Section 3: Software Measurement (pt 1)

Introduction.

According to Howard Rubens, a well-known American software consultant, 300 US IT companies had implemented software measurement programmes up to 1990. Only 60 programmes could be considered successful, in that they were still going after 2 years, with results that were used in decision making and communicated and accepted outside the IT department.

Ruben went on to say that the main reasons for the failures were:

· lack of management commitment,

· lack of clearly defined, quantifiable goals,

· bad management of the programme, meaning measurement was not treated as a project in its own right,

· results of the programme were not used by management,

· management had unrealistic expectations of the benefits, or were unclear whether the programme was providing benefits, usually due to a lack of criteria for judging the programme's success,

· too often, the staff measuring or being measured got little or no feedback.

Yet, measurement is fundamental to managing any project, not just quality management. Indeed, software measurement has been around since the first compiler counted the number of lines in a program listing.

What is Measurement?

There is a widely accepted definition of measurement in software development, it comes from N. Fenton’s book Software Metrics, A Rigorous Approach, published by Chapman & Hall, 1991.

‘Measurement is the process by which numbers or symbols are assigned to attributes of entities in the real world in such a way as to describe them according to clearly defined rules.’

The ‘entities in the real world’ are the processes, products, tools, people, etc., which we see in our software development environments. The attributes are the qualities, or often the frequency of occurrence, that we observe in the entities. Fenton’s reference to clearly defined rules is important because it sets boundaries to the possible ways to manipulate, and hence interpret, the assigned numbers or symbols.

Why Measure?

As the March/April 1997 issue of “IEEE Software” says;

· developers use measurements to evaluate their progress towards completion, - managers use measurements to assess project health and progress towards milestones,

· customers use measurements to determine quality and functionality of systems, and

· maintainers use measurements for decisions on reusability and reengineering.

But how does measurement relate to software quality?

According to the IEEE, “Standard 1061: Software Quality Metrics Methodology,” IEEE Computer Society Press, 1992, the purpose of software quality metrics is to make assessments throughout the software lifecycle as to whether software quality requirements are being met. If metrics, therefore, exist to assess the accomplishment of requirements, it’s logical to conclude that the metrics must be related in some way to the requirements. The next paragraph introduces exactly that relationship.

The Goal Question Metric (GQM) Paradigm

In fact, the most effective measurement method in the late 1980's and early 1990's has been the Goal-Question-Metric method. In the past few years perhaps the most important approach to software measurement has been the process-oriented approach. The GQM approach, however, is not tied to the Capability Maturity Model, with all that is implied by that.

GQM has four steps;

- identify the Goals, Questions and Metrics,

- plan the measurement,

- measure,

- analyse and interpret the data.

Victor Basili led the team at the University of Maryland that developed the GQM method; his position was, first, there must always be a point to measurement - the Goal is central, and second, that it must always be possible to validate the data. Basili rejected earlier ideas of fixed sets of metrics, replacing them with the selection, or sometimes derivation, of metrics matched to an organisation's goals and environments.

As already stated, GQM has four steps, as follows.

First step - Identifying the Goals, Questions and Metrics.

Goals

Basili provides a template that divides a goal into three components; purpose, perspective, environment. Typically goals have a perspective of quality, cost, size, productivity, etc., and a verb (such as evaluate or improve) describing the purpose of the goal. The following example is taken directly from N. Fenton and S. Pfleeger’s book Software Metrics, A Rigorous and Practical Approach, 2nd ed., published by International Thompson Computer Press, 1997.

Purpose: To (characterise, evaluate, predict, motivate, etc.) the (process, product, model, metric, etc.) in order to (understand, assess, manage, engineer, learn, improve, etc.) it.

Example: To evaluate the maintenance process in order to improve it.

Perspective: Examine the (cost, effectiveness, correctness, defects, changes, product measures, etc.) from the viewpoint of the (developer, manager, customer, etc.)

Example: Examine the cost from the viewpoint of the manager.

Environment: The environment consists of the following factors: process(es), people, problem, methods, tools, constraints, etc.
Example: The maintenance staff are poorly motivated programmers who have limited access to tools.

This way of structuring a goal, by dividing it into components, forces greater clarity into the objectives of a measurement programme and creates a format that is useful in later steps.

Questions

Moving from goals to questions is the most difficult part of GQM. The range of questions possible for any particular goal is wide. Questions are related to the entities in the process or product, the related attributes and the relevant analysis and feedback. In the definition of measurement given earlier, the role of entities and attributes was crucial; it is the same when framing questions to ask of the goals. Ask questions of the entities with the aim of clarifying and defining the attributes of those entities.

