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ABSTRACT

Here we investigate the underlying basis connecting
the software reliability growth models to the software
testing and debugging process. This is important for
several reasons. First, if the parameters have an in-
terpretation, then they constitute a metric for the soft-
ware test process and the software under test. Secondly,
it may be possible to estimate the parameters even be-
fore testing begins. These a priori values can serve as a
check for the values computed at the beginning of test-
ing, when the test-data is dominated by short term noise.
They can also serve as initial estimates when iterative
computations are used.

Among the two-parameter models, the exponential
model is characterized by its simplicity. Both its pa-
rameters have a simple interpretation. However, in
some studies it has been found that the logarithmic pois-
son model has superior predictive capability. Here we
present a new interpretation for the logarithmic model
parameters. The problem of a priori parameter estima-
tion is considered using actual data available. Use of
the results obtained is illustrated using examples. Vari-
ability of the parameters with the testing process is ex-
amined.

1 Introduction

A software reliability growth model (SRGM) can be re-
garded to be a mathematical expression which fits the
experimental data. It may be obtained simply by ob-
serving the overall trend of reliability growth. However
some of the models can be obtained analytically by mak-
ing some assumptions about the software testing and de-
bugging process. Some of these assumptions are sim-
ply to keep the analysis tractable. Other are more funda-
mental in nature and constitute modeling of the testing
and debugging process itself.

�This research was supported in part by a BMDO funded project
monitored by ONR and in part by an AASERT funded project.

An analytically obtained model has the advantage
that its parameters have specific interpretations in terms
of the testing process. An understanding of the under-
lying meaning of the parameters gives us a valuable in-
sight into the process.

1. If we know how a parameter arises, we can esti-
mate it even before testing begins. Such a priori
values when estimated using past experience, can
be used to do preliminary planning and resource al-
location before testing begins [13].

2. The experience with use of SRGMs suggests that in
the beginning of testing, the initial test data yields
very unstable parameter values and sometimes the
parameter values obtained can be illegal in terms
of the model. In such a situation, values estimated
using static information can serve as a check. They
can also be used to stabilize the projections adding
to the information obtained by the dynamic defect
detection data.

3. Sometimes iterative techniques are used to esti-
mate the parameter values. The values obtained
can depend on the initial estimates that are required
by numerical computation. Use of a priori values
as the initial estimate would initiate the search in a
region closer to the values sought.

4. Parameters that have an interpretation characterize
the testing and debugging process quantitatively.
Their values can give us an insight into the process.
They may help answer the questions about how the
inherent defect density can be reduced or how test-
ing can be made more efficient.

This paper examines the parameters of the exponen-
tial and the logarithmic models. We present a new
model for estimating the software defect density. A
new interpretation for the parameters of the logarithmic
model is presented. Techniques for estimation of pa-
rameters are presented.
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The quantitative process characteristic values used
in this paper are taken from the data reported by re-
searchers. The values depend on the process used and
may be different for different process. Thus the mod-
els presented here should be recalibrated using the prior
experience in a specific organization using a specific
process. Similar methods have been in use for project-
ing hardware reliability measures where they have been
found to be very useful even though the results are only
approximate.

The next section analytically presents the interpreta-
tions of the parameters of the two models. Section 3 dis-
cusses estimation of parameters. Some observations on
parameter variations are presented next followed by the
conclusions.

2 Exponential and Logarithmic
SRGMs

In this paper we will consider two two-parameter mod-
els. The exponential model, in the formulation used here
is also termed Musa’s basic execution model [17]. It is
given by

µ(t) = βE
0 (1� e�βE

1 t) (1)

where µ(t) is the mean value function and βE
0 and βE

1
are the two model parameters.

Farr mentions that this model has had the widest
distribution among the software reliability models [4].
Musa [17] states that the basic execution model gener-
ally appears to be superior in capability and applicabil-
ity to other published models. Some of the other models
are similar to this model.

