Deploying, Managing, and Administering the Oracle Internet Platform  


Myths & Folklore About Oracle8i Performance Tuning

Gaja Krishna Vaidyanatha, Quest Software Inc.

Introduction

It is hard to believe that the Oracle RDBMS has been in existence for over 22 years…a fascinating but true fact. In this period of time, it has undergone significant change. Over the years, with core functionality transformed, it has become imperative that we keep up with change. Every major release of Oracle makes some of us feel as though we have to re-learn the concepts all over again. Personally, with the advent of every major release of Oracle, I feel like a brand-new DBA. 

In a world that requires us to support well-designed and great performing 24x7xforever commercial applications, there is a dire need for us to keep up with time. Failure to do so, results in us propagating old and potentially irrelevant technical information to others. And that is how myths and folklore are conceived and that also drives us to arrive at inappropriate technical decisions. The myths and folklore discussed in this paper are all performance-related. Although, the list is not comprehensive, it encompasses some of common ones that are out there within the context of Oracle and performance tuning. So what is your take on the legend of Loch Ness?  Does Nessie (as she is affectionately referred to) really exist?

What is Myth & Folklore?

The New Webster’s Dictionary and Thesaurus, defines the term myth as “as old traditional story or legend, especially one concerning fabulous and supernatural beings; giving expression to the early beliefs, aspirations and perceptions of a people and often serving to explain natural phenomena or the origins of a people etc…” It also loosely defines myth as “any fictitious story or account or unfounded belief, a person or thing with no real existence”.

In short, a myth is something that many may believe in but is not necessarily true. It is usually something that does not have any scientific backing and thus makes no sense. Here are a few examples:

· The tooth fairy will remove your broken/fallen tooth from underneath your pillow

· Loch Ness will surface any day now

· Oracle9i will eliminate the need for a DBA

· Every consultant is an “expert” and thus knows more than you

· Oracle Performance tuning is rocket science and requires “expert knowledge”

· The optimal number of extents for every Oracle object is 1…no make that 5

Folklore is a collection of stories that usually follow the myths. They also may refer to sayings or concepts handed down from one generation to another. In the Oracle performance-tuning world, folklore is caused by one’s inability to keep up with the changing times.  Here are some examples:

· The Blue/Red/Yellow/Violet Fairy Books

· Aesop’s Fables

· Alice in Wonderland

· Tuning Oracle using cache-hit ratios

Why Are We Affected?

One of the primary reasons we are affected by myths and folklore is because we resist change, and naturally so. It is human nature to oppose change, as it is not something that most people embrace very easily, because change is persistent and relentless. In today’s world, I look at it in a paradoxical angle - Change is the most permanent thing.

As performance tuners we tend to get affected by myths because we tend to live under a false perception, that we have it all figured out, because we have worked with the Oracle database for a long time (the definition of long is left as an exercise to you - the reader). Which brings up the reason why I resist the word – expert. I believe that knowledge is a vast ocean and what we think we know would probably fit in a few buckets. To call anybody an expert is a fallacy, as it is relative in comparison. As practicing DBAs who engage in performance tuning efforts, we become helpless victims of the myths in our world, if we do not take the time to verify some of most ludicrous things some experts tell us. Misinformation is rampant and is propagated via numerous user group talks, seminars, presentations and volumes of printed matter.

How Do We Protect Ourselves From Myths & Folklore?

For starters, we need to make sure that we can verify every technical claim using reasonable tests or published scientific data. The word of an expert by itself should not be taken as gospel. More importantly, we need to analyze the data that is presented within the context of an Oracle database.

Next, we need to refrain from running our tuning engagements using irrelevant metrics such as cache-hit ratios, because they add zero value to our effort. They don’t provide you any information that gets us to the bottom of our performance problems. Tuning Oracle using cache-hit ratios can be compared to a physician requesting a blood test from every patient, because the course of treatment is determined solely from the blood test report numbers. If you visit this expert physician for a broken tibia (with bone fragments showing through the surface of the skin on your leg) but she or he insists on drawing blood to test the various counters to determine the course of treatment, good luck to you and to this expert physician. Why? Because this physician is going to tell your blood composition checked out perfect, and there is nothing really wrong with you. This is with scant regard to the fact that you are writhing in pain and telling this physician that your leg is broken. For obvious reasons, the blood test numbers will shed no light on the source of your pain nor will it even recognize that you have a broken bone. Performance tuning Oracle systems using cache-hit ratios is comparable to the above analogy.

Myths & Facts

A new era in Oracle performance tuning has begun. Some of us call it the Oracle Performance Revolution. It is an awakening that empowers us with accurate and relevant information. It is a time for us to take a commonsense-driven rationalist path to Oracle performance tuning – Look at the bottlenecks that are plaguing our systems. We need to determine the root of a malady before chalking out a course of treatment. I will go as far as saying that, you will miss nothing if you decide not to check another infamous Oracle cache-hit ratio in your DBA life. It is time for us to take the journey of debunking some evil performance tuning myths.

The CPU Upgrade Myth

If you upgrade your system with faster CPUs, you will instantly get better performance.

Fact

Upgrading your system with faster CPUs to gain better performance as an attempt to fix an existing performance problem (when the CPU is really not the bottleneck) will result in significant degradation in performance. This is caused due to an increase in CPU processing speed without a corresponding increase in the capacity of other sub-systems (such as the I/O sub-system). 