As already stated, the range of questions for any particular goal is wide. Sometimes the situation will arise where there are too many questions to be realistically considered. In that situation it is better go back and redefine, or break down the goal. Often, in practice, the jump from goals to questions is so large as to make it practical to introduce another layer - sub-goals - into the hierarchy.

Metrics

Moving from questions to metrics is not as difficult as the previous step. Questions must be quantified, one or many metrics may be required for any one question. Identifying the right metric is not an automatic step; size, for example, could be measured via a large number of metrics. Choosing the right metric is influenced by; the way the metric will be used in feedback, the collection feasibility, development practices, etcetera.

The definition of metrics concludes the first step. The output from this step is a hierarchy of goals, questions and metrics.

Second step - Planning the Measurement.

Even a very small number of goals will often produce many questions, and even more metrics. Priorities for collection must be set and factors to consider are; cost to collect and analyse, the benefit to be gained, and the probability of success.

When planning the measurement process consideration must given to;

- the collection technique - either manual, through forms, or automatic, through CASE tools or automated workbenches,

- data validation - the accuracy of the data collected. One approach to validation would be to collect data by two different methods and compare the results.

Third step - Measuring.

Many problems will be encountered when actually measuring. The best time to fix problems is before they start jamming the machinery - once problems occur the inevitable time and result pressures on people involved in measurement and software development mean that performance will degrade.

Improvements to both planning and identifying the goals will be made if a small preliminary measurement study can be conducted.

Such studies help to;

- train and familiarise people,

- show the importance of resources, timescales and milestones for measurement,

- uncover the impractical measurements and plans that lead to small local fixes that conflict when software projects are compared, and,

- also test out the plans and resources for data validation.

Fourth and final step - Analysis and Interpretation.

The first step in GQM derived metrics from the original goals, it should therefore be clear that the analysis and interpretation will be with respect to, or in the context of, the goals and questions. The original goals must be reviewed in the light of the information obtained from the measurement programme; moreover, the GQM method requires that the original goals are reworked in the light of the data collected. In other words, the GQM process does not stop; you go back to step one and recycle through the steps.

For an example of practical use of the GQM paradigm, the reader is referred to the following URL on the world-wide web: http://satc.gsfc.nasa.gov/papers/satcmetwo.html.

Basic measurement theory.

Some basic measurement theory needs to be introduced. At the beginning of this section it was said that measurement must be done according to clearly defined rules. These rules control the way that we manipulate and present the measurements we collect. There are several scales of measurement; nominal, ordinal, interval, ratio, and absolute.

A nominal scale puts items into categories - if we were to measure colour, the first thing we might say would be; red, blue, green, etc.

An ordinal scale ranks items - for example, intensity; low, medium, high.

An interval scale marks equal distances from from one point to another - for example; temperature, in degrees centigrade, and calendar time.

A ratio scale introduces proportion - while 30 degrees centigrade is not twice as hot as 15 degrees centigrade, 30 degrees absolute (Kelvin) is twice as hot as 15 degrees absolute. Similarly for length, 20 centimetres is twice as long as 10 centimetres.

Absolute scales are entities which are simply counted. They have all the properties of ratio scales.

Now a little warning.

What analyses, what transformations, you do to numbers on a particular scale are restricted by the type of scale it is. Because of this, we should never give examples of attributes without specifying the relation system that defines the attribute - which why temperature in the earlier example was carefully defines as either centigrade or absolute.

Summary

We have considered success factors for measurement programmes, what measurement is, and why we measure. We have run through the GQM paradigm for defining a measurement programme and we have touched upon some basic measurement theory. In the next section you will finally see some examples of software measures. Size, complexity, schedule and resources, and measurement in software reliability.

Section 3 (contd.): Software Measurement (pt 2)

In this part of section 3 we will look at size, schedule, resources, and briefly discuss measurement in software reliability.

Size

Beginning with size; two very well known measures of size are Function Points and Lines of Code. Lines of Code can, obviously, only be counted once code has been written. Function Points are a way of counting the 'amount of functions', hence the size of the system, from the requirements.

(A good book to read in this area, and about software measurement generally, is Martin Shepperd's book Foundations of Software Measurement, published by Prentice Hall, 1995. Shepperd talks about Lines of Code and Function Points in section 4.2.2 of the book.)

You should always remember the following two points about Lines of code. Firstly, any measure of lines of code depends on the code - in other words, the language used, Java, C++, etcetera. What can be just one line of code in one language might take two, three, or more, in another. So don't quote lines of code without defining the language too.

