7.0PREDICTION

Rdiability prediction is useful in a number of ways. A prediction methodology provides a uniform,
reproducible basis for evaluating potentia reliability during the early stages of a project. Predictions
assg in evauating the feasihility of proposed reiability requirements and provide a rationa basis for
design and dlocation decisions.

Predictions that fal short of requirements at any level signa the need for both management and
technica attention. In some cases a shortfal in reiability may be offset by the use of fault tolerance
techniques. For hardware, adding redundancy will often result in increased religbility. Software
religbility may be improved by a focused ingpection, defect removal and test effort. Software fault
tolerance techniques, such as N-verson programming and recovery blocks, are used as a last resort
because of the high cost and controversial impact on reliability.

Hardware reiability prediction provides a constant failure rate value for the "inherent reliability” of the
product, the estimated reliability attainable when al design and production problems have been worked
out. A hardware religbility growth model is used to monitor product religbility in the period during
which the observed reliability advances toward the inherent reliability.

Software reliability prediction provides a projection of the software failure rate at the start of or any
point throughout system test. A software rdliability growth modd covers the period after the
prediction, where rdliability improves as the result of testing and fault correction.

Hardware and software reliability predictions, when adjusted by their respective growth models to
coincide with the same point in time, can be combined to obtain a prediction of the overal system
religbility.

Table 7-1 (page 7-3) ligts the software rdiahility prediction procedures to use during each software
development life cycle phase. When system test begins, actua failure data can be used to statisticaly
estimate the growth model parameters (see Section 8).

7.1 Hardware Reliability Prediction.

Hardware reliability prediction is a process of quantitatively assessng an equipment design.
Techniques have been edtablished so that hardware rdiability predictions may be applied and
interpreted uniformly. The final outcome of a prediction is a constant failure rate that can be combined
with other failure rates in a syssem modé!.

7.2 Software Religbility Prediction.

Metrics are used to predict a variety of measures including the initid failure rate Ao, find failure rate,
fault dendity per executable lines of code, fault profile, as well as the parameters of a software reliability
growth model. Thefina outcomes of a software rdliability prediction include:

» Reative measuresfor practical use and management.
* A prediction of the number of faults expected during each phase of the life cycle.
* A congant failure rate prediction at system release that can be combined with other failure rates.

7-1

The mgjor difference between software religbility prediction and software reliability estimation is that
predictions are performed based on historical data while estimations are based on collected data
Predictions, by there nature, will amost certainly be less accurate than estimations. However, they are
useful for improving the software reiability during the development process. If the organization waits
until collected datais available (normally during testing), it will generally be too late to make substantial
improvements in software reliability. The predictions should be performed iteratively during each phase
of the life cycle and as collected data becomes available the predictions should be refined to represent
the software product at hand.

A software reiahility prediction is performed early in the software life cycle, but the prediction provides
an indication of what the expected rdiability of the software will be either at the start of system test or
the delivery date. It islargely based on the projected fault count at the point system test is initiated.

While hardware analysts will perform predictions to determine what improvements, if any, can be made
in designing and selecting parts, the software anaysts will perform predictions to determine what
improvements, if any, can be made to the software development techniques employed and the rigor
with which the process is carried out. The techniques can be on a globa level, such as organization
procedures, or they can be on aloca level such as the complexity of each software unit. The software
andydt, like the hardware analyst, must be involved in the software engineering day-to-day activitiesto
be able to measure the software reliability parameters and to be able to understand what improvements
can be made.

One important benefit from performing predictions is to correlate the software methods and
techniques employed to the actual failure rate later experienced. This comparison can lead to improved
software methods and techniques, particularly testing techniques.

Tables 7-1 ligts five software reliability prediction techniques that are available. Table 7-2 ligts the
phases where the methods are most applicable.

7-2

TABLE 7-1. Software Rdiahility Prediction Techniques

Section Prediction Method Capabilities Description of outputs
721 Rome Laboratory TR-92-52 | Allows for tradeoffs. Produces a prediction in
Software Rdliability terms of fault density or
Measurement and Test estimated number of inherent
Integration Techniques faults.
722 Raleigh Method The profile of predicted | Produces a prediction in the
faultsover timeand not | form of apredicted fault
just the total number is | profile over the life of the
needed. Can be used project.
with the other prediction
models.
7.2.3 Industry data collection Applicable for any Produces a prediction of
industry. fault dengity per function
points based on historical
data collected in industry.
724 Musa'’s Model Predicts failure rate at | Produces a prediction of thg
start of system test that| failure rate at the start of
can be used later in systems test.
reliability growth models
7.2.5 Historical data collection Can be most accurate¢ Hroduces a prediction of thg
there is organization failure rate of delivered
wide commitment. software based on compan)
wide historical data.
TABLE 7-2. Prediction Techniques by Phase
Phase Procedure
Proposal and Pre-contractual 7.21.1,7.22,7.23,7.24,7.25
Requirements Analysis 7.21.1,7.22,7.23,7.24,7.2.5

