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Abstract

There is growing recognition of the importance of the role of architecture in
determining the quality attributes, such as modifiability, reusability, reliability, and
performance, of a software system. While a good architecture cannot guarantee
attainment of quality goals, a poor architecture can prevent their achievement. This
paper discusses assessment of the performance characteristics of software
architectures. We describe the information required to perform such assessments and
discuss how it can be extracted from architectural descriptions. The process of
evaluating the performance characteristics of a software architecture is described and
illustrated with a simple case study.

1.  Introduction

There is growing recognition of the role of architecture in determining the quality of
a software system [Perry and Wolf, 1992], [Garlan and Shaw, 1993], [Clements and
Northrup, 1996]. While decisions made at every phase of the development process can
impact the quality of software, architectural decisions have the greatest impact on
quality attributes such as modifiability, reusability, reliability, and performance.  As
Clements and Northrop note:

“Whether or not a system will be able to exhibit its desired (or required) quality
attributes is largely determined by the time the architecture is chosen.” [Clements and
Northrup, 1996]

While a good architecture cannot guarantee attainment of quality goals, a poor
architecture can prevent their achievement.

Since architectural decisions are among the earliest made in a software development
project and can have the greatest impact on software quality, it is important to support
assessment of quality attributes at the time these decisions are made. Our work
focuses on early assessment of software architectures to ensure that they will meet
non-functional, as well as functional, requirements. For this paper, we focus on the
assessment of the performance characteristics of a software architecture since many
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software systems fail to meet performance objectives when they are initially
implemented.

Performance is an important quality attribute of software systems. Performance
failures result in damaged customer relations, lost productivity for users, lost
revenue, cost overruns due to tuning or redesign, and missed market windows.
Moreover, “tuning” code to improve performance is likely to disrupt the original
architecture, negating many of the benefits for which the architecture was selected.
Finally, it is unlikely that “tuned” code will ever equal the performance of code that
has been engineered for performance. In the worst case, it will be impossible to meet
performance goals by tuning, necessitating a complete redesign or even cancellation
of the project.

Our experience is that most performance failures are due to a lack of consideration of
performance issues early in the development process, in the architectural design
phase. Poor performance is more often the result of problems in the architecture
rather than in the implementation. As Clements points out:

 “Performance is largely a function of the frequency and nature of inter-component
communication, in addition to the performance characteristics of the components
themselves, and hence can be predicted by studying the architecture of a system.”
[Clements, 1996]

In this paper we describe the use of software performance engineering (SPE)
techniques to perform early assessment of a software architecture to determine
whether it will meet performance objectives. The use of SPE at the architectural design
phase can help developers select a suitable architecture. Continued application of SPE
techniques throughout the development process helps insure that performance goals
are met.

The next section contrasts related work.  Section 3 provides the SPE process steps
appropriate for performance evaluations of software architectures. Section 4 explains
the sources of information for the SPE evaluations, then section 5 illustrates the
process with a simple case study.  The last section presents a summary and
conclusions.

2.  Related Work

Kazman and co-workers have proposed a scenario-based approach to the analysis of
software architectures [Kazman, et al., 1997], [Kazman, et al., 1996]. Their approach
considers various stakeholders in the system (e.g., users, system administrators,
maintainers) and develops usage scenarios from their various points of view. These
scenarios are expressed informally as one sentence descriptions. They typically
capture uses of the system that are related to quality attributes, such as ease of
modification. The architecture is then evaluated on how much work is required to
satisfy the scenarios.
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Kazman, et. al., also focus on early evaluation of software architectures to reveal
problems at a point in the software development process where they can be most
easily and economically corrected. This work differs from theirs in its focus on
performance and its use of more rigorous scenario descriptions. Kazman, et. al., apply
their technique to a variety of quality attributes, including performance, but, as noted
above, use informal, natural language descriptions of scenarios.

Object-oriented methods typically defer consideration of performance issues until
detailed design or implementation, after the overall architecture has been established
(see e.g., [Rumbaugh, et al., 1991], [Jacobson, et al., 1992], [Booch, 1994]). Even then, the
approach tends to be very general and ad hoc. There is no attempt to integrate
performance engineering into the development process.