The logarithmic model is the other model considered
here. It is also termed Musa-Okumoto logarithmic pois-
son Model. It is given by

µ(t) = βL
0 ln(1+βL

1t) (2)

where βL
0 and βL

1 are the two model parameters.
Farr states that the logarithmic model is one of the

models that has been extensively applied [4]. This is
one of the selected models in the AIAA Recommended
Practice Standard [4]. Musa [17] writes that the log-
arithmic model is superior in predictive validity com-
pared with the exponential model. In a study using 18
data sets from diverse projects, Malaiya et al. evalu-
ated the prediction accuracy of five two-parameter mod-
els [14]. They found that the logarithmic model has the
best overall prediction capability. Using ANOVA, they
found that this superiority is statistically significant.

All software reliability growth models (SRGMs) are
approximations of the real testing process, thus none of

the models can be regarded to be perfect. However these
two models possess simplicity and have been found to
be applicable for a variety of software projects. Thus
these two models have been chosen for this study.

2.1 Derivation of the Exponential model

Here we give a derivation of the exponential model that
gives its relationship with the test process. This will al-
low us to interpret the meaning of the two parameters
of this model. Let N(t) be the expected number of de-
fects present in the system at time t. Let Ts be the av-
erage time needed for a single execution, which is very
small compared with the overall testing duration. Let ks

be the expected fraction of existing faults exposed dur-
ing a single execution. Then

dN(t)
dt

Ts =�ksN(t) (3)

It would be convenient to replace Ts with something
which can be easily estimated. Let TL be the linear exe-
cution time [17] which is defined as the total time needed
if each instruction in the program was executed once and
only once. It is given by

TL =
Is:Qx

r

where Is is the number of source statements, Qx is the
number of object (machine level) instructions per source
instructions and r is the object instruction execution rate
of the computer being used.

Let us define a new parameter

K = ks
TL

Ts

where the ratio TL
Ts

will depend on the program struc-
ture. Using this, equation 3 can be rewritten as

dN(t)
dt

=�
K
TL

N(t) (4)

The per-fault hazard rate as given in equation 4 is
K=TL. Thus K, termed fault exposure ratio [17] directly
controls the efficiency of the testing process. If we as-
sume that K is time invariant, then the above equation
has the following solution:

N(t) = N0e
�

K
TL

t

where N0 is the initial number of defects. This may
be expressed in a more familiar form as follows:

N0�N(t) = N0(1� e
�t K

TL )
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The left side of this equation corresponds to µ(t), as
given by equation 1. Thus the parameters β0 and β1
have the following interpretations:

βE
0 = N0; and βE

1 =
K
TL

(5)

Experimental data suggests that K actually varies dur-
ing testing [15]. We will denote the constant equiva-
lent as determined by the application of the exponential
model by K̂.

2.2 Implications of the Logarithmic model

The logarithmic model has been found to have very
good predictive capability in many cases. However to
derive it from basic considerations requires one to make
some assumptions as done in references [17], [16] and
[15]. We show below that if the logarithmic model de-
scribes the test process, the fault exposure ratio is vari-
able. We can assume that this variation depends on the
test process phase which is given by the density of de-
fect present at any time during testing [11]. This leads
us to an interpretation of the model parameters as shown
in the next section.

Rearranging equation 2 for the mean value function
µ(t), we can write,

e
µ(t)

βL
0 = (1+βL

1t) (6)

Also,

λ(t) =
βL

0βL
1

1+βL
1t

Substituting for (1+βL
1t) from equation 6

λ(t) = βL
0βL

1e
�

µ(t)

βL
0 = βL

0βL
1e
�

N0�IsD(t)

βL
0 (7)

Where D(t) is the defect density at time t. From equa-
tion 4, the fault exposure ratio is given by

K(t) = TL
λ(t)
N(t)

Using equation 7 to substitute for λ(t), we get

K(t) =
TL

IsD
βL

0βL
1e
�

N0�IsD(t)

βL
0 (8)

=

 
TL

IsD
βL

0βL
1e
�

N0
βL

0

!
e
�

IsD(T)

βL
0

We can rewrite this as

K(D) =
α0

D
eα1D (9)

Here we have expressed the fault exposure ration K
as a function of defect density D instead of time t. Here
the parameters α0 and α1 are given by,

α0 =
βL

0βL
1Qx

r
e
�

N0
βL

0 (10)

α1 =
Is

βL
0

(11)

The equations 10 and 11 are used in the next sec-
tion to present a new interpretation for the logarithmic
model.