Preliminary Design

7.212,722,723,724,7.25

Detailed Design

7.212,722,723,724,7.25

Coding and CSU Testing

7.2.1.3,7.2.2,

723,724,725

CSC Integration and Testing

7.2.1.3,7.2.2,

723,724,725

7-3

7.21 RL-TR-92-52, “Software Reliability Measurement and Test Integration Techniques” Method
RL-TR-92-52 contains empirical data that was collected from a variety of sources, including the
Software Engineering Laboratory. There were a total of 33 data sources representing 59 different
projects. The model consists of 9 factors that are used to predict the fault density of the software
application. The 9 factors are:

TABLE 7-3. Summary of the RL-TR-92-52 Model

Factor Measure Rangeof values | Applicable Tradeoff
Phase* Range
A - Application Difficulty in developing 2t0 14 A-T None - fixed
various application types| (defects/KSLOC)
D - Development | Development S5t020 If known at A, | The largest
organization | organization, methods, D-T range
tools, techniques,
documentation
SA - Software Indication of fault tolerant .9 to 1.1 Normally, C-T Small
anomaly design
management
ST - Software Tracealdity of design and| .9 to 1.0 Normally, C-T | Large
tracealiity code to requirements
SQ - Software Adherence to coding 1.0to 1.1 Normally, C-T Small
quality standards
SL - Software Normalizes fault density | Not applicable C-T N/A
language by language type
SX - Software Unit complexity .8t01.5 C-T Large
complexity
SM - Software Unit size .91t0 2.0 C-T Large
modularity
SR - Software Compliance with design | .75to 1.5 C-T Large
standards rules
review

Key A- Concept or Analysis Phase
D- Detailed and Top level Design
C - Coding
T - Testing

*If there are software development policies in place which are defined and it is known what these items
will be (even though the code does not exist yet) then these items can be used earlier in the prediction
phase. However, the analyst needs to be certain that the prediction reflects what software engineering
practices will actually be performed.

7-4

There are certain parameters in this prediction modd that have tradeoff capability. This means that
there is a large difference between the maximum and minimum predicted values for that particular
factor. Performing a tradeoff means that the andyst determines where some changes can be made in
the software engineering process or product to experience an improved fault dengity prediction. A
tradeoff is valuable only if the analyst has the capability to impact the software development process.

The tradeoff analysis can aso be used to perform a cost andlyss. For example, a prediction can be
performed using a basdline set of development parameters. Then the prediction can be performed
again using an aggressve set of development parameters. The difference in the fault dengity can be
measured to determine the payoff in terms of fault density that can be achieved by optimizing the
development. A cost andlysis can aso be performed by multiplying the difference in expected total
number of defects by ether ardative or fixed cost parameter.

The output of this modd is afault dengty in terms of faults per KSLOC. This can be used to compute
the total estimated number of inherent defects by smply multiplying by the tota predicted number of
KSLOC. If function points are being used, they can be converted to KSLOC by using Table 7-9.
Fault density can also be converted to failure rate by using one of the following:

1) collected test data,
2) higtorica data from other projectsin your organization, and/or
3) the transformation table supplied with the model, shown in Table 7-4.

TABLE 7-4. Transformation Ratio

Application type Conversion from fault dengty to failurerate
Airborne 6.28

Strategic 1.2

Tacticd 13.8

Process control 3.8

Production center 23

Developmental 132.6

Average 10.6

These are listed in the order of preference. Idedly, the developing organization should determine a
conversion rate between fault dengty and failure rate. If that data is not available then this technique
supplies a conversion ratio table. Thistable is based on data generated during the development of the
RL-TR-92-52 report. The predicted fault dengity output from this model can also be used as an input
to the Musa prediction model in 7.2.4.

The vaues of many of the parameters in this model may change as development proceeds. The latest
updated values should always be used when making a prediction. The predictions will tend to become
more and more accurate as the metrics from each successive phase become available and as the values
are updated to more closdly reflect the characterigtics of the find design and implementation. The
details of thismode are not contained in this notebook.

7-5

7.2.1.1 Proposal, Pre-Contract or Requirements Phase Prediction.

This method requires only that information concerning the type of application and development
organization be known. The lower the computed value, the lower the fault densty and predicted
falurerate.