Some work specifically targeted at performance evaluation of object-oriented systems
has emerged from the performance community. Smith and Williams [Smith and
Williams, 1993] describe performance engineering of an object-oriented design for a
real-time system. However, this approach applies general SPE techniques and only
addresses the specific problems of object-oriented systems in an ad hoc way.  Smith
and Williams applied Use Case scenarios as the bridge to performance models in
[Smith and Williams, 1997] and [Smith and Williams, 1998].  In contrast, this paper
adapts the SPE process to evaluate software architectures, and the specific sources of
information for software architectures.

Hrischuk et. al. [Hrischuk, et al., 1995] describe an approach based on constructing an
early prototype which is then executed to produce angio traces. These angio traces are
then used to construct workthreads (also known as timethreads or use case maps [Buhr and
Casselman, 1992], [Buhr and Casselman, 1994], [Buhr and Casselman, 1996]), which
show object method invocations. Service times for methods are estimated. This differs
from the approach described here in that their approach derives scenarios from
prototype execution and generates the system execution model from the angio traces.
Our approach is intended for use long before executable prototypes are available; and
it reflects a view of the software that explicitly models more general scenarios with
execution path frequencies and repetitions.

Baldassari et. al. describe an integrated object-oriented CASE tool for software design
that includes a simulation capability for performance assessment [Baldassari, et al.,
1989], [Baldassari and Bruno, 1988]. The CASE tool uses petri nets for the design
description language rather than the general methods described above, thus the
design specification and the performance model are equivalent and no translation is
necessary. Using these capabilities requires developers to use both the PROTOB
method and CASE tool. The approach described here is general in that it may be used
with a variety of object-oriented analysis and design methods.
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3.  Overview of SPE

Software performance engineering (SPE) is a systematic, quantitative approach to
constructing software systems that meet performance objectives. SPE prescribes
principles for creating responsive software, the data required for evaluation,
procedures for obtaining performance specifications, and guidelines for the types of
evaluation to be conducted at each development stage. It incorporates models for
representing and predicting performance as well as a set of analysis methods [Smith,
1990].

SPE uses deliberately simple models of software processing with the goal of using the
simplest possible model that identifies problems with the system architecture, design,
or implementation plans. These models are easily constructed and solved to provide
feedback on whether the proposed software is likely to meet performance goals. As
the software process proceeds, the models are refined to more closely represent the
performance of the emerging software.

The precision of the model results depends on the quality of the estimates of resource
requirements. Because these are difficult to estimate for software architectures, SPE
uses adaptive strategies, such as upper- and lower-bounds estimates and best- and
worst-case analysis to manage uncertainty. For example, when there is high
uncertainty about resource requirements, analysts use estimates of the upper and
lower bounds of these quantities. Using these estimates, analysts produce predictions
of the best-case and worst-case performance. If the predicted best-case performance is
unsatisfactory, they seek feasible alternatives. If the worst case prediction is
satisfactory, they proceed to the next step of the development process. If the results are
somewhere in-between, analyses identify critical components whose resource
estimates have the greatest effect and focus on obtaining more precise data for them.
A variety of techniques can provide more precision, including:  further refining the
architecture and constructing more detailed models or constructing performance
prototypes and measuring resource requirements for key components.

Two types of models provide information for architecture assessment:  the software
execution model and the system execution model. The software execution model represents
key aspects of the software execution behavior. It is constructed using execution
graphs [Smith, 1990] to represent workload scenarios. Nodes represent functional
components of the software; arcs represent control flow. The graphs are hierarchical
with the lowest level containing complete information on estimated resource
requirements.

Solving the software model provides a static analysis of the mean, best- and worst-
case response times. It characterizes the resource requirements of the proposed
software alone, in the absence of other workloads, multiple users or delays due to
contention for resources. If the predicted performance in the absence of these
additional performance-determining factors is unsatisfactory, then there is no need to
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construct more sophisticated models. Software execution models are generally
sufficient to identify performance problems due to poor architectural decisions.