For example, if you doubled the speed of your CPUs and your system was already hampered by I/O bottlenecks, your system will experience twice as much I/O contention. The CPUs will process instructions faster, exacerbating your I/O bottlenecks twice as much [Gunther, 3]. The increased power of the CPUs will process instructions twice as fast, resulting in a faster and an increased demand for I/O. Do your homework before upgrading the CPUs [Millsap, 4]. Do not engage in a CPU upgrade unless you have determined beyond a shred of doubt, that the CPU is in fact “the bottleneck”.

The 0% Idle CPU Bottleneck Myth

If your CPU utilization consistently displays a value of 0 for idle capacity, it indicates that you have CPU bottlenecks on your system.

Fact

Let’s first ask the question whether your system is currently experiencing performance problems. If the answer is no, nothing needs to be done. If performance problems related to application response times exist, start by checking the percentage of CPU capacity wasted waiting for I/O (%wio in a sar –u command in Unix, %Interrupt Time counter in the Processor object on Windows NT). Next, take the time to check the overhead of the operating system (%sys in a sar –u command in Unix or the %Privileged Time counter in the Processor object in the Performance Monitor on Windows NT). The OS overhead is very relevant to our discussion here as high levels of context switching (10s of 1000s per second) and high levels of paging (say 20000+ pages per second) should be investigated. If the %wio and %sys values are individually and consistently above 15%, further investigation is required to determine the cause for such high values. Remember, the goal is to cure the disease not just treat the symptoms.

For example, if %wio in the sar –u output (or the appropriate metric on Windows NT) is consistently above 40%, this indicates that 40% of the CPU capacity on your system is wasted and unused because the CPUs are waiting for I/O requests to be serviced. This truly indicates a system that is plagued by I/O bottlenecks, not CPU bottlenecks.

Alternatively, if %sys number in the sar –u output is consistently above say 30%, the cause for such a high operating system overhead needs to be first investigated. You should realize that 30% of the CPU processing power of your system is consumed by the operating system. Now, doesn’t that strike you as “odd”? The source of the I/O problem or the source of the high operating system overhead needs to be unearthed first before any CPU upgrade effort is even considered.

Once the relevant underlying issues have been resolved, any CPU-intensive applications (such as correlated sub-queries) need to be rewritten using inline views, to reduce the amount of logical I/O consumption. This is because a significant portion of CPU consumption for an Oracle session is from the logical I/O that it performs. After resolving all of the above issues, the run queue for the CPU should be monitored to determine whether the system still is bottlenecking on the CPU. If the run queue for the CPU is consistently above (2-3) times the number of CPUs on the system, should one think of engaging in a system CPU upgrade effort. The run queue for the CPU can be attained from vmstat –S output on Unix or the Queue Length counter in Server Work Queues object on Windows NT [Vaidyanatha, 8]. 

Remedial Measures TO Alleviate CPU Bottlenecks

Here are some of the measures you can take to reduce unnecessary CPU consumption on your Oracle database system:

· Rewrite all correlated sub-queries using inline views. The following is an example:

Before:

Query:

select outer.* 

from emp outer

where outer.sal >


(select avg(inner.sal) 

 
from emp inner 

 where inner.deptno = outer.deptno);

Tkprof Output:

call     count       cpu    elapsed       disk      query    current        rows

------- ------  -------- ---------- ---------- ---------- ----------  ----------

Parse        1      0.02       0.02          0          0          0           0

Execute      1      0.00       0.00          0          0          0           0

Fetch     3278     14.94      33.95       1666       5946         80       49152

------- ------  -------- ---------- ---------- ---------- ----------  ----------

total     3280     14.96      33.97       1666       5946         80       49152

Explain Plan:

Rows     Row Source Operation

-------  ---------------------------------------------------

 49152   FILTER 

114689    TABLE ACCESS FULL EMP 

     6   SORT AGGREGATE 

114688    TABLE ACCESS FULL EMP 

Rows     Execution Plan

-------  ---------------------------------------------------

     
0  SELECT STATEMENT   GOAL: CHOOSE

  49152   FILTER

 114689    TABLE ACCESS   GOAL: ANALYZED (FULL) OF 'EMP'

     
6    SORT (AGGREGATE)

 114688     TABLE ACCESS   GOAL: ANALYZED (FULL) OF 'EMP'

Note:

It is disappointing to look at the explain plan output for the above query, and discover no shred of evidence that even suggests that the number of times the correlated sub-query was actually executed. If you wish to write to Oracle Corporation an enhancement request for the RDBMS, here is a good candidate – Request to add to the explain plan output, the number of executions of a correlated sub-query.

After:

Query:
select emp.*

from emp, (select deptno, avg(sal) avg_sal 

from emp group by deptno) davg_sal

where emp.deptno = davg_sal.deptno

  and emp.sal > davg_sal.avg_sal;
Tkprof Output:

call     count       cpu    elapsed       disk      query    current        rows

------- ------  -------- ---------- ---------- ---------- ----------  ----------

Parse        1      0.02       0.02          0          0          0           0

Execute      1      0.00       0.00          0          0          0           0

Fetch     3278     11.94      20.53        844       4602         40       49152

------- ------  -------- ---------- ---------- ---------- ----------  ----------

total     3280     11.96      20.55        844       4602         40       49152

Explain Plan:

Rows     Row Source Operation

-------  ---------------------------------------------------

  49152  HASH JOIN 

      3   VIEW 

      3    SORT GROUP BY 

 114688     TABLE ACCESS FULL EMP 

 114688   TABLE ACCESS FULL EMP 

Rows     Execution Plan

-------  ---------------------------------------------------

      0  SELECT STATEMENT   GOAL: CHOOSE

  49152   HASH JOIN

      3    VIEW

      3     SORT (GROUP BY)

 114688      TABLE ACCESS   GOAL: ANALYZED (FULL) OF 'EMP'

 114688    TABLE ACCESS   GOAL: ANALYZED (FULL) OF 'EMP'

Note:

The true CPU savings of 3 seconds (14.96 – 11.96) is for a tiny table in my 8.1.7 database on my laptop running Windows NT 4.0 with 1 concurrent user session. Now, translate this in your production database with many concurrent users. After re-writing the correlated sub-queries using inline views, you will accomplish at least 2 things:

a) You would have written significantly better and scalable code, and you will experience less than linear degradation in performance as the size of the table grows.

b) You would save a significant quantum of CPU resources depending on the size of the tables on which the correlated sub-queries were deployed and the number of concurrent users executing these queries. In doing that, you may have freed up a significant amount of CPU resources on your system.

· Implement equi-sized extents for all objects in your tablespaces to prevent SMON from coalescing free space. Set the tablespace default storage parameter PCTINCREASE to 0, to prevent SMON from coalescing.

· Implement locally-managed tablespaces (applicable in Oracle8i or above) to prevent SMON from coalescing free space.

· Turn off automatic coalescing by SMON, there is an event you can set in the init.ora for this. Check Metalink or call Oracle Support Services for more information. Do this only after implementing some method of “equi-sized extents” for all of your objects in your database.

· Avoid using OPTIMAL in rollback segments, do periodic manual shrinking of rollback segments (if disk space is a premium and thus required)

The More Memory Myth

The more memory you allocate to Oracle, the better it will perform. So go ahead and allocate as much memory as possible to the various Oracle caches.

Fact

The various configurable caches of Oracle are subject to the same limitations as any other cache. If you take the time to measure the performance behavior of a cache it will be aptly represented by the law of diminishing returns. As the size of the cache increases, the additional performance benefit derived increases at a decreasing rate. And beyond a certain point, it will be zero and start adding to system overhead. Moral of the story – Do not try to cache your entire database in memory in an effort to eliminate physical I/O.

There are simple techniques within Oracle and the operating system to determine whether the database buffer cache is sized right (In Oracle8 and above you can use v$buffer_pool_statistics to accomplish this). But a rather uncommon rule, called the “Five-minute Rule,” can provide high-level insight into this important aspect of Oracle. This rule is derived from the following equation:

Frequency = ((Memory Cost per Byte – Disk Cost per Byte) * Object Size)/Object Access per Second Cost

Using disk, memory, and I/O sub-system prices in 1997, it was determined that the point of diminishing returns for a cache was approximately around five minutes [Gray, J., Reuter, A., 1]. Given current day prices of the aforementioned components, it is possible (based on your operating system platform) that the frequency is between 8–10 minutes. 

What does this all means within the Oracle context? Any object (within reason and size) that will be accessed at least once in the next 10 minutes should be a candidate for database buffer caching. Data that is not accessed at least once in the next 10 minutes should really not be forced to stay in memory, as the performance of a cache does not increase in a significant manner beyond a certain size. In that case it is cheaper and much more efficient to perform physical I/O from disks.

The same rationale should be used for sizing the various components of the shared pool area and any over allocation to the various pools can be ascertained by viewing the free memory statistic in v$sgastat.

The Free Memory Myth

Low values in free memory for the various pools of the shared pool area in v$sgastat and for the various pools of the database buffer cache in v$buffer_pool_statistics are indications that more memory is required for those memory structures.

Fact

On the contrary, high values (100s of MB or higher) for free memory for the various pools of the shared pool area indicates an over allocation problem for those pools. The same can be noted for the various buffer pools of the database buffer cache. Low values (a few megabytes or more) may indicate near appropriate sizing.

The Single Shared Memory Segment Myth

Your SGA should always be configured in one shared memory segment to attain maximum database performance. Configuring the OS parameters to accommodate the entire SGA in one shared memory segment should be the first line of offense when confronted with database performance problems.

Fact

Many DBAs working in an UNIX environment go to great lengths in their efforts to keep the entire SGA in one shared memory segment in hopes of gaining performance. However, in most environments there is no measurable performance degradation even if the SGA is comprised of multiple shared memory segments. Oracle processes access various components of your SGA with almost identical memory seek times, regardless of the number of shared memory segments that comprise the Oracle SGA. Performance tests on many flavors of UNIX were conducted just to debunk this myth. The same components of the application were run in an identical fashion before and after the UNIX kernel was modified, with absolutely no measurable increase or decrease in performance. Bottom line, on most UNIX platforms, it really does not matter if your SGA uses one or many shared memory segments.

Having said that, you need to be aware of a couple of exceptions. On some hardware platforms that support loosely coupled non-uniform memory access (NUMA) configurations across multiple nodes, the communication between the system nodes occurs via an “interconnect” or a switch. If the SGA is configured as multiple shared memory segments (due to its very large size), there is a possibility that those segments could be created across multiple nodes, resulting in Oracle and the OS to constantly use the interconnect to read different parts of the SGA. This can create performance problems if the amount of communication exceeds the bandwidth of this interconnect. Also, if you are using the Intimate Shared Memory (ISM) feature in a Sun Solaris environment, configuring SHMMAX so that the entire SGA is allocated in one shared memory segment is a prerequisite.