TABLE 7-5. Proposd/Pre-Contract/Analysis Phase Factors

Factor Measure Range of values

A - Application Difficulty in developing various | 2to 14
application types

D - Development organization* | Development organization, 51020
methods, tools, techniques,
documentation

*May not be known during this phase

Steps.

A. Determine the characterigtics of the application type to be developed using the check sheet
provided with technical report, RL-TR-92-52.

B. Determine the approximate size of the gpplication in source lines of code and number of units.

C. Determine an initid fault dengty and estimated number of inherent faults using the checklists
included in the technical report.

» Compute D = predicted faults per KSLOC = A if D isnot known OR
» Compute FD = predicted faults per KSLOC = A*D if D isknown
* N = estimated number inherent faults = FD*KSLOC

During the concept and requirements phases the A factor is always known and the D factor may be
known.

D. If necessary, convert the fault dengty to failure rate usng a conversion technique.

E. Perform tradeoffs with the D factor to determine what techniques would be necessary to achieve an
objective fault density or failure rate. Re-compute fault density.

7-6

7.2.1.2 Dedgn Phase Prediction.

This method requires only that information concerning the type of application, development
organization, and design requirements be known. The lower the computed value, the lower the fault

dengity and predicted failurerate.
TABLE 7-6. Design Phase Factors

Factor Measure Range of values

A - Application Difficulty in developing various | 2to 14
application types

D - Development organization | Development organization, 51020
methods, tools, techniques,
documentation

SA - Software anomaly Indication of fault tolerant 9tol1

management* design

ST - Software traceability* Traceability of desgnand code | .9t0 1.0
to requirements

SQ - Software quality* Adherenceto coding standards | 1.0to 1.1

* Even though there is typically no code yet in the design phase, the parameters may be gauged based
on coding practices that may bein place.

Steps

A. Veify that the A factor determined previoudy in step 7.2.1.1 is till vaid. Make any necessary

refinements.

B. Determine and/or refine the approximate size of the gpplication in source lines of code and number

of units.

C. Determine aninitial fault density and estimated number of inherent faults using the checklists
included in the technical report.

7-7

» Compute FD = predicted faults per lines of code = A*D

» If there are coding policies in place then compute FD = predicted faults per KSLOC

:A*D*SA*ST*SQ

* Compute N = estimated number inherent faults = FD*KSLOC

During the design phases the A and D factors should be known.

D. If necessary, convert fault density to failure rate using a conversion factor.

E. Perform tradeoffswith the D factor to determine what techniques would be necessary to achieve
an objective fault dengty or falurerate.

7.2.1.3 Code, Unit Test and Integration Phase Prediction.

This method requires that information concerning the type of application, development organization,
design requirements and coding practices be known. The lower the computed value, the lower the
fault density and predicted failure rate.

TABLE 7-7. Coding/Unit Testing/Integration Phase Factors

Factor Measure Range of values

A - Application Difficulty in developing various | 2to 14
application types

D - Development organization | Development organization, 51020
methods, tools, techniques,
documentation

SA - Software anomaly Indication of fault tolerant 9tol1

management design

ST - Software traceshility Traceability of desgnand code | .9t0 1.0
to requirements

SQ - Software quality Adherenceto coding stlandards | 1.0to 1.1

SL - Software language Normalizes fault density by na
language type

SX - Software complexity Unit complexity 81015

SM - Software modularity Unit Size 9102.0

SR - Software sandardsreview | Compliance with design rules .75t01.5

7-8

Steps.
A. Veify that the A factor determined previoudy in step 7.2.1.1 is ill valid. Make any necessary
refinements.

B. Refinethe caculations for the D factor and the SA factor.

C. Determine and/or refine the approximate size of the application in source lines of code and number
of units.

D. Determine an initid fault densty and estimated number of inherent faults using the checklists
included in the technical report.

* FD = predicted faults per lines of code = A* D* SA* ST* SQ* SL* SX* SM* SR
* N = estimated number inherent faults = FD*KSLOC
E. If necessary convert the fault dengty to failure rate using a conversion technique.

F. Perform tradeoffs with the applicable D and S factors to determine what techniques would be
necessary to achieve an objective fault dengty or falure rate.

7.2.2 Releigh Model*.
This modd predicts fault detection over the life of the software development effort and can be used in

conjunction with the other prediction techniques in Section 7.2. Software management may use this
profile to gauge the defect status. This model assumes that over the life of the project that the faults
detected per month will resemble a Raleigh curve (Figure 7-1).

Steps.
A. Obtain the milestones for the schedule, in particular the

» Start date and total monthsin project
» Date of expected full operationd capahility - tq

B. Egimate the number of faults over the life of the project - E,. The other prediction techniques can
be used to predict the fault density. The fault dengity can then be multiplied by either KSLOC or
function points as depending on the prediction technique used.