If the software execution model indicates that there are no problems, analysts proceed
to construct and solve the system execution model. This model is a dynamic model
that characterizes the software performance in the presence of factors, such as other
workloads or multiple users, that could cause contention for resources. The results
obtained by solving the software execution model provide input parameters for the
system execution model. Solving the system execution model provides the following
additional information:

• more precise metrics that account for resource contention
• sensitivity of performance metrics to variations in workload composition
• effect of new software on service level objectives of other systems
• identification of bottleneck resources
• comparative data on options for improving performance via: workload

changes, software changes, hardware upgrades, and various combinations of
each

The system execution model represents the key computer resources as a network of
queues. Queues represent components of the environment that provide some
processing service, such as processors or network elements. Environment
specifications provide device parameters (such as CPU size and processing speed).
Workload parameters and service requests for the proposed software come from the
resource requirements computed by solving the software execution model. The results
of solving the system execution model identify potential bottleneck devices and
correlate system execution model results with software components.

If the model results indicate that the performance is likely to be satisfactory,
developers proceed. If not, the model results provide a quantitative basis for
reviewing the proposed architecture and evaluating alternatives. Feasible alternatives
can be evaluated based on their cost-effectiveness. If no feasible, cost-effective
alternative exists, performance goals may need to be revised to reflect this reality.

This discussion has outlined the SPE process for one architecture-evaluation cycle.
These steps repeat throughout the development process. At each phase, the models are
refined based on the more detailed design and analysis objectives are revised to
reflect the concerns that exist for that phase.

4.  Architectural Descriptions

Performance analysts need several different pieces of information in order to
construct and evaluate performance models of software architectures [Williams and
Smith, 1995].  These include:
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• performance objectives :  quantitative criteria for evaluating the performance of
the system under development.

• workload specifications:  descriptions of specific uses of the system together
with a description of the intensity of each request or the rate at which each
use is requested.

• software plans:  a description of the software execution path for each
workload.

• execution environment:  a description of the platform on which the system
will execute, including the hardware configuration, operating system, and
other software that interfaces with the system.

• resource requirements:  estimates of the amount of service required from key
software resources (e.g., network messages, SQL selects, etc.).

• processing overhead:  a mapping of software resources onto device services.

This information is, in principle, available from a description of the software
architecture.

Software architectures are often described using a single “box-and-line” diagram.
Unfortunately, these diagrams are usually informal and fail to capture the complexity
of the software’s structure [Abowd, et al., 1993].  In recognition of this, Kruchten
[Kruchten, 1995] has proposed the “4 + 1 View Model” of a software system’s
architecture. This model uses five concurrent “views” to describe the system’s
architecture. Four of these views describe different aspects of the software’s structure:

• The logical view describes the functional characteristics of the software.
• The process view describes concurrency and synchronization in the software.
• The physical view describes how the software components are mapped onto

the target environment.
• The development view describes how the software is organized into modules

or compilation units during the development process

These four views are unified by a fifth (hence the “4 + 1”), which illustrates them using
Use Cases, or scenarios. The Use Case view is redundant with the others but it helps
developers understand the other views and provides a means of reasoning about
architectural decisions.

Our approach focuses on the Use Case view. Instances of Use Cases are described by
scenarios. Each scenario is a sequence of actions describing the interactions between
the system and its environment (including the user) or between the internal objects
involved in a particular execution of the system. The scenario shows the objects that
participate and the messages that flow between them. A message may represent either
an event or an invocation of one of the object’s methods (operations). The scenarios
that describe instances of Use Cases provide a natural bridge between the analysis and
design work done by developers and the models used in software performance
engineering [Williams and Smith, 1995], [Smith and Williams, 1997].
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In addition to the Use Case view, for SPE in early life cycle stages we require
information from the following views:1

• The logical view:  This view provides information necessary to derive the
resource requirements for each step of a scenario.  Resource requirements
estimate the amount of service required from key software resources.
Ideally, resource requirements would be included directly in architectural
specifications. However, for now, we must use the logical view to derive
estimates of resource requirements.

• The process view:  This view tells what components are in different processes
or “threads” and what kind of communication (synchronous, asynchronous)
occurs between them.

• The physical view:  This view tells which hardware components each process
executes on and provides the physical characteristics of the target
environment.

As noted in [Kruchten, 1995], a variety of diagrams may be used to describe the
various architectural views. Each offers certain advantages and disadvantages.  Several
of the notations that we have used are discussed below.