2.3 Interpretation of the Logarithmic
Model Parameters

An interpretation of the parameters for the exponential
model is quite straightforward. As t ! ∞, according to
equation 1, µ(t)! βE

0 . Musa states that during debug-
ging only about 5% new faults are introduced. Thus βE

0
is slightly greater than the initial number of faults, and
can be taken to represent the total number of faults that
will be encountered. The parameter βE

1 is the time scale
factor, or the per fault hazard rate, as given by equation
5.

A greater challenge is posed by the logarithmic model
parameters. Here we present a new interpretation based
on the analysis presented in sec 2.2. From equation 10
we can write

βL
0 =

Is

α1

Substituting this in equation 10 and solving for βL
1, we

get

βL
1 =

α0rα1

QrIs
e

N0α1
Is

Let us now determine the meaning of α0 and α1; in
terms of the test process. Fig. 1 gives the variation of the
fault exposure ratio K in terms of defect density. Let us
denote by Dmin the density at which Kmin, the minimum
value of K, occurs. Taking a derivative of K with respect
to D using equation 9 and equating it to zero, we get

�

α0

D2 eα1D +
α0

D
eα1Dα1 = 0

which yields

Dmin =
1

α1

3



0

Kmin

5

10

0 Dmin 5 10

K

�10�7

Defect density D

logarithmic model

exponential model

�

?

Figure 1: Variation of Fault Exposure Ratio with defect
density

and the corresponding value of K is given by

Kmin =
α0e
Dmin

Thus both α0 and α1 depend on the test process,

α0 =
KminDmin

e
; and α1 =

1
Dmin

(12)

Using equations 10, 11 and 12 , we obtain this inter-
pretation of the logarithmic model parameters.

βL
0 = IsDmin (13)

βL
1 =

Kminr
QxIse

e
D0

Dmin (14)

Here D0 is the initial defect density. Equation 13
states that βL

0 is proportional to the software size and is
controlled by how test effectiveness varies with defect
density. The parameter β1 depends on Kmin, the mini-
mum value of the fault exposure ratio. It is also depen-
dent on the ratio D0

Dmin

It should be noted that βE
0 and βL

0, and βE
1 and βL

1 have
the same dimensions. The Table 1 below compares the
interpretations of the parameters of the two models com-
pared here.

Value Scale Time Scale

Dimension Defects Per unit time

Exponential βE
0 � N0 = D0Is βE

1 = K̂
TL

Logarithmic βL
0 = DminIs βL

1 = Kmin
TL

e
D0�Dmin

Dmin

Table 1: Comparison of model parameter interpreta-
tions

3 Factors affecting Defect Density

Because the exponential model parameters are ex-
plained in a simpler way, the problem of a priori esti-
mation of its parameters is also easier. Assuming the
number of new faults introduced during the debugging
process is small, βE

0 can be taken to be approximately
equal to the initial number of defects, N0. It has been
observed that for a specific development environment
for the same software development team, the defect den-
sity encountered is about the same, for the same devel-
opment/testing phase [19]. This allows the initial defect
density to be estimated with reasonable confidence.

Here we present a factor multiplicative model to es-
timate the initial defect density and hence N0. A factor
multiplicative model assumes that the quantity to be es-
timated is influenced by several independent causes and
the effect of each cause can be suitably modeled by a
multiplicative factor. Such models have also been used
to estimate hardware failure rates. Several linear addi-
tive models for estimating the number of defects have
also been proposed, they have the disadvantage that they
can project zero or negative number of defects.