C. From these unknowns, a Raeigh curve can be caculated by solving for each month t (1 to number
of monthsin project) using this equation , E, = (6 * EJ/ts) * t * exp(-3t9/ts?). When finished, the
result should be a plot that resembles a Raleigh distribution.

D. Use this profile to gauge the fault detection process during each phase of development. In
particular, this profile can be used to gauge the original schedule estimate and the prediction for the

! “Measures for Excellence”, Larry Putnam, Ware Myers, Quantitative Software Management, Yourdon Press,
Englewood Cliffs, NJ, 1992.

7-9

total number of defects. For example, the estimated number of defects impacts the height of the
curve while the schedule impacts the length of the curve. If the actua defect curve is sgnificantly
different from the predicted curve then one or both of these parameters may have been estimated
incorrectly and should be brought to the attention of management.

Defects or Failures Detected

Schedule Time

FIGURE 7-1. Raleigh Curve

7.2.3 Industry Data.
Table 7-8 summarizes data that has been collected by industry, in particular by Software Productivity

Research, Inc.2 The output from this prediction technique is defects per function points. This metric
can be used to predict the tota estimated number of inherent defects and can also be used as an input
to the Musa prediction model in 7.2.4. See the Appendix for procedures for caculating function points.
The potentiad defects are those that are discovered at any time during development. The ddlivered
defects are those that are discovered after delivery.

Steps.
A. Compute function point measure for each unit. See instructionsin the Appendix.

B. Determine the capability level of the software organization developing the software. Keep in mind
that there may be joint efforts between more than one software organization and therefore more
than one capability level. If that is the case, then perform a separate prediction for each
organization based on the function points developed by each organization.

If the capability level is not known then determine the industry type that most closely represents
this software.

C. Use Table 7-8 as an estimate of the potentia defects per function point and the delivered defects
per function point.

2 “Measuring Global Software Quality”, Software Productivity Research, Capers Jones, Burlington, MA, 1995.

7-10

TABLE 7-8. Industry Data Prediction Technique

CMM Approach

Measure

Average defectd function points

Typical defect potential and delivered defects for SEI | 5.0 potential
CMM Levd 1 .75 delivered
Typical defect potential and delivered defects for SEI | 4.0 potential
CMM Levd 2 44 delivered
Typical defect potential and delivered defects for SEI | 3.0 potential
CMM Leve 3 .27 ddlivered
Typical defect potential and delivered defects for SEI | 2.0 potential
CMM Levd 4 .14 delivered
Typical defect potential and delivered defects for SEI | 1.0 potential
CMM Levd 5 .05 delivered
Industry Approach

Measure Average defects function points

Delivered defects per industry

System Software - .4
Commercia Software- .5
I nformation Software- 1.2
Military Software - .3
Overdl average - .65

7.2.4 Musa Prediction Method.

This prediction technique is used to predict, prior to system testing, what the failure rate will be at the
sart of system testing. This prediction can then later be used in the rdiability growth modedling. This
prediction technique aso alows for a prediction in terms of fallure rate which can be combined with

the hardware failure rate predictions.

At any point, an executing computer program exhibits a constant failure rate A, provided that the code
is frozen and the operationa profile is sationary. A constant failure rate implies an exponential time-to-
failure digtribution; therefore, the reliability (probability thet the program executes without failure for a

period of timet)) is given by

R(7") = exp[-AT']

7-11

The reliability of a software configuration item will change as the software is tested and repair activity
takes place. Consequently, a software reiability prediction must be associated with a particular point in
time. The earliest point that it makes sense to estimate the religbility of the software is when the
software is fully integrated and is executed in an environment that is representative of its operational
use. Thispoint isthe start of system test and isdesignated t = 0. For any later point in time, t indicates
the cumulative execution time since the start of system test.

The failure rate will vary over time. Thefallurerate at theingtant t isdenoted A(t). When the program
code is unchanging during operation, the software may exhibit a congtant failure rate A = A(t). The
fallure rate predicted by this modd is the initid failure rate Ao = A(0) , the failure rate the software is
expected to exhibit at the beginning of systemtest (t = 0. The prediction procedures in this section
provide Ao. The procedures in Section 7.3.4 employ the software religbility growth modd to estimate
additiona quantities, such as the schedule and resource impact to achieve afailure rate objective.

For this prediction method, it is assumed that the only thing known about the hypothetical programisa
prediction of its Size and the processor speed.