4.1  Use Case Scenarios
We use Message Sequence Charts (MSCs) to represent Use Case scenarios. The MSC
notation is specified in ITU standard Z.120 [ITU, 1996]. Several other notations used to
represent scenarios are based on MSCs (examples include:  [Rumbaugh, et al., 1991],
[Jacobson, et al., 1992], [Booch, 1994], and [Rational Software Corporation, 1997]). The
ITU standard offers several advantages over these other notations for constructing
performance scenarios, including hierarchical decomposition, looping, and
alternation. However, we have found it useful to augment this notation with features
from UML Sequence Diagrams [Rational Software Corporation, 1997] for example, to
show synchronization.2

4.2  Logical View
We employ an object-oriented approach and, as a consequence, the logical view is
represented using class diagrams [Rational Software Corporation, 1997]. Other types
of representation, such as entity-relationship diagrams, may be used with other
approaches [Kruchten, 1995].

Class diagrams show the types of objects that appear in the application and the static
relationships between them. Class diagrams also specify the attributes that

                                                
1 The development view may also be important in later life cycle stages.  For example, processing

overhead may differ if components are in different dynamic link libraries (dlls). In these cases, SPE
techniques may also be used to determine optimal assignment of objects to dlls.

2 UML Sequence Diagrams are derived from Message Sequence Charts. They use a subset of MSC
features and add some additional graphical syntax that is specifically useful for object-oriented
development.
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characterize objects belonging to each class and the operations that members of a class
can perform. Operation specifications are particularly significant for SPE since they
are used to derive resource requirements for each processing step in a scenario.

4.3  Process View
Kruchten [Kruchten, 1995] suggests a notation for the process view that is an expanded
version of Booch’s original notation for Ada tasking [Booch, 1987]. This notation
shows the principal (architecturally significant) processes and threads. We have also
used a similar notation [Smith and Williams, 1993]. However, this type of notation
does not explicitly show synchronization between processes or the assignment of
objects to processes.

It is difficult to include all of the information required in the process view in a single
diagram. This is because this view spans several different levels of abstraction.
Including these different levels of abstraction on a single diagram makes the diagram
cluttered and difficult to read. From a practical standpoint, we have found it necessary
to diagram the principal tasks and extract other information, such as synchronization,
from other documentation.

4.4  Physical View
We have used UML Deployment Diagrams [Rational Software Corporation, 1997] to
represent the physical view. These diagrams show the physical allocation of software
components to hardware nodes. However, our experience is that Deployment
Diagrams do not scale well and their utility is thus diminished for large, complex
systems. In addition, as currently defined, Deployment Diagrams do not capture the
hardware characteristics, such as processing overhead, processor speed, computer
configuration, and other device  speeds, needed to construct performance models.
Thus, while deployment diagrams can show the assignment of processes to
processors, the hardware characteristics needed for SPE must be obtained from other
documentation.

5.  Case Study

This case study examines an interactive system, known as ICAD, to support computer-
aided design (CAD) activities. Engineers will use the application to construct and view
drawings that model structures, such as aircraft wings. The system also allows users to
store a model in a database and interactively assess the design’s correctness,
feasibility, and suitability. The model is stored in a relational database and several
versions of the model may exist within the database.

A drawing consists of nodes and elements. Elements may be:  beams, which connect
two nodes; triangles, which connect three nodes; or plates, which connect four or more
nodes. Additional data is associated with each type of element to allow solution of the
engineers’ model. A node is defined by its position in three-dimensional space (x, y,
z), as well as additional information necessary for solution of the model.
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Several different Use Cases have been
identified for ICAD, including Draw (draw
a model) and Solve (solve a model). For
this example we focus on the Draw Use
Case and one particular scenario,
DrawMod (Figure 1). In the DrawMod
scenario, a typical model is drawn on the
user’s screen. A typical model contains
only nodes and beams (no triangles or
plates) and consists of 2050 beams. The
performance goal is to draw a typical
model in 10 seconds or less.

The following sections consider three
alternative architectures for this application and their performance. The purpose of
this case study is to illustrate the use of SPE to evaluate an application architecture and
to demonstrate the importance of inter-component communication in determining
performance.

