

4-1

4.0 OVERVIEW

Reliability assurance of combined hardware and software systems requires implementation of a
thorough, integrated set of reliability modeling, allocation, prediction, estimation and test tasks. These
tasks allow on-going evaluation of the reliability of system, subsystem and lower-tier designs. The
results of these analyses are used to assess the relative merit of competing design alternatives, to
evaluate the reliability progress of the design program, and to measure the final, achieved product
reliability through demonstration testing.

At each step in the design-evaluate-design process, the metrics used to predict product reliability
provide a mechanism for a total quality management system to provide ongoing control and refinement
of the design process.

Table 4-1 provides a summary of the analysis and test tasks for both hardware and software that
provide reliability goals, predictions, and assessments. Figure 4-1 illustrates an overview of the
interrelationships between these tasks.

4.1 System Reliability Prediction and Estimation Program.
The reliability prediction and estimation program for systems which combine both hardware and
software elements must be composed of a complementary set of hardware and software tasks for
reliability modeling, reliability allocation, reliability prediction, reliability growth testing, and reliability
qualification testing. Each of the complementary tasks should support system level tasks which
combine the results of the individual hardware and software tasks and allow assessment of the overall
system reliability performance.

4.1.1 System Modeling.
System modeling provides a functional representation of the system under analysis. An accurate
system model provides a mechanism for all reliability analyses performed. System reliability modeling
for hardware and software system is an evaluation of the dependency between system services and the
various hardware elements and their associated software processes. The system model is developed as
an iterative process of decomposing the dependencies within the various system structural elements. As
appropriate to the size and complexity of the system being analyzed, the system is first decomposed
into a reliability block diagram showing the dependency between the subsystems and the system
services required for a given mission or mode of operation.

4-2

 TABLE 4-1. Reliability Prediction and Estimation Tasks

PREDICTION AND
ESTIMATION
PROGRAM TASK

 APPLIES
 TO

 REMARKS

 HW SW

Operational Profile Development X X Operational profile development is
represented in Sections 6 and 9 of this
notebook.

Reliability
 Modeling

 X X Reliability modeling for HW/SW
systems is presented in Section 5. of this
notebook

Reliability
 Allocation

 X X SW Allocation Procedures are provided
in 6 of this notebook

Reliability
 Prediction

 X X Procedures for SW reliability prediction
at each phase of SW development are
given in 7

Environmental Stress Screening X - A SW equivalent of
HW stress screening
is not defined

Reliability
 Development/
 Growth
 Testing

 X X Procedures for use in estimating the time
and resource impact of needed SW
reliability growth are provided in 8

Reliability
 Qualification
 Testing

 X X Both hardware and software are
assumed to have exponentially
distributed failure rates

Production
 Reliability
 Acceptance
 Testing

 X X Software reliability testing can be
performed from the system level using
these techniques

FRACAS X X Effective hardware and software
FRACAS programs are needed to deter
recurrence of observed fault classes

4-3

Hardware
Requirements

Analysis

System
Requirements
Analysis and

Design

Hardware
Preliminary

Design

Hardware
Detailed
Design

Fabrication HWCI Test System
Integration
and Test

Software
Requirements

Analysis

Software
Preliminary

Design

Software
Detailed
Design

Coding
and Unit

Test

CSC
Integration

Test CSCI Test

System
Reliability

Requirements

System HW/
SW

Reliability
Model

System HW/
SW Reliability

Allocations

ReDesign Activity

Design Activity

HW/SW
Reliability

Predictions

Progress Evaluation

Assessment
Report

Program Review Board Activity

HW/SW Growth Testing

Evaluate Growth

HW/SW
Demo Test

Evaluate
Results

Assessment
Report

Design Correction

Reallocation Needed

Reassign Resources

Not OK

To Program Manager
and Engineering Manager

To Program Manager
 and Engneering manager

FIGURE 4-1. System Reliability Tasks

4-4

Each of the subsystems is modeled as a series of discrete and, if applicable, redundant hardware and
hardware/software elements. This process is continued until the system model is detailed enough for
individual hardware equipment to be identified, including those hardware elements which host software
processes. Detailed models of the individual hardware elements that do not host software can then be
developed in accordance with established reliability techniques. Reliability models for those hardware
elements which host software must be developed next.

For those cases where redundant equipment for hardware/software elements is supplied, the reliability
model developed will depend on the exact method used to implement fault detection and recovery.