This moded assumes that failure rate of the software is afunction of the number of faultsit contains and
the operational profile. The number of faults is determined by multiplying the number of developed
executable source instructions by the fault density. Developed excludes re-used code that is aready
debugged. Executable excludes data declarations and compiler directives. For fault density at the start
of system te<t, a value for faults per KSLOC needs to be determined. For most projects the vaue
ranges between 1 and 10 faults per KSLOC. Some developments which use rigorous methods and
highly advanced software development processes may be able to reduce this value to 0.1 fault/KSLOC.

The measurement of processor speed is complicated by the fact that each instruction takes a different
amount of time, depending on the nature of the operation and where the operands reside. A unit such
as "million ingtructions per second” (MIPS) implies an average taken over some arbitrary mix of
instructions. The best way to determine the average instruction execution rate, denoted r, is through
benchmarking, using an application program and environment representative of the program whose
reliability is being predicted. Second best, a"MIPS rating” can be obtained from the computer vendor.

Steps.
A. Determine the processor speed, r, in instructions per second.

B. To compute the number of object instructions I, take the number of executable lines of code and
multiply by the code expansion ratio, supplied in Table 7-9° (previous page). Use this table only if
red project data is not available. The rationale behind this data is that the relationship between a
line of code and a machine instruction varies depending on the language. Also, the relationship
between a line of code and a function point also vary with language.

% wBackfiring” or Converting Lines of Code Metrics Into Function Points”, Capers Jones, October 6, 1995,
Software Productivity Research, Burlington, MA.

7-12

TABLE 7-9. Code Expanson Ratios

Programming L anguage Expansion Ratio Mean Sour ce Statements/Function Point
Basic Assambly 10 320
Macro Assembly 15 320
C 25 128
Interpreted Basic 25 128
2nd Generation language 3.0 107
Fortran 30 107
ALGOL 30 107
COBOL 3 107
CM&2 3 107
JOVIAL 3 107
Pascal 35 91
3rd Generation language 40 80
PL/I 4.0 80
Modula 2 4.0 80
Ada83 45 71
Prolog 50 64
Lisp 5.0 64
Forth 5.0 64
Quick Basic 55 58
C++ 6.0 53
Ada9x 6.5 49
Database Default 8.0 40
Visua Basic 10.0 32
APL 10.0 32
SMALLTALK 150 21
Generators 20.0 16
Screen Painters 20.0 16
SQL 270 12
Spreadsheet Default 50.0 6

7-13

C. Edimate the fault content w by using the prediction techniquesin Section 7.2.1, 7.2.3and 7.2.5. In
the event that only function points are known, this metric can be converted using Table 7-9.

D. Cdculatetheinitid fallurerate usng formula(6.8), Ao = rie Ke wy/ |;.

Example:
A 20,000-line Ada program isto be developed. 1t will execute on a 2-MIPS machine. Assume six (6)

defects per KSLOC. What failure rate can be expected at the beginning of system test?

The number of object indtructions is caculated by multiplying the 20,000 executable lines of source
code by the code expangon ratio for Ada, 4.5, to yield

object instructions[]
source line

U
I = (20,000 source lines) %4.5

= 90,000 object instructions

The fault content is predicted as

leﬂ@(zo,ooo LOC) = 120 faults
000 LOC

The initid fallure rate is then computed by
AO =T e o °® K / I

_ 2,000,000 instructi onsg
second

X (120 faults)

failures%

X %4.20x 107 T

/90,000 instructions = 0.00111888 failures per second

7-14

The prediction technique presented thus far relies on the new program’s predicted size and processor
speed. Beginning with the requirements analysis phase of software development, product/process
metrics become available. These metrics can be used in conjunction with empirically obtained
prediction models to provide better predictions. In order to determine the software religbility growth
modd parameters (see Section 7.3.4), the value of wy, needs to be retained for use during later phases.
If the projected number of developed source lines of code changes, this value should be updated.

7.2.5 Higorical Data Collection.

The software development organization can collect interval as well as industry wide historical data to
predict software failure rates. The accuracy of this method is completely dependent on the availability
and completeness of the data collected. This method is generaly considered to be the most expensive,
but from an accuracy perspective is preferred.

The collection, storage and anadlysis of data about the development of the software products as they
correlate to reliability and failure rate can be invauable in discovering the relationship between the
process and the product”.

7.3 Use of Predictions for Project Planning and Control.

The prediction techniques presented in Section 7.2 can be used for planning and control as described in
Sections 7.3.2 through 7.3.4 that follow. There are dso other industry metrics used for planning and
control, described in Section 7.3.1.