The models by Agresti and Evanco [2], Rome Lab
[22] and THAAD [6] are factor multiplicative like our
model. A preliminary version of our model [12] is being
implemented in the ROBUST software reliability tool
[10]. Our model, presented below, has the following ad-
vantages:

1. It can be used when only incomplete or partial in-
formation is available. The default value of a mul-
tiplicative factor is one, which corresponds to the
average case.

2. It takes into account the phase dependence as sug-
gested by Gaffney [5]

3. It can be recalibrated by choosing a suitable con-
stant of proportionality and be refined by using a
better model for each factor, when additional data
is available.

The model is given by

D =C:Fph:Fpt:Fm:Fs:Fr (15)

where the five factors are the phase factor Fph, mod-
eling dependence on software test phase, the program-
ming team factor Fpt taking in to account the capabilities
and experience of programmers in the team, the matu-
rity factor Fm depending on the maturity of the software
development process, the structure factor Fs, depend-
ing on the structure of the software under development
and requirements volatility factor Fr, which depends on
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the changes in the requirements. The constant of pro-
portionality C represents the defect density per thousand
source lines of code (KSLOC). We propose the follow-
ing preliminary sub-models for each factor.

3.1 Phase Factor (Fph)

The number of defects present at the beginning of dif-
ferent test phases is different. Gaffney [5] has proposed
a phase based model that uses the Rayleigh curve. Here
we present a simpler model using actual data reported
by Musa et al. [17] (their table 5.2) and the error profile
presented by Piwowarski et al. [21]. In Table 2 we take
the default value of one to represent the beginning of
the system test phase. With respect to this, the first two
columns of Table 2 represent the multipliers suggested
by the numbers given by Musa et al. and Piwowarski et
al.. The third column presents the multipliers assumed
by our model.

Test Multiplier
phase Musa et al. Piwowarski Our Model

Unit 3.28 5 4
Subsystem Insuf. data 2.5 2.5
System 1 1 1 (default)
Operation 0.25 0.45 0.35

Table 2: Phase Factor (Fph)

3.2 The Programming Team Factor (Fpt)

The defect density varies significantly due to the coding
and debugging capabilities of the individuals involved
[24] [25]. The only available quantitative characteriza-
tion is in terms of programmers average experience in
years, given by Takahashi and Kamayachi [24]. Their
model can take into account programming experience
of up to 7 years, each year reducing the number of de-
fects by about 14%. The data in the study reported by
Takada et al [25] suggests that programmers can vary in
debugging efficiency by a factor of 3. In a study about
the PSP process [20], the defect densities in a program
written separately by 104 programmers were evaluated.
For about 90% of the programmers, the defect density
ranged from about 50 to 250 defects/KSLOC. This sug-
gests that defect densities due to different programming
skills can differ by a factor of 5 or even higher.

Thus we propose the model in Table 3. The skill level
may depend on factors other than just the experience.

The PSP data suggests while there may be some depen-
dence on experience, programmers with the same expe-
rience can have significantly different defect densities.

Team’s Average Skill level Multiplier

High 0.4
Average 1 (default)
Low 2.5

Table 3: The Programming Team Factor (Fpt)

3.3 The Process Maturity Factor (Fm)

This factor takes into account the rigor of software de-
velopment process at a specific organization. This level,
as measured by the SEI Capability Maturity Model, can
be used to quantify it. Here we assume level II as the de-
fault level, since a level I organization is not likely to be
using software reliability engineering. Kolkhurst [9] as-
sumes that for delivered software, change from level II
to level V will reduce defect density by a factor of 500.
However, Keene [3] suggests a reduction in the inher-
ent defect density by a factor of 20 for the same change.
Jones [7] suggests an improvement by a factor of 4 in
potential defects and a factor of 9 in delivered defects for
changing from level II to level V. Here we use the num-
bers suggested by Keene to propose the model given in
Table 4.