Section 5 provides an overview of approaches to developing these models. For those cases where a
single equipment with software is used, each hardware/software element is decomposed to the model
shown in Figure 4-2. As shown in the figure, a single hardware/software element decomposes into a
reliability block diagram which consists of a hardware block and a software block in series. This model
assumes that each of the items is independent.

FIGURE 4-2. Reliability Model for HW/SW Element

The software block of the hardware/software element then decomposes into a set of software elements:
non-developmental software (NDS) which includes the operating system, and newly developed
software. At least one of these types of software will exist in a specific model. When software failure
rates are exponential and independent, the failure rates for the software can be added directly to the
failure rates for the hardware. However, the failure rates for the software elements of the system must
be expressed with respect to system operating time.

4-5

Though the process for modeling software reliability, in terms of tasks, is similar to that for modeling
hardware reliability, there is one major difference between them that needs to be recognized. Software
systems are composed of Computer Software Configuration Items (CSCIs) which are generally
independent software programs associated with Hardware Configuration Items. These CSCI’s are
composed of Computer Software Units (CSUs) that perform some given software function. Even
when these CSUs are implemented to be as independent from each other in terms of processing and
data as much as possible, the units themselves will never be independent and cannot be considered to
have independent failure rates.

The operational profile provides the foundation of software reliability assessment. It is the
operational profile that determines unit utilization and how often one or more units will cause a failure.
The units themselves do not experience failures due to temperature, vibration, etc. Therefore, even
though the failure rate of the top level CSCI’s can be modeled, it is impractical to model failure rates
for individual units. Figure 4-3 illustrates this. As an alternative to modeling piece part failure rates for
software CSUs the operational profile should be modeled instead.

Program

CSCI CSCI CSCI

CSUsCSUsCSUs

Data and processing not independent at CSU level even with
modular or object oriented design

FIGURE 4-3. Dependency of Software CSUs

4-6

The following are some examples of hardware/software systems.

Hardware/Software Example 1:
Figure 4-4 illustrates the Hardware/Software (HW/SW) reliability model structure for an
automobile Anti-lock Braking System (ABS). In its simplest form, the system consists of the
brakes, sensors and actuators to control the applied brake pressure, and a smart system for
controlling the rapid application and release of pressure many times per second. This system
contains both hardware and software elements. The software in this scenario is stored on a
hardware device called a Programmable Read-Only Memory (PROM) chip. A reliability analysis
should take into account the individual elements of this hardware/software system.

 HW Subsystem

 HW Subsystem

 Brakes

 Pressure
 Sensors

Decision Controls

Application
 Software

 SW Subsystem

HW/SW Subsystem

 PROM

 HW Subsystem

FIGURE 4-4. Block Diagram for Automobile ABS

Hardware/Software Example 2:
Figure 4-5 illustrates some of the elements on a missile guidance system. The Inertial
Measurement Unit (IMU) and Inertial Navigation System (INS) are hardware-only components.
The mission computer, however, contains both hardware and software elements. In this example
the Operating System (OS) software is operating continuously while the application software only
operates when it is commanded to do so. These time factors must be accounted for in the
reliability analysis.

 HW Subsystem

 HW Subsystem

 Inertial
Measurement
 Unit

 Inertial
 Navigation
 System

Mission Computer

 Central
Processing
 Unit

 HW Subsystem

Operating
 System
 Software

Application
 Software

 SW Subsystem SW Subsystem

HW/SW Subsystem

Guidance Kit Software

FIGURE 4-5. Block Diagram for Missile Guidance System

4-7

Hardware/Software Example 3:
A third and final example of combined hardware/software systems is shown in Figure 4-6. This
graphic represents a gateway server which feeds data from three types of workstations to external
users. Each subsystem is composed of both hardware and software elements. The server is the
only subsystem which operates continuously. The others are idle until called on for data.

NonStop Server
 Central
Processing
 Unit

 HW Subsystem

 Operating
 System
 Software

Application
 Software

 SW Subsystem SW Subsystem

HW/SW Subsystem

Server Software

DOS Workstation
 Central
Processing
 Unit

 HW Subsystem

 Operating
 System
 Software

Application
 Software

 SW Subsystem SW Subsystem

HW/SW Subsystem

DOS Software

Windows Station
 Central
Processing
 Unit

 HW Subsystem

 Operating
 System
 Software

Application
 Software

 SW Subsystem SW Subsystem

HW/SW Subsystem

Windows Software

UNIX Workstation
 Central
Processing
 Unit

 HW Subsystem

 Operating
 System
 Software

Application
 Software

 SW Subsystem SW Subsystem

HW/SW Subsystem

UNIX Software

FIGURE 4-6. Block Diagram for Gateway Server System

4.1.2 System Reliability Allocation.
System reliability allocation is the process of allocating the specified system reliability goals or goal
metrics (MTBF, MTTF, etc.) to each subsystem or area, hardware element, and hardware/software
element in the system. This allocation process is iterative in nature as knowledge of achievable failure
rates is not always available. These reliability allocations are based on the system reliability model,
which must be developed prior to attempting to allocate metrics from the specification to lower tier
elements. The best available method for allocation pertains to the system.