Also, secondly, how do we count lines? Is a line defined as the program text that lies between two delimiters - a delimiter for Pascal is a semicolon. Is a line defined as only the executable program text; excluding, for example, comment lines. So, as Shepperd and many others poin out, it is very important to carefully define a counting convention and then rigorously stick to it.

Function Points.

Function Points were developed by Albrecht, who was working at IBM in the late nineteen-seventies. Counting the size of a software system can be done much earlier using FPs than when using LOC because FPs only require the detailed requirements specification, instead of the written code. Function Points also allow us to have a measure of size that is, apparently, independent of implementation detail, language for example. For those interested in reading the original paper by Albrecht,

The first thing to do, when counting function points, is to identify the basic function types. Albrecht defined, not just the five basic function types;

external inputs,

external outputs,

user enquiries,

external files, and,

internal files,

but also a complexity scale; simple, average, and complex, to be applied to each function type.

Albrecht said that the contribution to the size of the system from each function type was not equal. In other words, he created a table of weightings. A table of weightings where the values change according to function type and complexity, as you can see.

Function type
Simple
Weighting factor
Average
Complex

external inputs
3
4
6

external outputs
4
5
7

external enquiries
3
4
6

logical internal files
7
10
15

external interface files
5
7
10

So, for each and every function identified in the requirements, it must be classified by function type and then classified by complexity before its weight, and thus its contribution to overall size of the system, is determined. The total number of Function Points (the Unadjusted Function Point Count) is the sum of all the weightings.

To determine a function's complexity use is made of the following two tables. For each function, two out of the three determinants (# files, # record types, # data elements) are derived from the first table below. The two determinant values are then added together to give the determinant score, which is translated using the second table below.

Determinant

files
record types
data elements

Function type
1
2
3
1
2
3
1
2
3

No. of external inputs
0-1
2
>2

1-4
5-15
>15

No. of external outputs
0-1
2-3
4

1-5
6-19
>19

No. of external interfaces
Compute both the external input and external output components
- use whichever is the greater.

No. of external enquiries

1
2-5
>5
1-19
20-50
>50

No. of files

1
2-5
>5
1-19
20-50
>50

DeterminantScore
Complexity Rating

2-3
Simple

4
Average

5-6
complex

For example, an external input that referenced 3 files and sixteen data elements would have a determinant score of 3+3 = 6, resulting in a complexity rating of ‘complex’. Albrecht originally left the assessment of the complexity of each function to personal judgement – a factor which has caused serious problems in the past. The use of the above tables reduces the subjectivity in the calculation of Function Points considerably.

In addition to the Unadjusted Function Point Count, Albrecht also said that the size of the system was also influenced by a number of required system characteristics. Albrecht identified fourteen system characteristics

Data communications
Distributed data processing

Performance
Heavily used configuration

Transaction rate
On-line data entry

End-user efficiency
On-line update

Complex processing
Re-usability

Installation ease
Operation ease

Multiple sites
Facilitate change

Each of the fourteen characteristics is assigned a score based on the following influence-scale.

Influence level
Score

Not present/ no influence
0

Incidental/ insignificant influence
1

Moderate influence
2

Average influence
3

Significant influence
4

Essential/ very strong influence
5

The fourteen scores are then added together to give what is called the 'Technical Complexity Factor' for the system, or TCF for short. Albrecht, from the data he had, said that the TCF could adjust the size of the system by as much as thirty-five percent either way. How to calculate that adjustment factor is shown here:

adjustment factor = 0.65 + (0.01xTCF),

where TCF lies in the range 0 – (14 x 5 = 70).

Having calculated the adjustment factor it must now be multiplied by the earlier derived Unadjusted Function Point Count to arrive at the final calculation of the number of FPs in the system.

Many criticisms can be justly made about Function Point counting. For example, the convoluted way of deriving the complexity of each function, or the lack of independence between the fourteen system characteristics that Albrecht identified. Despite these problems, Function Points have proven, over the years, to be a very popular way of estimating the size of a system.

Schedule and resources

Having looked at size, let's now look at schedule and resources by considering just one of the many models that have been developed over the years. The model is COCOMO, Constructive Cost MOdel, which was developed by Barry Boehm. Boehm’s book on the subject contains over 1000 pages; for a good summary of the first COCOMO model you should read chapter 29, section 3, of Ian Sommerville’s Software Engineering, 5th edition, Addison-Wesley, 1996. Also recommended is Martin Shepperd's summary in his book Foundations of Software Measurement, published by Prentice Hall, 1995.