5.1  Architecture 1
The first architecture uses objects to represent each beam and node. This architecture
offers a great deal of flexibility, makes it possible to treat all types of elements in a
uniform way, and allows the addition of new types of elements without the need to
change any other aspect of the application. The Class Diagram that describes the
logical view for Architecture 1 is illustrated in Figure 2.

Model

TriangleNode Beam Plate

Element

modelID : int
beams[] : beam

node1 : int
node2 : int
node3 : int
…

nodeNo : int
x : int
y : int
z : int
…

node1 : int
node2 : int
…

nodes[] : node
…

elementNo : int

draw()

draw()

draw()

draw()

draw()

1..N

2

3

4..N

Figure 2. Class Diagram for Architecture 1

Given the logical view in Figure 2, the DrawMod scenario expands to that in Figure 3.
The unlabeled dashed arrows indicate a return from a nested set of messages.  This

iCAD aModel theDatabase

msc DrawMod

new

open

find(modelID)

retrieve(modelId)

draw

close

Figure 1. The DrawMod Scenario
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notation is not part of the MSC standard, it is taken from the UML [Rational Software
Corporation, 1997].

The process view in Figure 4 shows that the objects in Figure 1 are each a separate
process. The additional objects in Figure 3 are part of the DrawMod process
corresponding to the aModel object.  The Deployment Diagram illustrating the
physical view in Figure 5 shows that all three processes execute on the same
processor.

iCAD aModel

msc DrawMod

loop

new

open

find(modelID)

sort(beams)

retrieve(beam)

find(modelID, node1, node2)

retrieve(node1)

retrieve(node2)

new

new

new

draw

close

node2theDatabase aBeam node1

draw

draw

drawBeam

draw

Figure 3. DrawMod Use Case scenario for Architecture 1

This paper illustrates model solutions using the SPE•ED™ performance engineering tool
[Smith and Williams, 1997]. A variety of other performance modeling tools are
available, such as [Beilner, et al., 1988], [Beilner, et al., 1995], [Goettge, 1990],
[Grummitt, 1991], [Rolia, 1992], [Turner, et al., 1992]. However, the approach described
here will need to be adapted for tools that do not use execution graphs as their
modeling paradigm.
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Figure 6 shows SPE•EDs screen with the execution graph corresponding to the scenario
in Figure 3. The expanded nodes in the tool’s graphs are shown with color. The “world
view” of the software model appears in the small navigation boxes on the right side
of the screen. The top level of the model is in the top-left navigation box; its nodes are
black. The top-right navigation (turquoise) contains the Initialize processing step (the
steps preceding find(modelID)  in the MSC). Its corresponding expanded node in the top-
level model is also turquoise.  The expansion of the yellow DrawBeams processing step
contains all the steps within the loop in the MSC. Note the close correspondence
between the object interactions in the MSC scenario in Figure 3 and the execution
graph in Figure 6.

The next step is to specify software resource requirements for each processing step.  The
software resources we specify for this example are:

• EDMS - the number of calls to the ICAD Database process
• CPU - an estimate of the number of instructions executed
• I/O - the number of disk accesses to obtain data from the

database
• Get/Free - the number of calls to the memory management

operations
• Screen - the number of times graphics operations “draw” to the

screen

The user provides values for these requirements for each processing step in the model,
as well as the probability of each case alternative and the number of loop repetitions.
The specifications may include parameters that can be varied between solutions, and
may contain arithmetic expressions.  Resource requirements for expanded nodes are
in the processing steps in the corresponding subgraph. The specification of resource
requirements as well as the model solutions are described in [Smith and Williams,
1997]. The parameters in this case study are based on the example in [Smith, 1990]; the
specific values used are omitted here.

Next, the computer resource requirements for each software resource request are
specified. SPE•ED collects these specifications in an overhead matrix and stores them in
its SPE database for reuse in other SPE models that execute in the environment.

ICAD
GUI

ICAD
DBMS

DrawMod

Figure 4.  DrawMod process view for
Architecture 1

ICAD
GUI

DrawMod

«database»
ICAD DBMS

Figure 5.  DrawMod physical view for
Architecture 1
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Computer resource requirements include a specification of the types of devices in the
computer configuration, the quantity of each, their service times,. and the amount of
processing required from each device for each type of software resource request.  This
configuration information is not included in current physical-view diagrams and must
be obtained using supplemental SPE methods.