7.3.1 RL-TR-92-52 Model.

This model, discussed in Section 7.2.1 and 7.2.2 and 7.2.3, can be used for planning and control as well
as for prediction purposes. This mode can be used to obtain relative as well as absolute measures of
religbility. For example, the factorsin this model that have the widest possible range of values are the
following:

* Development factor

» Complexity factor

* Modularity factor

» Software Review factors

These factors provide relative improvement values. They dso allow comparisons between projects.
Cost comparisons can be performed by assessing the improvement in fault density of amore aggressive
development approach.

7.3.2 The Raleigh Moddl.

The Raleigh method discussed in Section 7.2.2 can be used to gauge the defect discovery process. The
height of this curve is based on the estimated number of inherent faults E,. The width of this curve is
based on the accuracy of the milestone scheduling or the effectiveness of the assurance activities at
each phase. This curve should be updated in the event that either one of these estimates is updated.

* Software Reliability Handbook, Edited by Paul Rook, Centre for Software Reliability, Elsevier Applied Science,
London, 1990.

7-15

7.3.3 Industry Metrics Used.
Some practical and measurable means of planning and controlling software reiability have been
developed in industry”. These metrics can be used to gauge the reliability and/or quality of a project.

These metrics are shown in Table 7-10.

TABLE 7-10. Using Metrics For Planning and Control

Measure Indicator of Good Average Poor
Rdiability and/or
Quality

Low defect potential (defects | <1 defect per function

detected during point

development)

High defect removal > 95% of al defectsare

efficiency removed prior to
delivery

Stahility of requirements <2.5% changein
basdlined requirements

Achieving explicit > 97.5 % explicit

requirements requirements verified

Defects per function point 0.06 0.44 0.75

experienced after test

Productivity 39 function points or 23 function points or 12 function
4250 SLOC per man 2500 SLOC per man points or
year year 1100 SLOC

per man yesr

® “Measuring Global Software Quality”, Software Productivity Research, Capers Jones, Burlington, MA, 1995.

7-16

TABLE 7-10. Using Metrics For Planning and Control (continued)

Measure Indicator of Good Average Poor
Réiability and/or
Quality
Best case vs. average defect Regs- .20 Regs- 1.0
potentials in terms of function points | Design - .25 Desgn-1.25
per phase of life cycle Code- .25 Code- 1.25
Doc- .20 Doc-1.0
Bad fix - .1 Bad fix - .5
Totd 1.0 defect per Totd 5.0 defect per
function point function point
Best case ddlivered defects per Regs- .02 Regs- .16
function points. Desgn - .0125 Desgn - .10
Code - .003 Code- .024
Doc- .01 Doc- .08
Bad fix - .01 Bad fix - .08
Tota .0560 ddlivered Tota .444 delivered
defects per function defects per function
points points
Defect Remova Efficiency - Ability | CMM Leve 5- 95% CMM Levd 3-91% | CMM
to remove defects without CMM Levd 4 - 93% CMM Leved 2-89% | Leve 1-
introducing new ones during 85%
development

Techniques used to achieve results:

* Formal inspections

» Joint Application Design

* Quadlity metrics

* Removd efficiency measurement
» Functiona metrics

» Active qudity assurance

» User satisfaction surveys

» Formal test planning

* Quadlity estimation tools

» Complexity metrics

» Quadlity Function Deployment

7-17

7.3.4 The Musa Reliability Growth Method.

The failure rate predicted by the prediction technique in Section 7.2.4 is Ao, the failure rate at the start
of sysem test. To determine the falure rate at any time t into system te<t, the software rdiability
growth model (see Section 8) is employed.

The growth modd parametersare 3 and vo. The parameter 3 is the (expected) decrement in failure
rate per falure occurrence. The parameter vy is the total failures: the number of failures that must be
experienced to uncover and remove al faults. They are obtained from the predicted values of the initial
fallure rate Ao and fault content wy. The fault content is obtained by multiplying the number of
developed executable lines of code by the fault density. The relationships are given by:

Ao
= B— 7.2
B o (7.2)
(7
Vo = EO (7.3)

where B isthe fault reduction factor. This parameter is sometimes caled the defect removal efficiency.

The fault reduction factor parameter should be estimated based on collected project data whenever
possble. Suggested defect removal efficiencies for Levels of the CMM areindicated in Table 7-11°%:

TABLE 7-11. Suggested Defect Remova Efficienciesfor SEI CMM Levels

SElI CMM Levels Removal Efficiency
SEI CMM 1 0.85
SEI CMM 2 0.89
SEI CMM 3 0.91
SEI CMM 4 0.93
SElI CMM 5 0.95

Performing a software religbility prediction, time-adjusted by the growth model, provides a continuous
customer-oriented assessment of software quality the end-user can expect to experience if the software
is released at a given future date. Reliability planning and management are facilitated by use of the
software rdiability growth mode, which can be interpreted in different ways to derive various
quantities of interest. A few of the more important ones are described here.