SEI CMM Level Multiplier

Level 1 1.5
Level 2 1 (default)
Level 3 0.4
Level 4 0.1
Level 5 0.05

Table 4: The Process Maturity Factor (Fm)

3.4 The Software Structure Factor (Fs)

This factor takes into account the dependence of defect
density on language type (the fractions of code in as-
sembly and high level languages), program complexity,
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modularity and the extent of reuse. It can be reasonably
assumed that assembly language code is harder to write
and thus will have a higher defect density. The influ-
ence of program complexity has been extensively de-
bated in the literature [8]. Many complexity measures
are strongly correlated to software size. Since we are
constructing a model for defect density, software size
has already been taken into account. There is some evi-
dence that for the same size, modules with significantly
higher complexity are likely to have a higher number of
defects. However, further studies are needed to propose
a model. It is known that module size influences defect
density with a module [2]. However in a software sys-
tem consisting of modules, the variability due to differ-
ent block sizes may cancel out if we are considering the
average defect density. The influence due to reuse will
depend on its extent, the defect-contents of reused mod-
ules and how well the reused modules implement the in-
tended functionality. As this time, we propose a model
for Fs depending on language use, and allow other fac-
tors to be taken in to account by calibrating the model.

Fs = 1+0:4a (16)

where a is the fraction of the code in assembly lan-
guage. Here we are assuming that assembly code has
40% more defects [1].

3.5 The Requirements Volatility Factor
(Fr)

It is common for the requirements specification to
change. If the requirements change while the software is
being developed and debugged, the software will have a
higher defect density with respect to the revised require-
ments. Musa [18] has suggested a new metric termed
requirements volatility. Takahashi and Kamayachi [25]
suggest that changes in the specifications can cause a 20-
30% change in the defect density. An evaluation of the
requirements volatility can lead us to an estimate of the
overall change in the requirements specification which
may linearly affect the defect density. We are looking
for suitable data to develop a model for the Fr factor.

3.6 Calibrating and using the defect den-
sity model

The model given in equation 15 provides an initial es-
timate. It should be calibrated using past data from the
same organization. Calibration requires application of
the models using available data in the organization and
determining the appropriate values of the subparame-
ters. Since we are using the beginning of the subsystem
test phase as the default, Musa et al.’s data suggests that

the constant of proportionality C can range from about
6 to 20 defects per KSLOC. For best accuracy, the past
data used for calibration should come from projects as
similar to the one for which the projection needs to be
made. Some of indeterminacy inherent in such models
can be taken into account by using a high estimate and a
low estimate and using both of them to make projections
[23].
Example 1: For an organization, the value of C has
been found to be between 12 to 16. A project is be-
ing developed by an average team and the SEI maturity
level is II. About 20% of the code is in assembly lan-
guage. Other factors are assumed to be average.

Then the defect density at the beginning of the sub-
system test phase can range between 12�2:5�1�1�
(1+0:4�0:2)�1= 32:4 /KSLOC and 16�2:5�1�
1� (1+0:4�0:2)�1= 43:2 /KSLOC.

4 Estimation of SRGM Parame-
ters

4.1 Estimation of βE
0 and βE

1

Since βE
0 represents the total number of faults that will

be detected, it can be estimated using the estimate for
the initial defect density, D0. As suggested by Musa et
al., we can assume that about 5% new defects would be
created during debugging. Thus we can use this model
for βE

0 .

βE
0 = 1:05�D0Is (17)

Estimation of βE
1 requires the use of the equation βE

1 =
K̂
TL

where K̂ is the overall value of the fault exposure ra-

tio during the testing period. The value of K̂ is some
times approximated by 4:2�10�7 failures per fault, the
average value determined by Musa et al. [17]. Li and
Malaiya [10] have suggested that K̂ varies with the ini-
tial defect density and have given this expression to esti-
mate K̂: K̂ = 1:2�10�6

D0
e0:05D0 where D0 is the defect den-

sity per KSLOC. The parameter values have been com-
puted here by fitting the values for fault exposure ratio
for several projects reported by Musa et al. [17].
Example 2: Let us assume that the initial defect density
for a project has been estimated to be 25 faults/KSLOC
and the software size is 5400 lines. The program is
tested on a CPU that runs at 4 MIPS and each source in-
struction compiles into 4 objects instructions. Then the
estimated values are