SPE•ED
TM

Display: Specify:

©1993 Performance EngineeringServices

Solve OK

Software mod Names

Results Values

Overhead Overhead

System model Service level

SPE database Sysmod globals

Save Scenario Open scenario

Add

Link Expand

Insert node

    Software model

Drawmod

Drawmod

Initialize

Find Beams

Sort 
beams

beams

Draw 
beams

FinishFinish

Figure 6. Execution Graph for DrawMod scenario for Architecture 1

Then, SPE•ED produces solutions for both the software execution model and the system
execution model. Figure 7 shows a combination of four sets of results for the “No
Contention” Solution - the elapsed time for one user to complete the Drawmod
scenario with no contention delays in the computer system. This best-case solution
indicates whether it is feasible to achieve performance objectives with this
architecture. The solution in the top-left portion of the Figure shows that the best-case
elapsed time is 992.33 seconds. The time for each processing step is next to the step.
The color bar legend in the upper-right corner of the quadrant shows the values
associated with each color.  Values higher than the 10 second performance objective
will be red, lower values are respectively cooler colors.
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2.052  Display

Time, no contention: 992.329

0.272

0.214

1.270

990.512

0.060

Drawmod

Initializ
e

Find 
Beams

Sort 
beams

beams
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Lock Replace Delete Print
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< 10.00
≥ 10.00

Time, no contention: 0.483

0.121

0.000

0.120

0.241

0.001

Draw beam

Retriev
e beam

New 
beam

Find 
nodes

Each node

Set up 
node

DrawDraw

Lock Replace Delete Print

< 2.50
< 5.00
< 7.50
< 10.00
≥ 10.00

Resource demand: 

Model totals

0.198  CPU
990.078  DEVs
2.052  Display

Drawmod

Initializ
e

Find 
Beams

Sort 
beams

beams

Draw 
beam

FinishFinish

CP 0.000
DE 0.270
Dis 0.002

CP 0.002
DE 0.212
Dis 0.000

CP 0.002
DE 1.268
Dis 0.000

CP 0.194
DE 988.2
Dis 2.050

CP 0.000
DE 0.060
Dis 0.0000.000

Lock Replace Delete Print

< 2.50
< 5.00
< 7.50
< 10.00
≥ 10.00

Resource demand: 

Submodel totals

0.000  CPU
0.482  DEVs
0.001  Display

Draw beam

Retriev
e beam

New 
beam

Find 
nodes

Each node

Set up 
node

DrawDraw

CP 0.000
DE 0.121
Dis 0.000

CP 0.000
DE 0.000
Dis 0.000

CP 0.000
DE 0.120
Dis 0.000

CP 0.000
DE 0.241
Dis 0.000

CP 0.000
DE 0.000
Dis 0.0010.001

Figure 7.  Performance Results for Architecture 1.

The “Resource usage” values below the color bar legend show the time spent at each
computer device. Of the approximately 992 seconds, 990 is due to time required for
I/O at the “DEVs” disk device. The DrawBeam processing step requires 991 seconds for
all 2050 iterations. The time per iteration, 0.483 seconds, is in the top-right quadrant
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along with the time for each processing step in the loop. The bottom two quadrants
show the break-down of the computer device resource usage for the top level model
and the DrawBeam submodel. Most of the I/O time (988 seconds) is in the DrawBeam
step, the bottom-right quadrant shows that the I/O is fairly evenly spread in the
submodel: 0.12 secs. for both RetrieveBeam and FindNodes, 0.24 secs. for SetUpNode.

The results show that Architecture 1 clearly will not meet the performance goal of 10
seconds, so we explore other possibilities.

5.2  Architecture 2
Architecture 1 uses an object for each beam and node in the model. While this
provides a great deal of flexibility, using an object for each node and beam is
potentially expensive in terms of both run-time overhead and memory utilization.

We can reduce this overhead by using the Flyweight pattern [Gamma, et al., 1995].
Using the Flyweight pattern in ICAD allows sharing of beam and node objects and
reduces the number of each that must be created in order to display the model. Each
model now has exactly one beam and node object. The node and beam objects contain
intrinsic state, information that is independent of a particular beam or node (such as
coordinates). They also know how to draw themselves. Extrinsic state, coordinates and
other information needed to store the model are stored separately. This information is
passed to the beam and node flyweights when it is needed.