The Database Buffer Cache-hit Ratio Myth - I

If the cache-hit ratio (CHR) of the Oracle database buffer cache is in the upper nineties (such as 99.999), Oracle is performing at its best.

Fact

Negative. A very high cache-hit ratio in the database buffer cache can be very misleading. Frequently executed SQL statements that perform repeated index scans or full table scans of the same small table and correlated sub-queries (that read the same set of blocks over and over again) can elevate the CHR to artificially high levels. This can make you believe that Oracle is working at peak efficiency when trouble is brewing. If user sessions are waiting for free buffers to become available, or waiting on the cache buffers chains latch or the cache buffers lru chain latch [Millsap, 5] in the database buffer cache, it doesn't matter if the CHR is 99.999, you should recognize that you have a performance problem on your hands. I will go so far as to say that on most “real systems” a high CHR (90% or higher) usually indicates extremely inefficient SQL in the applications. You need to troubleshoot and tune those offending SQL statements to get acceptable response times. There are many aspects to tuning Oracle that do not involve ratios at all. The cornerstone of tuning Oracle-based systems should be wait events, not ratios.

The Database Buffer Cache-hit Ratio Myth - II

A 60 percent database buffer cache-hit ratio indicates bad Oracle database performance.

Fact

Again, not at all true. As the nature of operations on the database changes, so should this value.  For example, during a regular business day a high cache-hit ratio (CHR) may be observed as a result of transactional operations if those transactions repeatedly access the same set of blocks. But at night, as batch jobs run and manipulate a wide range of data blocks, you should expect the CHR to fall. Keep in mind that blocks that were needed during the day may be still present in the cache, although many new blocks are being requested. This will result in a lower CHR. If user sessions are not waiting for I/O to complete, or waiting for free buffers, or experiencing about bad performance, a 60 percent CHR is just fine. Tuning is about providing performance levels that users need to get their jobs done. It is not about achieving an arbitrary value for a ratio. It is absolutely preposterous to even suggest that a fall in the CHR can be measured and quantified as a performance degradation. Again, don’t waste your time looking at irrelevant numbers.

The Library Cache-hit Ratio Myth

Low statistics of less than 99 percent cache-hit ratios in the library or dictionary cache are evidence of a poorly performing shared pool area and can be rectified by increasing the size of the shared pool cache.

Fact

Well, let's first ask the question: what makes you think the shared pool is the problem? Did you unearth any wait events associated with the shared pool? Did you observe any contention for the various latches that are used in the library cache? Simply increasing the size of the shared pool in an arbitrary fashion is unlikely to solve any shared pool–related performance problems. It should be noted that the positive effects of a larger shared pool (beyond a certain size and that is application dependent) would only last for a short duration after the instance starts up. Plus, the more memory you allocate to the shared pool area, the higher the probability for increased CPU consumption in managing this cache and greater is the chance for processes to hold the required latches for longer durations, thus creating contention for shared pool access. If you continue on this trend of allocating more and more memory, you will eventually hurt performance big time.

As with almost all performance issues, just throwing more resources at Oracle (in this case, more memory for the shared pool area) does little more than push the problem out into the future. And in some cases, adding more memory may create other problems that you did not envision and thus hurt performance. You must understand that most challenges in dealing with the shared pool are related to the type of access to this memory structure, in addition to the lack of meaningful and proactive management of space within this structure.

Among other things, the elimination of hard parses (use of CURSOR_SHARING = FORCE recommended in Oracle 8.1.7 and up), the reduction in soft parses by configuration of the SESSION_CACHED_CURSORS parameter, the segregation of large and small SQL in the shared pool reserved area and the identification of frequently used stored SQL (packages, procedures, functions) are important. Equally critical is the allocation of adequate space for the large pool area for operations conducted by the Recovery Manager (RMAN), Parallel Query, Java, and the Oracle multithreaded server (MTS). Some of the best practices utilized in managing this memory structure include increasing the reuse of SQL statements, reducing the amount of hard parses, reducing the amount of soft pareses by using cached cursors for sessions, and managing the space amongst the various pools (shared, large, java). Now that will assist in keeping contention down and providing consistent performance.

The Stripe & Mirror Everything (SAME) Myth

We are ABC Corporation and we are the “gods of disks.” Don't worry about separating the various files of your Oracle database, just create one huge logical volume with all the disk drives available and store all of the files there. This makes I/O management very simple and reduces hotspots in your database.

Fact

Okay, we have heard this claim with uncanny frequency, but realize that real-life applications can behave quite differently from vendor benchmarks. It should be noted that no two implementations of the same application would be the same. This is due to the level of customization the application requires to suit the business's requirements. This phenomenon is especially true for third-party packaged applications that are comprised of many thousands of tables and indexes. Practical experience suggests that only in very exceptional cases does the concept of SAME – the method of making one logical volume with all your disks really work. The reason it is not optimal stems from how most applications perform I/O. If your applications constantly perform operations that involve significant index scans (typical in batch jobs) on one or more large tables in your database, the method mentioned above can cause significant I/O performance problems.

There are 2 core issues that require understanding. They are:

a) The various phases that make up an I/O request 

b) How do index scans impact the I/O sub-system?