At the level of the hardware/software elements, reliability allocations are decomposed to apportion the
relevant metrics between the hardware element and the software which executes on the specific
hardware configuration item. The best available method, as it pertains to the system, should be used to
balance the allocations to each element of the system. Section 6 describes some of these methods.
Allocations should be performed at the system level and include not only reliability but other design
parameters as well.

4-8

Typically, the achievable failure rates for the hardware and software elements of the system will be
needed to obtain allocated reliability values for each system element which is achievable and still
supports the system level reliability requirements.

The initial allocation is successively refined to take into account the achievable failure rate for the
hardware and software elements as these become better defined and their failure rates are estimated.
The high level allocation is modified while maintaining the overall system goal.

Methods for obtaining reliability estimates for system hardware are well documented and discussed in
Sections 4.2.2 and 4.2.3, below. Estimates of the software failure rate which is achievable can be
obtained using the methods discussed in Section 4.3.3 and the procedures provided in Section 7 of this
notebook.

4.1.3 System Reliability Prediction.
System reliability predictions are used to assess overall design progress toward achieving the specified
system reliability. Reliability predictions and estimates for the various system hardware elements
(Section 4.2.3) and software elements (Section 4.3.3) are combined using a system model. The
resultant reliability calculation is then compared against the specified system requirement to determine
whether the current system design achieves the specified reliability. If the current design fails to
achieve the needed system reliability within a specified level of confidence, appropriate corrective
action should be implemented.

4.1.4 System Reliability Growth.
System reliability growth consists of a combination of hardware and software reliability growth. The
hardware and software growth estimates are combined, using the system reliability model, and used to
estimate system reliability growth over time. Projections of hardware reliability growth and software
reliability growth are based on independent growth curves. Hardware and software growth tests are
conducted either:

1. separately with the results combined using the system reliability model, or
2. together with hardware and software failures identified in one test and combined using the system

reliability model.

Usually, conducting separate test, analyze, and fix procedures may be appropriate since different
engineering groups are often assigned to the development of hardware and software system elements.

However, conducting concurrent hardware and software growth testing in a system test is not
precluded and may be advantageous in consideration of cost and schedule. In this case, both hardware
and software failures are identified in one test. When both hardware and software reliability growth
testing are required on a program, a system level reliability growth test plan discussing all aspects of the
planned growth testing and the methods to be used in estimating and reporting system reliability
growth should be prepared.

4-9

4.1.5 System Reliability Qualification Testing.
System reliability qualification testing for hardware/software systems is performed in accordance with
reliability demonstration testing techniques currently used in industry. The failure rates for hardware
and software are assumed to be constant with an exponential growth allowing use of test methods for a
combined test of the hardware and software elements of the system. Software is exercised during
Formal Qualification Testing in a manner that represents its operational profile. Ensuring an
appropriate environment for reliability testing is discussed in Sections 4.3.6 and 8 of this notebook.

4.1.6 System-Level Failure Reporting and Corrective Action Systems (FRACAS).
A FRACAS should exist for both hardware and software development. Many times the FRACAS
programs are separate for software and hardware because different departments within an organization
are responsible for development, failure reporting, correcting and analyzing software and hardware.

A software FRACAS is implemented in a similar manner to a hardware FRACAS. Software failure
events are reported, reviewed, corrected and analyzed in much the same way as hardware failures. For
software, the analysis process consists of identifying the most common software failure modes and
implementing defect prevention on these modes.

A system-level FRACAS should be instituted as a part of the reliability assurance and control program
for a combined HW/SW system. The system-level FRACAS activity should support resolution of
those problems which cannot readily be assigned to either hardware or software causes. Additionally,
a system-level FRACAS activity to track and assess the results of the hardware and software FRACAS
activities can provide a resource for ensuring that the results of all observed failures are available for
use within system safety programs.