The Flyweight pattern is applicable when [Gamma, et al., 1995]:
• the number of objects used by the application is large,
• the cost of using objects is high,
• most object state can be made extrinsic,
• many objects can be replaced by fewer, shared objects once the extrinsic

state is removed, and
• the application does not depend on object identity.

The SPE evaluation will determine if the ICAD application meets all of these criteria.

Instead of using an object for each Beam and Node, we use a shared object based on
the Flyweight pattern. The state information is removed from the Beam and Node
classes and is stored directly in Model. The Class Diagram for this approach is shown
in Figure 8.

The scenario resulting from this set of classes is shown in Figure 9. As shown in
Figure 9, constructors for Node and Beam are executed only once, resulting in a
savings of many constructor invocations.

This architecture change has a minor effect on the process view, and no effect on the
physical view.  The beam and node objects are still part of the DrawMod process, now
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there is only one of each.  In the physical view, the three processes are still assigned to
the same processor.

Model

TriangleNode Beam Plate

Element

modelID : int
beams[] : Points

node1 : int
node2 : int
node3 : int
…

nodeNo : int
x : int
y : int
z : int
…

node1 : int
node2 : int
…

nodes[] : node
…

elementNo : int

draw()

draw()

draw()

draw()

draw()

1..3

Figure 8. Class Diagram for Architecture 2

iCAD aModel theDatabase

msc DrawMod

loop

aBeam aNode

new

open

find(modelID)

sort(beams)

retrieve(beam)

find(modelID, node1, node2)

retrieve(node1)

retrieve(node2)

new

draw(point1)

draw(point2)

close

draw(point1, point2)

new

draw

Figure 9. DrawMod Use Case Scenario for Architecture 2

The changes to the execution graph for this architecture are trivial. The graph nodes
corresponding to the “New” processing steps move from the yellow subgraph that
represents the DrawBeam processing step to the turquoise subgraph corresponding to
the Initialize  processing step. This takes the corresponding resource requirements out
of the loop that is executed 2050 times.
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Figure 10. Results for DrawMod scenario for Architecture 2

The overall response time is reduced from 992.33 to 992.27 seconds. The results of the
software execution model for this approach  indicate that using the Flyweight pattern
did not solve the performance problems with ICAD.  Constructor overhead is not a
significant factor in the DrawMod scenario. The amount of constructor overhead used
in this case study was derived from a specific performance benchmark and will not
generalize to other situations.  It is compiler, operating system, and machine
dependent; in our case constructors required no I/O.  It is also architecture-dependent;
in our example there is no deep inheritance hierarchy.  It is also workload-dependent;
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in this case the number of beams and nodes in the typical problem is relatively small.
Nevertheless, we choose to retain the Flyweight approach; it will help with much
larger ICAD models where the overhead of using an object for each beam and node
may become significant, making the architecture more scalable.

The evaluation of Architecture 2 illustrates two important points:  modifying
performance models to evaluate alternatives is relatively easy; and it is important to
quantify the effect of software alternatives rather than blindly follow a “guideline”
that may not apply.  Note that the relative value of improvements depends on the
order that they are evaluated.  If the database I/O and other problems are corrected
first, the relative benefit of flyweight will be larger.

The problem in the original design, excessive time for I/O to the database, is not
corrected with the Flyweight pattern, so the next architecture focuses on reducing the
I/O time due to database access.

5.3  Architecture 3
This architecture uses an approach similar to Architecture 2 (Figure 8) but modifies the
database management system with a new operation to retrieve a block of data with
one call:  retrieveBlock(). Architecture 3 uses this new operation to retrieve the beams
and nodes once at the beginning of the scenario and stores the data values for all
beams and nodes with the model object rather than retrieve the value from the
database each time it is needed. This new operation makes it possible to retrieve
blocks containing 20K of data at a time instead of retrieving individual nodes and
beams3. A single block retrieve can fetch 64 beams or 170 nodes at a time. Thus, only
33 database accesses are required to obtain all of the beams and 9 accesses are needed
to retrieve the nodes.