An I/O request contains 3 phases – Seek, Latency and Transfer rate. The seek phase which is the time it takes for the disk drive’s head to align to the correct disk location, usually accounts to 40-60% of each I/O request (based on an average of 4ms - 6ms for standard I/O requests whose response times are 10ms) and thus every effort to reduce this cost will increase I/O performance. The effort involved here is not so much geared towards “reducing the number of seeks”, but instead to reduce the cost of each seek operation and thus provide consistent I/O throughput. If every database component (including the DATA and INDX datafiles) are located in the same set of disks, the cost of performing seeks will be very high, thus causing increased queuing for the devices, followed by increased wait time for I/O requests to complete. 

When a SQL statement uses an index to execute a query, it reads one or more blocks of the index into the database buffer cache, based on the value of the indexed column referenced in the where clause of the SQL statement. The rowid(s) that match the value that is searched (in the index) are then used to read the data from specific block(s) of the table in question.

When significant index scans are performed (and assuming that not all blocks are cached), the index blocks and the data blocks of the table need to be constantly read in single-block reads. The real problem here is the need to seek different locations on disk to service I/O requests for index and data blocks. Balancing the number of seeks on a system (where different blocks of data from multiple tables and indexes are accessed concurrently) should be paramount in any effort that attempt to eliminate I/O bottlenecks, as this will reduce the cost of a seek operation.

The biggest downside with the SAME methodology is that it generalizes I/O access patterns of redo log files and datafiles to be the same, hence the recommendation to put them in the same bucket. It further assumes that disk drives are small in size and available in plenty. The second assumption is becoming part of our storage utopia. Vendors are consistently introducing new disk models with double the storage capacity of its predecessor, without necessarily doubling the throughput of the prior model. Some storage vendors have already started touting 144GB disk drives as their standard, making it harder than ever to balance I/O access patterns and alleviate I/O bottlenecks. 

Among other issues, the SAME method does not cater well for systems that require varying levels of RAID for different I/O access patterns. The support for Parallel Query and Database Partitioning is very inadequate. Lastly, the failure of one disk drive affects every component in the database, especially in a RAID 1+0 environment as this reduces the I/O throughput capacity by 50%. Talk about a single failure affecting everything.

The Single Extent Myth

The optimum number of extents for every object is one. No make that 5.

Fact

There cannot be anything farther from reality than this. I call this myth the father of all Oracle myths. Let there be no doubt, there is no magical number for the optimum number of extents for an Oracle object. The perpetrators of this myth do not understand the potential fragmentation and space management nightmare that this mythical optimum number of extents creates. This is because a lot of DBAs engage in periodic reorganization efforts with compress=y, just to get their objects back to 1 extent. In doing that, DBAs create significant free space fragmentation problems.

A horrible nightmare ensues as not all objects in a database contain the same amount of data and with every object forced to hold its data in one extent, severe space fragmentation is created. Having objects that support various extent sizes within a tablespace can and will cause space fragmentation problems and eventually present a space management nightmare. It is perfectly acceptable to have multiple extents (even as many as many 100s of extents) for an object. 

Having 1,000 extents for an object by itself does not pose any performance problems, so long as the extents are sized as a multiple of (DB_FILE_MULTIBLOCK_READ_COUNT * DB_BLOCK_SIZE). The aforementioned formula is relevant for full-table scans or index fast full scans and not for single-block index scans. If the extent sizes adhere to the above formula, it ensures that Oracle will issue the same number of read system calls regardless of whether the object has 1 extent or 1,000 extents. If the extents are not aligned with the aforementioned size, additional read system calls can cause unnecessary overhead on the I/O sub-system. In the bigger scheme of things, assuming worst-case scenario, go ahead and add one additional read system call per extent per heavily hit table/index in your database. If you have many hundreds of objects with 1000s of misaligned extents, it will create overhead on the I/O sub-system.

The Table Reorganization Myth

Reorganizing a table (export, drop, recreate, import) that contains many hundreds of extents to one extent provides better performance.

Fact

This is definitely a corollary to the previous myth. The export followed by the import eliminates block-level fragmentation (lack of good use of space within a block), row-level fragmentation (rows physically split into multiple pieces), and resets the high-water mark of the table. Those are primary reasons for better performance after a reorganization, not the fact that the table is in 1 extent. But to treat the core problem, let us address the issues that confront us.

It must be noted that the effect of the entire table's data stored in one extent has nothing to do with the performance increase. Table reorganization eliminates block-level fragmentation because the import process refills each block up to the level of PCTFREE in each block. This provides for better block density and utilization, as each block is filled to the maximum allowable capacity. Better block density (average number of rows per block) is high immediately after reorganization. Reorganization also reduces the high-water mark of a table and thus reduces the number of blocks that will be read during a full table scan.

Row-level fragmentation is eliminated when the erstwhile chained or migrated rows get fixed (because they get reinserted “in place” into brand-new blocks). A chained row is when a row is stored in multiple blocks, because its length exceeds the free space size of one block. Said in another way, a chained row is a row that spans multiple blocks. 

A row is migrated when it cannot fit in its current block and thus is relocated to another block (where there is adequate space), keeping a pointer in the original block. The pointer in the original block is required, as index ROWID entries still point to that location. While chaining is usually a problem related to a row's length and the size of the Oracle database block, migration is usually related to the lack of adequate free space (controlled by PCTFREE) in a block to keep the row in the same block when an update operation increases its length. Needless to say, Oracle will always attempt to migrate a row before it decides to chain it. 