4.2 Hardware Reliability Prediction and Estimation Program.
Reliability allocation, prediction, and testing techniques for electronic hardware have been thoroughly
investigated and have existing procedures documented within the industry literature. The addition of
software to electronic hardware does not change the expected rate of hardware physical failures. The
handbooks that are in use remain applicable to the design of electronic hardware that provides a
platform for software execution. One example of an industry handbook is Mil-Hdbk-217, Reliability
Prediction of Electronic Equipment.

4.2.1 Hardware Reliability Modeling.
Hardware reliability modeling supports system and hardware reliability estimation, and provides a basis
for the allocation of reliability goals to individual hardware elements. Reliability modeling for the
hardware elements in systems that use both hardware and software is the same as for systems which
consist of hardware only. Once system level modeling has decomposed the combined HW/SW system
into hardware elements and software elements, general reliability techniques may be used directly to
model any individual hardware elements, including those which execute software.

4-10

Section 4.1.1 provides an overview of the system modeling process that results in the decomposition of
the system into individual hardware and software elements.

4.2.2 Hardware Reliability Allocation.
Allocated reliability goals are assigned to each hardware element and lower-tiered indenture item on
the basis of user selected criteria such as criticality or complexity. The system reliability specification
value which was allocated between the various subsystems and elements as a part of the system
reliability allocation process is further divided into reliability allocations for lower indenture hardware
elements.

Generally, the reliability allocation given to non-developmental hardware is based on the item’s
previously observed reliability. Reliability allocations internal to non-developmental equipment are not
generally needed. Reliability allocations to hardware being designed as a part of the system
development process are usually based on a combination of the system requirements, the reliability
performance of previous generations of similar equipment, and the overall criticality or complexity of
the hardware device. Allocations of reliability goals for lower indenture circuit cards and modules are
generally provided for developmental hardware. The allocation of reliability goals to hardware
elements proceeds in exactly the same manner for hardware systems that host software processes as for
hardware that does not host executable software.

4.2.3 Hardware Reliability Prediction.
In order of precedence, hardware reliability predictions are based on 1) known field performance of the
same equipment produced during previous production, 2) reliability demonstration test results, 3)
reliability test, analyze, and fix (TAAF) or other reliability growth testing results, or 4) MTTF estimates
obtained using industry available prediction methods.

Hardware reliability predictions for hardware systems that host software processes proceed in the same
manner as the predictions for hardware that does not host software. For hardware which hosts
software, however, the hardware prediction results must be combined with the software reliability
prediction results using the system model to obtain predictions of the overall system reliability.

4.2.4 Hardware Reliability Growth.
Hardware reliability growth programs, in the form of a test, analyze and fix process, are often used to
ensure the design reliability of newly developed hardware prior to either reliability demonstration
testing or release to the field for use.

4.2.5 Hardware Reliability Qualification Testing.
Detailed procedures, including measurement criteria and environmental criteria, for hardware
demonstration testing are available in industry handbooks, including MIL-HDBK-781, Reliability Test
Methods, Plans, and Environments for Engineering Development, Qualification, and Production.
.

4-11

4.2.6 Hardware FRACAS.
The procedures should be applied to all hardware which is a part of a combined hardware and software
system. The hardware FRACAS program for equipment which is a part of a combined hardware and
software system needs to be carefully tailored to support the system FRACAS activity, allowing the
results of both hardware and software FRACAS activities to be combined.

The hardware FRACAS program is generally established as a standalone program that provides
information to the system FRACAS program in recognition that different organizational entities are
usually assigned to the hardware and software designs. The hardware and software FRACAS efforts
will need to coordinate with different design teams to resolve ongoing problems and corrective action
recommendations. Also, the composition of the failure review boards needed for software failures is
likely to be significantly different from that needed for hardware failures as there are different personnel
required to analyze the software failures.

4.3 Software Reliability Prediction And Estimation Program.
The tasks required for the prediction, evaluation, and estimation of software reliability have been
presented in Table 4-1 and Figure 4-1. The software reliability prediction and estimation tasks comprise
four fundamental conceptual tasks:

1. Establishment of reliability goals for software elements through modeling and allocation
2. Estimation of software design reliability through the software reliability prediction process
3. Software reliability growth through operational profile testing, and
4. Evaluation of the achieved software reliability through Formal Qualification Testing.

Reliability modeling supports the allocation of reliability requirements to software, software operational
profiles and hardware elements. Reliability modeling also supports assessment of system and software
reliability predictions against specified reliability goals at the system level.