COCOMO doesn't estimate cost, it estimates development effort in terms of person-months. COCOMO is actually three models in one; a simple, an intermediate and a detailed model. The simple model aims to give a fairly rough estimate at an early stage by calculating effort as a function of size and development type, or, as the model calls it, development mode. The intermediate model is for use when the major system components have been identified; the calculation is as before but also includes up to fifteen separate effort adjustment factors, called cost drivers by the model. The detailed model can be applied when the individual system modules have been identified, the calculation includes phase-sensitive effort multipliers.

Fundamentally, COCOMO, and other effort estimation models predict effort as a function of the size of the system. COCOMO bases its simple model on size and development mode. There are three development modes:

Organic -
which refers to stand alone in-house DP type system developments.

Embedded -
which refers to real-time systems or systems which have constraints which complicate their development.

Semi-detached -
which are systems which combine features from both organic and embedded developments.

The intermediate COCOMO model changes the values of the parameters used in the simple model and multiplies the simple effort equation by an Effort Adjustment Factor, or EAF for short. The EAF is the product of the values assigned to the fifteen cost drivers mentioned earlier. The values range from 0.70 to 1.66, depending on the rating assigned to each cost driver.

COCOMO I - EFORT MULTIPLIERS

COST DRIVER
RATING

V.
LOW
LOW
NOM-INAL
HIGH
V.
HIGH
EX. HIGH

(PRODUCT)
RELY
0.75
0.88
1.00
1.15
1.40
.

..
DATA
.
0.94
1.00
1.08
1.16
.

..
CPLX
0.70
0.85
1.00
1.15
1.30
1.65

(COMPUTER)
TIME
.
.
1.00
1.11
1.30
1.66

..
STOR
.
.
1.00
1.06
1.21
1.56

..
VIRT
.
0.87
1.00
1.15
1.30
.

..
TURN
.
0.87
1.00
1.07
1.15
.

(PERSONNEL)
ACAP
1.46
1.19
1.00
0.86
0.71
.

..
AEXP
1.29
1.13
1.00
0.91
0.82
.

..
PCAP
1.42
1.17
1.00
0.86
0.70
.

..
VEXP
1.21
1.10
1.00
0.90
.
.

..
LEXP
1.14
1.07
1.00
0.95
.
.

PROJECT
MODP
1.24
1.10
1.00
0.91
0.82
.

..
TOOL
1.24
1.10
1.00
0.91
0.83
.

..
SCED
1.23
1.08
1.00
1.04
1.10
.

The rating is a six-point scale but only one driver uses the full six-point scale. The other drivers are equally divided between five and four-point scales. The theoretical maximum EAF is 72 and the minimum is 0.089. I leave you to consider for yourselves the practicality in real life of such a range.

This has been a very high level overview of the first COCOMO model; for an understanding of the detail the reader is referred to either Sommerville or Shepperd.

Measurement in Software Reliability.

Making numerical reliability predictions is difficult. Reliability is defined as the probability of error-free operation of the software for a specified period of time, under specified conditions. It is actually dependent on measuring failures and the time of failure. The models for reliability prediction are based on the measurements taken and assumptions about the failure and the repair processes.

The most developed area of research into measuring software reliability is with respect to reliability growth models. The assumption here is that the observed reliability of the software is dependent on the number of faults latent in the software, i.e., the reliability improves when faults are found and fixed without introducing a new fault - hence the term reliability growth. By recording, over a period of time, the operational time between successive failures, the trend in the period of failure-free operation can be observed. Reliability, in this context, is defined as the Mean-Time-To-Failure, MTTF. If the recorded data shows significantly longer MTTFs as total operational time increases, then we are seeing an increase, an , in reliability.

You can find further discussion of reliability growth modelling, and mention of probably the most well-known model - the Jelinksi-Moranda Model - in Chapter 18 of Sommerville.

Review of this Section

In summary, whatever you are measuring the are going to be strengths and weakness in the measure, the measuring instrument, and the model behind the measure. Awareness of the pros and cons is very important when analysisng of the data, and especially when drawing conclusions from the analysis. Never forget, as stressed in Section 3 (pt 1), the context of your measures.

Tutorials for this Section

Function Points

As an exercise for yourselves, remembering particularly what was said in Section 3 (pt 1) about measurement scales and the allowable transformations and analyses, you might like to list some of the criticisms that can be made of Function Points.

Cost Estimation (COCOMO)

Go through the COCOMO tutorial sheet, answering the questions posed.

References

Albrecht A.J., Gaffney J.E., Software Function, Source Lines of Code, and Development Effort Prediction: A Software Science Validation, IEEE Transactions on Software Engineering, Vol. SE-9, No. 6, Nov. 1983.