βE
0 = 1:05�25�5:4= 141:7 (18)
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K̂ =
1:2�10�6

25
e0:05�25 = 1:675�10�7 (19)

βE
1 =

1:675�10�7

5400�4
4;000;000

= 3:10�10�5 (20)

4.2 Estimation of Logarithmic Model Pa-
rameters

Estimating the parameter values for the logarithmic
model is a significant challenge. We can take one of two
possible approaches. In the first approach we can first
estimate the parameters of the exponential model and
then compute βL

0 and βL
1. In the second approach we can

calculate βL
0 and βL

1 from the interpretation introduced in
section 3.1.

4.2.1 Estimation through βE
0 and βE

1

The parameters of the exponential model βE
0 and βE

1 are
easily interpreted and estimated. Here we use the obser-
vation that for a given data set, there is some relationship
between βE

0 and βL
0, and βE

1 and βL
1 [13]. This relation-

ship can be used to estimate the parameters of the log-
arithmic model once the exponential model parameters
have been estimated. To obtain this relationship, let us
assume that both models project the same µ(t f ) where
t f is the end of the testing period. Let the number of de-

fects remaining at time t f be N0
α ;α > 1. For example,

if testing finds and removes 90% of all the faults, then
α = 10. Then

µ(t f ) = N0�
N0

α
= N0(1�

1
α
) (21)

For the exponential model equation 21 will give,

βE
0 (1� e�βE

1 t f ) = N0(1�
1
α
)

since N0 � βE
0 , we can rewrite this equation as

t f =
ln(α)

βE
1

(22)

using the logarithmic model we can write equation 21 as

βL
0 ln(1+βL

1t f ) = N0(1�
1
α
)

which can be rearranged as

t f =
1

βL
1

2
4e

βE
0

βL
0
(1� 1

α )
�1

3
5 (23)

Equating the right hand side of equations 22 and 23,
and rearranging we get

βE
0

βL
0

=
1

1� 1
α

ln

�
βL

1

βE
1

ln(α)+1

�
(24)

Let us now assume that in time t f the failure intensity
also declines by factor α. Thus according to the expo-
nential model,

βE
0 βE

1 e�βE
1 t f =

βE
0 βE

1

α

which can be solved for to give

βE
1 =

1
t f

ln(α) (25)

Similarly the logarithmic model gives

βL
0βL

1

1+βL
1t f

=
βL

0βL
1

α

which can be written as

βL
1 =

1
t f
(α�1) (26)

From equation 25 and 26 we obtain

βL
1

βE
1

=
α�1
ln(α)

(27)

Using equation 27, we can rewrite equation 24 as

βE
0

βL
0

=
ln(α)
1� 1

α
(28)

Thus if we know α and the values for βE
0 and βE

1 , we
can calculate βL

1 using equation 27 and βL
0 using equa-

tion 28.
Example 3: For a software system under test, the pa-
rameters βE

0 and βE
1 have been estimated to be 142 and

0:35�10�4 respectively. Testing will be continued un-
til about 92% of all faults have been found. That gives

α =
100

100�92
= 12:5 (29)

The equation 27 gives

βL
1

βE
1

= 4:55 i:e: βL
1 = 4:55�0:35�10�4 = 1:59�10�4

(30)
and equation 24 gives

βE
0

βL
0

= 2:75 i:e: βL
0 =

142
2:75

= 51:6 (31)

4.3 Direct Estimation of βL
0 and βL

1

An alternative to the above method is to use the interpre-
tation of βL

0 and βL
1 in terms of Dmin and Kmin as given

by equations 13 and 14. A reasonable estimate for Kmin
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is 1:5�10�7 as suggested by the data given by Musa et
al. [17] (their Table 5.6). As estimation of Dmin, the de-
fect density at which the minimum value of K occurs is
harder to estimate. First the curve for K, as shown in
figure 1 has a very flat minimum. That can make ex-
act determination of Dmin hard in the presence of nor-
mal statistical fluctuations. Secondly, the variation in K
depends on the testing strategy used.