The most important parameter is the failure rate (fallures’CPU hr.). A software religbility growth
model (see 8.4) describes the decline in the software failure rate that occurs during the system growth

® “Measuring Global Software Quality”, Software Productivity Research, Capers Jones, Burlington, MA, 1995,

7-18

phase as the number of faults in the code declines. Let A(T) be the ingtantaneous failure rate at time .
Thefalurerate a the start of system test is denoted Ag = A(0).

Management may be interested in caendar time parameters. The relationship between caendar time,
denoted t, and execution time, denoted T, during system tedt, is governed by a resource-limiting
parameter: falure identification personnd (testers), failure resolution personne (debuggers), or
computer time. The calendar time component alows a schedule to be established relating the amount
of time (in weeks) needed to reach a failure intengity objective. The method for mapping execution
time to calendar time is detailed in Section 8.

The software reliability growth model, once its parameters are determined, provides one-to-one
mappings between any two of the following quantities: execution time, calendar time, failure rate, and
expected cumulative number of failures.

7.4 Forecasting Failure Rate V ersus Execution Time.
A reliability growth model can be used to forecast the failure rate the software will exhibit at any time't
into sysemtest. A well-known religbility modd is the Musa execution time reliability growth formula:

A1) = Bvoexp[-pr] (7.4)

The function
INA(7) = InBvy, - AT (7.5)

will plot as agtraight line on semi-log paper. If the software code is frozen and is operational at timet,
the software may then exhibit a constant failure rate A. The reiability function is then R(T’) = exp[-AT],
where T’ is execution time measured from the present.

7.5 Forecasting Cumulative Failures Versus Execution Time.
A method for predicting the expected cumulative number of software failures that will be experienced
in systemtest through timet is given by

(1) = Vo(1l-exp[-fr]) (7.6)

See Section 7.3.4 for adiscussion of the input parametersto this model.

7.6 Forecasting When a Reliability Objective Will be Met.

The growth model can answer many useful planning questions. For example, when will a fallure rate
requirement or some intermediate failure rate objective Ar be met? From the Musa reliability growth
model, the number of failures that must be experienced to reach that objectiveis

>

u= wp-oo @

7-19

where vy is one of the two parameters of the software religbility growth model. The amount of
execution time to meet that fallure rate objective is

1 A
r= —In>> (7.8)

where [3 isthe other growth mode parameter.

Steps.
A. Predict or estimate the software reliability growth model parameters 3 and vy.

B. Predict or estimate the initia fallurerate Ao. Note that

Ao = BV (7.9)

C. Determine afailurerate objective Ar.
D. Determine the expected number of software failures that must be experienced from equation (7.7).
E. Determine the amount of execution time to reach Ar using equation (7.8).

Example:
Suppose that the initia falure rate has been predicted to be A = 18 failures per CPU hour. The

software reliability growth model parameters have been predicted at v, = 139, therefore

Ao 18

The expected number of failures that must be experienced to reach Ar = 1 failure per CPU hoursis
- i
—O = = 131
K= H 18
The execution time required is

1 1
In— = 22.317 CPU hours
18/139 18 N

7 =

7-20

7.7 Additional Failures and Execution Time to Reach a Reliability Objective.

The growth model can aso estimate the incrementa number of failures or amount of execution timeto
get from a present failure rate Ap to afailure rate objective Ar. The additional number of failures that
must be experienced to go from Ap to Ag IS

Au = ’%(/]P'/\F) (7.10)

See Section 7.3.4 for a discussion of the input parameters to this model. The additional execution time
At that isrequired to reach the failure rate objective is

At = ’ElnA—F (7.12)

Steps.
A. Start with a present failure rate Ap and afailure rate objective Ar.

B. Determine the software reiability growth model parameter 3.

C. Obtain the additional number of failures that must be experienced to go from falurerate A down
to fallure rate A, use formula (7.10).

D. To determine the additional amount of executiontimeto reach Ar, use formula(7.11).

Example:
Suppose that the present failure rate is A\p=22 failures per hour and an intermediate failure rate objective

is Ar=8 fallures per hour. The software rdiability growth model parameter 3 has been estimated at
0.6.

A. Obtain the additional number of failures that must be experienced to get from the present failure
rate Ap to the future failure rate objective Ag:

1 1
A= —(Ap-Ag) = —(22-8) = 23
H ,3(p-Af) 0.6()
B. Obtain the additional execution time to get from Ap to A through the formula
1. Ap 1 2
At = —In— = —In— = 1.686 hours.