Although, you can be guaranteed that all migrated rows will be fixed after a table gets reorganized, chaining may still pose a problem if the row length exceeds the available space in a brand new database block. It is important to fix the disease that causes fragmentation, rather than fixing the fragmentation (symptom) itself. If the table(s) in question undergo a significant amount of inserts followed by deletes, it is important to adjust PCTUSED (to reduce block-level fragmentation). For tables that are update-heavy PCTFREE needs to be appropriately adjusted (to reduce row-level fragmentation). It is equally important to adjust the INITIAL and NEXT default storage parameters (if they are too small) to keep the table from reaching MAXEXTENTS. Just because Oracle supports unlimited extents, that does not authorize you to go out of your way to use it.

The Locally-Managed Tablespace Vs. Fragmentation & Reorganization Myth

Locally Managed Tablespaces (LMTs) eradicate all kinds of space fragmentation problems, thus eliminating the need for table reorganization.

Fact

LMTs eliminate file-level free space fragmentation issues. They also eliminate some object-level fragmentation issues related to extents of different sizes. LMTs manage the extents of an object by using either UNIFORM or AUTOALLOCATE options for tablespace space management. The space management for LMTs is done using a bitmap, in the first extent of the tablespace. Not curing the disease (PCTFREE and PCTUSED) will cause block-level and row-level fragmentation even for objects stored in LMTs. And in the bigger scheme of things, block-level and row-level fragmentation is what that counts against performance.

The Freelists Myth

The number of freelists that you should configure in your table should be equal to the maximum number of concurrent transactions manipulating your table.

Fact

A freelist facilitates access to the first block of a table into which an INSERT operation can store data. The default number of freelists for a table is 1. The wait event buffer busy waits provides the required insight in your environment, to hunt down freelists contention problems. Assuming that the applications are experiencing freelists contention for a given table, configuring as few as 4 freelists, reduces this contention by a factor of 4. Use your discretion and evidence from v$session_wait to guide you to the “required number of freelists” for tables in your database, that require support for many concurrent INSERT operations. Anjo Kolk in his YAPP Method recommends setting the number of freelists to a prime number as processes are hashed by Oracle PID over the number of freelists.

The maximum number of configurable freelists for a table is dependent on the database’s block size. Having said that, a fact that should be kept in perspective is that, each additional freelist on a table, can potentially inflate the high-water mark of the table by 5 blocks. Even if the database supports 100 concurrent users and even if the database’s block size supports 100 freelists, this effort should not be resorted to, as the high-water mark of the table could potentially be inflated by an additional 500 blocks. 

And, if this table is accessed frequently (say 50 times by each concurrent user during a regular business day) using full table scans, configuring too many freelists can create a different problem. If 100 concurrent users execute SQL with full-table scans, at the rate of 50 times per user during regular business hours and with 500 additional blocks artificially inflating the high-water mark, the maximum potential for I/O wastage (in a regular business day) for this table will be 2,500,000 (100*50*500). Mind you, this is just for one table. You will put undue stress on the I/O sub-system, if you go overboard with freelists configuration for the tables in your database.

The Index Scan Myth

Index scans are always the preferred method of executing a SQL statement, especially when retrieving less than 15% of the total number of rows in the table, as it will perform much less I/O than a full table scan, and thus execute better.

Fact

Time and time again, real-life applications have proven that a SQL statement loses the efficiency of using an index when the number of blocks that are visited by the SQL statement equals or exceeds the number of blocks to perform a full table scan [Vaidyanatha, 9]. A couple of exceptions to the above rule are columns in tables that contain redundant and low-cardinality data and are supported by bitmapped indexes or fast-full index scans. 

The point I am trying to make here is that the overhead associated with reading the root, intermediate, and leaf blocks of an index, plus the data block reads for each row returned by the query, should not outweigh the cost of a full table scan. If an index scan performs more I/O than a full table scan, it will actually hurt performance, rather than help. Ironically, if the rows that are being retrieved are splattered across numerous blocks of the table and are not clustered or located next to each other, the use of an index in the query's execution plan will result in the query not performing at optimal levels (even if the number of rows processed or retrieved is less than the mythical level of 15 percent). This excess I/O generation will strain the I/O sub-system. In this case, a full table scan is a much more viable option and should be preferred. If the table in question is of significant size (definition of significant is left to you), you should even consider a parallel full scan on the table.

The Latch Tuning Myth

Tuning latch contention in the database provides huge performance benefits. Hence, let's tune the daylights out of the latches on the system by manipulating parameters such as _DB_BLOCK_HASH_BUCKETS or _SPIN_COUNT.

Fact

Contention tuning should be a part of overall database tuning strategy. More importantly, as a DBA you need to know when and where to engage in such tuning efforts. However, tuning contention is not magic and rarely brings about orders of magnitude of performance increase when compared to application tuning (one exception is I/O contention tuning, which is very important).

Do not waste too much time pondering which latch needs tuning next! There is only so much latch tuning you can do. If your database experiences latch contention (even after you have configured all the relevant latches for your version of Oracle to its allowed maximum), you should be convinced that “just configuring more latches” is not going to solve the problem. You need to further investigate the cause of the contention. Latch contention is always caused by serialization (wait in line for individual access) in one or more components of your application. Take all of the required and necessary steps to fix your application problems first, before modifying any latch-related parameters. As mentioned before many times, the goal in a performance tuning effort should be to treat the disease, not just the symptoms. Latch contention almost always acts as a symptom of the bad application code (the disease).