Available data sets suggest the following.

1. If the initial defect density D0 is less than 10 per
KSLOC, the value of Dmin is in the neighborhood
of 2 defects/KSLOC.

2. However if D0 is higher, the resulting value of
Dmin is also higher. in many cases, taking Dmin =
D0=3 yields a suitable first estimate.

Example 4: For the T2 data [17], the initial defect
density is 8.23 defects/KSLOC and the size is approx-
imately 6.92 KSLOC (27.7K object lines). The instruc-
tion execution rate is not given in [17], however we
can obtain the value of TL using available information.
Since Musa et al. have given the value of K̂ as 2:15�
10�7 and the value of βE

1 can be calculated to be 1:42�
10�5, the value of TL is 2:15� 10�7=1:42� 10�5 =

1:51�10�2. We will estimate the values of the logarith-
mic model parameters assuming Dmin = 2 and Kmin =

1:5�10�7.
From equations 13 and 14 we have these estimates,

βL
0 = IsDmin = 6:92�2 = 13:84 (32)

and

βL
1 =

Kmin

e
r

QxIs
e

D0
Dmin (33)

=
1:5�10�7

2:72
1

1:5�10�2 e
8:23

2

= 2:24�10�4

Fitting of actual test data yields the two values as
17.26 and 2:01�10�4. Considering the fact that the few
early points in the test data can often yield values that
can be easily off by an order of magnitude or can be il-
legal (negative), the estimates are quite good.

4.4 Variability of the parameter values

For a give data set, if we use the partial data set from
beginning to some intermediate point in testing, the pa-
rameter values are found to be different from the final
values. We have investigated the incremental variation
of the values determined as testing continues. In the
beginning the values can change rapidly but later they
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Figure 2: Variation of βE
0 and βL

0

start settling towards the final value. For practically all
data sets, the values of βE

0 and βL
0 rise with testing time

whereas for βE
1 and βL

1 the values fall.
The typical behavior is illustrated by the plots for the

T1 data-set [17]. Figure 2 shows that while the value
of βE

0 keeps rising, βL
0 appears to stabilize in the later

phases of testing. This suggests that the logarithmic
model describes the underlying process better. Figure 3
shows how βE

1 and βL
1 vary as testing progresses. Both

show a downward trend, however the curve for βL
1 ap-

pears to be stabilizing. Figure 4 shows the peaks in βL
0

and βL
1 which are largely due to changes in the reliabil-

ity growth behavior. They are often caused by changes
in the testing strategy or by switching to a different test
suite. Fortunately often the two parameters are per-
turbed in the opposite directions, thus minimizing the
effect.

The presence of a significant trend in the plots for
the exponential model seems to suggest that it does not
model the testing process as well as the logarithmic
model. All SRGMs are simplified models and hence de-
scribe the reliability growth approximately.

The a priori estimates of these models can be better
than the values obtained in the early phases of testing,
but can not be expected to be as accurate as the final val-
ues obtained using actual test data.

5 Concluding Remarks

In this study we have presented methods to estimate
the parameters of the exponential and logarithmic mod-
els. We have proposed an empirical model for estimat-
ing the defect density, one that works when complete
data is not available and can be easily refined as more
is learned about the software development process. A
new interpretation for the parameters of the logarithmic
model has been proposed and we have shown how it
can be used to estimate the values. An alternative ap-
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proach is to first estimate the parameters for the expo-
nential model and then use them to estimate the loga-
rithmic model parameters.

The methods presented here can significantly im-
prove the accuracy of the projections during the early
phases of testing. The accuracy of the results will de-
pend on careful calibration of the models using data
from earlier projects that have used a similar process.

Future work includes a detailed analysis of the spe-
cific results for the the data sets available. Two meth-
ods for the estimation of the logarithmic model parame-
ters have been presented and further research is needed
in order to make recommendations as to the predictive
ability of each. We also need to investigate the sensitiv-
ity of the projections due to variation in the parameter
values.
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