B A- 06 8

Project management generdly thinks in terms of calendar time (t) rather than execution time ().
Determining the relationship between the two is described in Section 8. The quantities derived from
the prediction and growth models feed back into the software development process to provide
systematic planning for and control of reliability achievement as a function of caendar time.

7-21

Project management can set intermediate reliability goals based on the predicted reiability figure and
growth rate. If later predictions show that an intermediate god is not likely to be met, management
can re-alocate resources based on comparison between the planned and assessed reiability figures.

An important schedule determinant once the software is in system test is the ratio between execution
time and caendar time. This ratio is determined by the limiting resource. The resources involved in
system test are failure identification personnd, who perform the testing; failure resolution personnel,
who debug the programs; and computer time.

If too many failures are experienced, the failure resolution personnel will become backlogged with
debug work, holding up testing. If setting up test cases and analyzing the output for failures takes a
long time, then the failure identification personne are the limiting resource. If one category of
personnd is the limiting resource, then overtime may be an appropriate solution. It is important to
remember that the management decisions are based on the achievable reliability.

7.8 Optimum Release Time.
There are methods available for predicting the optima release time. Table 7-12 summarizes these
methods:

TABLE 7-12. Methods For Predicting Optimal Release Time

M ethod Description
Musamode Based on software reliability growth.
Process Productivity Parameter’ Developed by Quarntitative Software

Management, Inc. Can predict optimal release
time based on current productivity, effort and size
of product.

COCOMO model® Developed by Barry Boehm. Based onsize,
schedule time and effort as well as some product
and development characterigtics.

The Musa software rdiability growth modd discussed previoudy can be used to determine the
optimum release time for minimizing overall cost. Each failure during development entails a.cost c;.

Each failure in operational use entalls a cost ¢; (the failure costs can be broken out by failure severity
category). Additiondly, thereisacost ¢; for each time unit of sysemtest. The tota cost of system test
can be computed as follows:

If the software is hypothetically released at time te, the cost attributed to system test failuresis

" “Measures for Excellence”, Larry Putnam, Ware Myers, Quantitative Software Management, Yourdon Press,
Englewood Cliffs, NJ, 1992.
8 “Software Engineering Economics”, Boehm, Barry, Prentice Hall, Englewood Cliffs, NJ, 1981.

7-22

Di(Te) = G ¢ (7e) (7.12)
The cost incurred by failures during operation is
D2(7e) =y A(Te) * C (7.13)
wherey isthe number of time units of operation. The cost incurred by syssemtest is
Da(Te) = Te * C (7.14)
Thetotal cost when the software isreleased at time t. is the sum of the three costs:
D(7e) = Di(7e) + Da(7e) + Ds(7e) (7.15)

The optimum time to release the software, from a pure cost point of view, is found by minimizing the
function D(t).

n yczlgz Vo - Cl,B Vo
Cs

B

(Te)min = (716)

Steps.

A. Based on labor, overhead, and related expenses, determine the cost per failure ¢, for failures that
occur during systemtest, as well asthe cost per unit of execution time, Cs.

B. Based on program maintenance, service impact, and related expenses, determine the cost per
fallure ¢, for failures that occur during operationd use. Determine the operationd life of the
sysem, y.

C. From prediction or growth testing, determine the software growth model parameters 3 and vo.

D. Compute the minimum-cost release time using equation (7.16)

7-23

Example:
Suppose that the cost of afailure during system test is ¢; = $1000, and that the cost of a failure during

operation is $6000. Each day of sysemtest costs $4500. The growth model parameters are
B = 0.002, v, = 120

Using the day as the unit of time, the minimum-cost release point is

n yCz:B2 Vo-C1 B Vo
Cs

B

Te =

., (1825)(6000)(0.002)2 (120) - (1000)(0.002)(120)

4500
0.002

= 54 days

7.9 UltraHigh Reliability Prediction.

It is essentia to condder achievability and testability when predicting religbility for software systems
that must be relatively high. Demands for perfection should be avoided as they are not testable or
demonstrable. For example, if the demand for the failure rate is 10™ then there must be sufficient
resources for extensive validation and verification to demonstrate this level. The current state of the art
islimited in providing any help in assessing the software reliability at thislevel.

Techniques such as Formal Methods’ are currently being used by software organizations
developing ultra high reliability systems. Refer to the Appendix of this notebook for more
information on ultra high reliability prediction.

® Refer to “Software Engineering A European Perspective”, Richard Thayer and Andrew McGettrick, IEEE
Computer Society Press, Los Alamitocs, CA, 1992, as well as “The Cleanroom Approach to Quality Software
Development” by Michael Dyer, John Wiley & Sons, Inc, NY, 1992.

7-24