The Large Redo Log Buffer Myth

The bigger the redo log buffer, the better. If a 1MB redo log buffer is good, a redo log buffer sized at 8MB must be even better.

Fact

It is not uncommon for database administrators to get alarmed by system statistics that report not-so-attractive numbers for redo log space requests. However, one must pay more attention to the wait events that are inflicting pain on the system. Excessive non-idle waits of any kind can adversely affect the performance of your database. True, there should not be a large number of waits for the redo log buffer, but a non-zero value is not a problem. The bigger question should be the frequency and number of occurrences of the log buffer space wait event. If this wait event does not occur in large numbers (1000s or higher) within a short duration (say 15 minutes) of time, the size of the redo log buffer memory structure should not be modified. 

Even high occurrences of this wait event, does not always imply that an increase in size of the LOG_BUFFER is required. If the core problem is an I/O bottleneck on the disk drives supporting the online redo log files, then that should be addressed. Arbitrarily increasing LOG_BUFFER may create other problems that are not envisioned. If this buffer is too large, it can cost more to manage the space than any potential benefits that can be gained. Bigger is not necessarily better in this case!

The “I Can’t Reach The SQL…Hence I Can’t Tune” Myth

Third-party packaged applications do not expose the underlying SQL hence remove any real tuning opportunities in those environments.

Fact

Although most third-party packaged application vendors bury their SQL at depths that are not reachable to most DBAs, there are some instance-level tuning opportunities that have surfaced in Oracle8, which make these applications a lot more tunable. Prior to Oracle8, the extent of tuning some of these applications was limited to creating, modifying (adding one or more columns or changing the type—from B*-tree to bitmapped indexes) and removing existing indexes, which provided a limited effect on the application's execution behavior. With Oracle8 and beyond, the advent of some optimizer-specific initialization parameters (prefixed with OPTIMIZER_) allow DBAs to control the behavior of the Oracle optimizer in a more flexible and consistent fashion [Gorman, 1] [Vaidyanatha, 7]. Also the use of stored outlines from Oracle8i definitely goes a long way in facilitating tuning of SQL statements within ERP applications [Shome, 6]. Needless to say, the new OPTIMIZER_ parameters and the use of stored outlines should be thoroughly tested in your environment before deploying on production systems.

The Parallelism Myth

Using parallelism for SQL operations will always result in performance increases.

Fact

Using parallelism for queries or for DML statements (Oracle8 and above) will not always increase the performance, if the required resources for parallelism are not available. If using parallelism were that simple, we would all be using it on everything in sight and all those high-paid Oracle performance-tuning experts and consultants would be looking for other careers. However, if parallelism is used judiciously in an environment that is conducive (you design it to be conducive), it can dramatically improve performance. Optimal configurations that support parallelism require additional CPU, Memory and I/O bandwidth. Otherwise, parallelism has the potential to paralyze your system. Finally, realize that the biggest enemy of concurrency is parallelism and vice versa.

The NOLOGGING Myth

Setting NOLOGGING for an object eliminates all redo generation for those objects.

Fact

No, not quite. There are certain DML operations such as an INSERT with the /*+APPEND*/ hint that do not generate redo for that INSERT statement (if the NOLOGGING attribute is set at the table level and certain other conditions apply). And there are some partition administration operations that also benefit from NOLOGGING. It should be noted that redo generation for data dictionary objects is always done. Further, normal DML operations will generate redo for the said operation regardless of the setting of NOLOGGING for the underlying object. Take it as a performance tuning tip, all index creations or rebuilds should always done with the NOLOGGING option as any media or instance failure can be recovered by re-executing the creation or the rebuild. As a best practice, the index tablespace should be backed up after any index creations or rebuilds are done, to support various tablespace-level and file-level complete recovery scenarios.

The Complete Trace Myth

If a job runs for eight hours, you really need to trace it for the entire duration to get complete information on the badly performing SQL statements.

Fact

You do not need to wait eight hours to find out what is wrong with the job, especially if the job is iterative in nature. A trace file with, say an hour’s worth of information will provide you plenty of insight into the culprit SQL statements, that are causing the performance problems with that job. If a job has 16 SQL statements in it, chances are that if you fix the top three or four SQL statements, you probably would have fixed bulk of the performance problem. An hour or so does the trick most of the time, although some unique situations may need more time. Others may require a shorter duration, if the performance problem itself lasts only for a short period.

The Raid5 & Large Cache Myth 

Don’t worry about the overhead posed by the RAID5 parity algorithm. We have a 8GB cache and should take care of everything.

Fact

First of all, it does not take much to saturate a 8GB cache, especially if this cache is not a global cache. Secondly, most storage environments support the concept of “partitioning the cache” amongst the various logical volumes configured on the system. Lastly, in the bigger scheme of things, a cache on a “real system” can provide limited tolerance to the overhead generated by RAID5 and should not be the “antidote” for a bad storage architecture decision.

The process of modifying the contents of 1 row in 1 database block in a RAID5 environment, involves reading that block from disk into memory, modifying the data in memory, calculating the parity, followed by finally writing the data block and its parity block to 2 different drives. Although, some storage vendors have implemented batched or queued writes, this by itself does not get around the overhead posed by the parity algorithm. All it does is to optimize the final writes back to disk. It must be noted that, RAID5 is optimal only for environments that are predominantly read-intensive and are characterized by many concurrent small random read requests.

