allowed
Only from Oracle9i

Replication
Allowed
Only from Oracle9i

Partitioning
Allowed
Only from Oracle8i

5. On the racetrack – which one is faster?

5.1 Test description

Several tests were made, and more than 500,000 rows were inserted into both table types. These rows were then retrieved, updated and deleted more than 10,000 times. The table’s size varied from 10M to over 100M.

Tests were done on short and long rows ranging from 18 to 170 bytes as the average row length. Primary index and secondary indexes were created as well.

5.2 Criteria that were tested

The following are the factors that were tested:

A. Data Load (via insert)

B. Row manipulation – Update and delete

C. Exact fetch via primary index

D. Range scan via secondary index

E. All of the above were tested on various row lengths

5.3 Tests results

5.3.1 Table with Two columns +only primary key

[image: image3.wmf]25

2

11

9

27

9

15

3

0

5

10

15

20

25

30

Insert

Select random PK

Update

Delete

Secods

IOT

HEAP

In the case of a short column length, the IOT query time is more than 400% faster. This is the classic case where IOT would bring the most benefits.

5.3.2 Table with Many columns + single index as primary key

[image: image4.wmf]36

24

48

49

33

38

66

36

0

10

20

30

40

50

60

70

Insert

Select random PK

Update

Delete

Secods

IOT

HEAP

When the table has more than two or three columns, the IOT advantage is small and the focus should be on the query time that is around 40% faster than HEAP tables.

5.3.3 Table with Many columns + Primary key + use of PCTTHRESHOLD

[image: image5.wmf]36

9

27

78

33

38

66

36

0

10

20

30

40

50

60

70

80

90

Insert

Select random PK

Update

Delete

Secods

IOT

HEAP

When we make use of the PCTTHRESHOLD, the IOT advantage in the query criteria leaps to be 400% faster than HEAP tables
5.3.4 Table with Many columns + Primary key + secondary index

[image: image6.wmf]321

41

870

61

162

230

56

844

69

127

0

100

200

300

400

500

600

700

800

900

1000

Insert

Select random PK

Secondary index use

Update

Delete

Secods

IOT

HEAP

The IOT query time, using the secondary index has no advantage over heap secondary index.

5.3.5 Row length – long, Primary key + secondary index + use PCTTHRESHOLD

[image: image7.wmf]341

19

970

35

215

229

57

831

71

175

0

200

400

600

800

1000

1200

Insert

Select random PK

Secondary index use

Update

Delete

Secods

IOT

HEAP

When the IOT table has the PCTTHRESHOLD option, even with a secondary index, the results change dramatically. Although secondary index queries are 15% slower, IOT PK is 400% faster.
5.3.6 Same as above but with only 5000 rows

[image: image8.wmf]5

2

2

3

3

5

2

2

3

3

0

1

2

3

4

5

6

Insert

Select random PK

Secondary index use

Update

Delete

Secods

IOT

HEAP

This test may be the most important one: If your tables are small, the organization method is irrelevant. Both option produce the same results.

Conclusion:

IOT tables may significantly speed up performance in certain types of applications. Best suited for this type are large tables were Primary Key exact fetch is time critical and DML operations are of low volume. In most cases, in the category of exact fetch via primary key, IOT organization is much faster than HEAP. This advantage varies between 15% and 400%, depending on the row length, number of columns and the use of the PCTTHRESHOLD option.
In your application more transaction intensive, then more tests of your own would be in order. The same goes for secondary index usage.
In the case of tables with a small amount of rows (less than 5,000) - I have found now apparent performance difference.

As with any other option or dilemma that you may encounter during application development, both organization methods should be tested in their true environment. My conclusions should never be implemented without thorough testing and you should never assume that someone else knows more about your systems more than you do.

6. Syntax

“CREATE TABLE table_name
 (column_spec… PRIMARY KEY,

 column_spec…,

 column_spec…)

 ORGANIZATION INDEX

 TABLESPACE tablespace_name

 PCTTHRESHOLD percentage_no INCLUDING column_name
 OVERFLOW TABLESPACE another_tablespace_name ”

· You must specify a primary key for an index-organized table, because the primary key uniquely identifies a row. Use the primary key instead of the rowid for directly accessing index-organized rows.

PCTTHRESHOLD integer

Specifies the percentage of space reserved in the index block for an index-organized table row. Any portion of the row that exceeds the specified threshold is stored in the overflow segment. PCTTHRESHOLD must be a value from 1 to 50.

Restriction:

· PCTTHRESHOLD must be large enough to hold the primary key.

· You cannot specify PCTTHRESHOLD for individual partitions of an index-organized table.

OVERFLOW

Specifies that index-organized table data rows exceeding the specified threshold be placed in the data segment listed in this clause.

· When you create an index-organized table, Oracle evaluates the maximum size of each column to estimate the largest possible row. If an overflow segment is needed but you have not specified OVERFLOW, Oracle raises an error and does not execute the CREATE TABLE statement. This checking function guarantees that subsequent DML operations on the index-organized table will not fail because an overflow segment is lacking.

· All physical attributes and storage characteristics you specify in this clause after the OVERFLOW keyword apply only to the overflow segment of the table. Physical attributes and storage characteristics for the index-organized table itself, default values for all its partitions, and values for individual partitions must be specified before this keyword.

· If the index-organized table contains one or more LOB columns, the LOBs will be stored out-of-line unless you specify OVERFLOW, even if they would otherwise be small enough be to stored inline.

INCLUDING column_name

Specifies a column at which to divide an index-organized table row into index and overflow portions. All non-primary-key columns that follow column_name are stored in the overflow data segment. A column_name is either the name of the last primary-key column or any subsequent nonprimary-key column.

Restriction: You cannot specify this clause for individual partitions of an index-organized table.

Compression_clause - enables or disables key compression. This is useful when using more than one column for the primary key.

COMPRESS - Enables key compression, which eliminates repeated occurrence of key column values in index-organized tables. Use integer to specify the prefix length (number of prefix columns to compress).

The valid range of prefix length values is from 1 to the number of primary key columns minus 1. The default prefix length is the number of primary key columns minus 1.

Restriction: At the partition level, you can specify COMPRESS, but you cannot specify the prefix length with integer.

NOCOMPRESS - disables key compression in index-organized tables. This is the default.

Example:

Create table emp_details (
 id

number

not null constraint emp_det_pk primary key,

 Name
varchar2 (50)
,

 Address
varchar2(250)
,

 Phone
varchar2 (50)
,

 Sum1
number

,

 Sum2
number
,

 Date1
date

,

 Date2
date

,

 Qty1

number

,

 Qty2

number

,

 Text
char (50)

)
 ORGANIZATION INDEX

 PCTTHRESHOLD 2 OVERFLOW TABLESPACE ts_data;

Create index emp_details_i2 on emp_details (name) tablespace ts_index;
References

Oracle Technology Network: www.otn.com

7. Acknowledgments

A special thanks goes to Mr. Craig A. Shallahamer, President of OraPub Inc (www.orapub.com).

Another special thanks goes to Mr. Geerlings Mark, chief DBA at Gentex.
8. About the Author

Mr. Peled‘s 14 years of experience in the IT marketplace brings a distinct balance of creativity to any production site. As a senior consultant, Alon’s specializations include designing, tuning and teaching about Oracle based systems.

Mr. Peled also teaches DBA courses in “Michlelet Hi-Tech”.

More details or white paperps can be found at his web site: www.peled.com

Page 1 of 11

_1077134918

_1077135287

_1077135698

_1075962960

_1075963850

_1075959748