The class diagram for Architecture 3 does not change from Architecture 2. Figure 11
shows the MSC that corresponds to the new database access protocol. The bold arrows
indicate messages that carry large amounts of data in at least one direction. Although
this notation is not part of the MSC standard, we have found it useful to have a way of
indicating resource usage on scenarios that are intended for performance evaluation.

The logical, process, and physical views are essentially unchanged; the only difference
is the new database operation, retrieveBlock().

Figure 12 shows the execution graph corresponding to Figure 11 along with the
results for the “No Contention” solution. The time for Architecture 3 is approximately
8 seconds – a substantial reduction.

                                                
3 Note:  A block size of 20K is used here for illustration. The effect of using different block sizes could

be evaluated via modeling to determine the optimum size.
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Other improvements to this architecture are feasible, however, this serves to illustrate
the process of creating software execution models from architecture documents and
evaluating trade-offs. It shows that it is relatively easy to create the initial models, and
the revisions to evaluate alternatives are straightforward. The simple software
execution models are sufficient to identify problems and quantify the performance of
feasible alternatives. Software execution models also support the evaluation of
different process compositions and different assignments of processes to physical
processors.  Once a suitable architecture is found, SPE studies continue to evaluate
design and implementation alternatives.

iCAD aModel theDatabase

msc DrawMod

loop

aBeam aNode

new

open

find(modelID)

retrieveBlock(beams)

find(nodes)

retrieveBlock(nodes)

new

draw(point1)

draw(point2)

close

draw(point1, point2)

new

draw

loop

loop match

Figure 11. DrawMod scenario for Architecture 3

Analysts will typically evaluate other aspects of both the software and system
execution models to study configuration sizing issues and contention delays due to
multiple users of a scenario and other workloads that may compete for computer
system resources. In these additional performance studies, the most difficult aspect has
been getting reasonable estimates of processing requirements for new software before
it is created. The SPE process described here alleviates this problem. Once this data is
in the software performance model, the additional studies are straightforward and are
not described here. Information about these additional performance models is in
[Smith and Williams, 1997].
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Figure 12. Execution Graph for DrawMod scenario for Architecture 3.

6.  Summary and Conclusions

This paper presents and illustrates the SPE process for software architecture
evaluations.   We demonstrated that software execution models are sufficient for
providing quantitative performance data for making many architecture trade-off
decisions.  Other SPE models are appropriate for evaluating additional facets of
architectures and more detailed models of the execution environment.

Kruchten’s “4+1” view model is a useful way of thinking about the information
required to completely document a software architecture. Our experience is that, at
least from a performance perspective, each view is not atomic. Each of the views,
particularly the process view and the physical view, will likely have several possible
sub-views to represent information at different levels of abstraction.

The current SPE process obtains information from available documentation and
supplements it with information from performance walkthroughs and measurements.
Initially the SPE process was ad-hoc and informal.  Both the information requirements
and the SPE evaluation process are now better defined [Williams and Smith, 1995], so
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it makes sense to extend the architecture documentation to include SPE information to
make automation of these steps viable.  The additional information required includes
resource requirements for processing steps, and computer configuration data.

Most diagrams really serve as documentation of architecture and design decisions and
do not support making those decisions. We need notations, with tool support, that
provide decision support as well as documentation. (Use Case scenarios are an
exception to this, which may account for their rapid acceptance and current
popularity). In particular, both the process view and the physical view contain facts
that are best produced from performance studies (e.g., the assignment of objects to
processes and assignment of processes to processing components).  Current diagrams
for these views are rather complex and it doesn’t make sense to create them before the
SPE study is executed, because labor-intensive changes may be required. We envision
a tool that would display processes and processing components and give the user a
direct-manipulation interface to drag and drop processes to processors (and objects-
methods to processes in the logical view), automatically create and solve performance
models, give users quantitative feedback on each alternative, then produce process-
view and physical-view diagrams as output once the user has picked the mapping
they desire.

The case study results verify the earlier observation that “performance is largely a
function of the frequency and nature of inter-component communication.” The case
study also demonstrates that SPE models are sufficient to identify architectures with
suitable inter-component communication patterns.
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