The Raid5 & I Can’t Control The Physical Placement Myth 

With RAID5, there is no control over the physical placement of a file in the logical volume. Apart from enhances management and reducing storage administration, RAID5 also relieves the DBA from the task of separating physical database components that are concurrently accessed.

Fact

Yes, within a RAID5 logical volume, there is no control with respect to the physical placement of a given file. And this concept is true, if you just create 1 huge logical volume with all of the available drives in the storage array (such as in a SAME configuration). But, if enough planning and design is done, multiple volumes with RAID5 or other levels or RAID can be configured, so that the I/O sub-system can cater to the varied I/O access patterns on the system. The one-size fits all method should be avoided, as it does not cater to every type of I/O access pattern and compromises the I/O systems’ performance. If multiple and physically independent RAID volumes of any kind are configured, it is very easy to achieve physical independence and separation of physical database components that are concurrently accessed.

The Raid5 & Storage Savings Myth

RAID5 provides 50% savings when compared to RAID 0+1, 1+0 or 10.

Fact

May be true in some cases, but with a hidden cost. This myth revolves around people twisting the facts to suit their argument. The following table outlines the disk drive requirements (the facts) for both levels of RAID:

Degree of Striping
RAID5
RAID 0+1, 1+0 or 10
Storage Savings (%)

2-way
3
4
25

4-way
5
8
37.5

8-way
9
16
43.8

16-way
17
32
46.9

32-way
33
64
48.4

Table 1

From Table 1, it is clear that only on a 32-way stripe, does the storage savings get anywhere near 50%. Regardless, we need to also take into consideration the cost incurred on configuring a large cache for RAID5 volumes to get around the performance penalty incurred by parity calculations. This most definitely has to be factored into the above discussion. The performance cost incurred by the parity calculations can potentially make RAID5, a very weak candidate for system environments that support extended periods of write-intensive I/O access patterns.

The Raid5 & Need For Backup Myth – Some Comic Relief

We use RAID5 for our storage configuration and do not need to implement backups because it is “redundant” by design.

Fact

This myth has nothing to do with performance, but everything to do with life. Let me ask you a few additional questions that might put some perspective on this:

· Do you have a family and do you love them?

· Would you like to keep your current “day job”?

· Are you planning a significant career change anytime soon?

· Are you planning on updating your resume and leaving town?

If you have answered “yes” to the first two questions and “no” to the other two, you better get on the act and start backing up your Oracle databases that are supported by RAID5 volumes.

Conclusion
Many myths surround the Oracle RDBMS. Now, more than ever is a need to keep up with the times. We also need to question the so-called experts and have them provide scientific data or reasonable and simple tests to prove their claims. By using the information in this paper, the Oracle Performance Tuning 101 book and various performance management papers on http://www.hotsos.com, http://www.oraperf.com, http://www.orapub.com, and http://www.evdbt.com, I am optimistic that you will protect yourself from some of the common performance tuning myths and engage only in organized tuning efforts. You will embark on tuning efforts only when you detect bottlenecks. Good luck in your managed tuning efforts.

About the Author

Gaja Krishna Vaidyanatha is the Director of Storage Management Products with Quest Software Inc., providing technical and strategic direction for the storage management product line. He has more than 10 years of technical expertise, with over 9 years of industry experience working with Oracle systems. 

Prior to joining Quest, Gaja worked as a Technical Manager at Andersen Consulting, where he specialized in Oracle Systems Performance Management and lead the Oracle Performance Management SWAT Team within the Technology Product Services Group. In a prior life to that, Gaja was also a Consultant and Instructor at Oracle Corporation specializing in the core technologies of Oracle. 

Gaja is the primary author of Oracle Performance Tuning 101 published by Osborne McGraw-Hill (Oracle Press), which focuses on the rudiments of Oracle Performance Management. His key areas of interests include performance architectures, scalable storage solutions, highly available systems and system performance management for data warehouses and transactional systems. Gaja holds a Masters Degree in Computer Science from Bowling Green State University, Ohio. He can be reached at gajav@yahoo.com. 

References

1. Gorman, T. The Search for Intelligent Life in the Cost-Based Optimizer. Evergreen Database Technologies LLC, Evergreen WhitePaper. http://www.evdbt.com
2. Gray, J., Reuter, A. Transaction Processing: Concepts and Techniques. Morgan Kaufmann, 1992. http://www.mkp.com
3. Gunther, N. The Practical Performance Analyst. McGraw-Hill, 1998. http://www.osborne.com
4. Millsap, C. Performance Tuning Myths. Hotsos LLC, 2000. Hotsos White Paper. http://www.hotsos.com
5. Millsap, C. Why a 99+% Database Buffer Cache Hit Ratio is NOT Ok. Hotsos LLC, 2000. Hotsos White Paper. http://www.hotsos.com
6. Shome P. Using Stored Outlines in Oracle8i for Plan Stability. Proceedings of the Oracle Open World 1999. http://www.oracle.com/openworld
7. Vaidyanatha G. IOUG-A Mini Lesson. Myths & Folklore about Oracle8i Performance Tuning. Proceedings of the International Oracle Users Group – Americas Live 2001. http://www.ioug.org
8. Vaidyanatha G. Oracle Performance Management. Proceedings of the Oracle Open World 2000. http://www.oracle.com/openworld
9. Vaidyanatha G., Deshpande K., Kostelac J. Oracle Performance Tuning 101. Osborne McGraw-Hill, 2001. http://www.osborne.com/database_erp/0072131454/0072131454.shtml

 






Paper# 402