Software reliability requirements should be allocated to functional or operational profiles as opposed to
software components. This method is used because software components fail as a result of a specific
functional or operational profile (input states) and not as a result of an inherent characteristic (such as
wear out).

Software reliability prediction is performed at each phase of the software development process up to
software system test. Product and process metrics applicable to the goals of the project are collected
and used to predict the failure rate that the software will exhibit at the beginning of system test and at
deployment. The failure rate prediction is then used to estimate the duration of, and assurance
resources required for, the reliability growth testing, which will be needed to achieve the allocated
software reliability. It should be noted that being able to predict an initial failure rate with any degree
of confidence requires well documented historical data based on similar applications.

The testing duration and resource requirements are then compared against program schedule and
resource plans to evaluate the feasibility of achieving the allocated software reliability. If the allocated

4-12

software reliability is achievable within planned schedule and resource constraints, no preliminary
action is necessary. If achieving the allocated reliability will result in an unplanned impact to program
schedule and resources, one of three decisions is possible:

1. Reassignment of needed resources if the impact is tolerably small,
2. Reallocation of software reliability goals if other elements of the system are achieving beyond their

allocated requirements by a sufficient margin, or
3. Design corrective action

Design corrective actions may include structural changes in the system interrelationships as shown in
the reliability modeling. Design changes that result in a more robust design may allow reallocation of
system reliability requirements into lower-tiered software goals that are more achievable.

As a part of the software reliability prediction process, a report providing an assessment of the degree
of compliance of the software being developed should be provided to the program and software
engineering managers. This report should contain:

1. Allocated reliability requirements
2. Potential program impact of any additional reliability growth testing that may be needed

This ensures that any program impacts are identified and controlled. Procedures for software reliability
prediction are provided within this notebook as a part of Section 7. An overview and discussion of the
software reliability prediction process is provided in Section 4.3.3.

Software reliability evaluation testing consists of reliability growth testing and acceptance and stress
testing. These tests continuously evaluate and improve the reliability of the software product.
Reliability qualification testing certifies for acceptance the final achieved tested software reliability.

Software reliability growth testing is a process of operation (test), failure occurrence, fault isolation,
and software modification to eliminate recurrence of the same and similar failures. This continuous
test, analyze, and fix procedure is coupled with an ongoing evaluation of the software reliability for rate
of growth and current value. The software reliability growth testing continues until models show that
the software failure rate has achieved its allocated requirement.

Once the reliability growth testing indicates that the software has achieved the needed maturity, the
software can be subjected to reliability qualification testing either for just the software element or as an
integral part of a combined hardware/software system.

Reliability qualification testing for software is based on statistical test plans using failure free intervals.
Both hardware and software have requirements that must be placed on their test environment to ensure
that the testing adequately simulates field usage. An overview and discussion of software reliability
growth and qualification testing is provided in Section 4.3.5 and Section 4.3.6 of this notebook.

4-13

Procedures for evaluating software reliability growth and selecting appropriate input environments are
provided in Section 8.

4.3.1 Software Reliability Modeling.
Reliability modeling of system software elements is similar in approach to the modeling performed for
the overall system and for the hardware elements with subtle differences. Combining software failure
rates to calculate an overall failure rate for the software introduces complexity not normally associated
with combining hardware failure rates. As shown previously in Figure 4-2, the executing software can
be decomposed into two separate types of software elements; re-used application software, and newly
developed application software.

The Operating System (OS) or executive is unique in that it operates continuously, on an interrupt
driven basis with the application program, monitoring system operation and providing control of and
access to processor resources for all executing processes. Thus, the failure rate of the OS is
conveniently measured in failures per machine operating hour which is directly compatible with
hardware failure rates. When the OS being used is a purchased product, acceptance testing should be
implemented on the OS to determine if it meets the reliability level that the supplier claims.

The failure rate for reused software should be obtained from previous use(s) of the software if possible.
 It should be noted that failure rates of reused software components are applicable only when the
component’s historical operational profile is consistent with its intended operational profile. If the
reused software is being used in an environment which is substantially different from its previous
environment, it must be tested in the same way as newly developed software to determine reliability
values. Care should be used to ensure that the failure rate for re-used code obtained from a previous
use is either expressed in or converted to a rate expressed in failures per system operating hour for
compatibility with hardware failure rates.

The operational profile is essential for modeling software reliability. Its development consists of the
customer, user, system mode, functional and operational profiles. Section 9 discusses modeling of
operational profiles.

4.3.2 Software Reliability Allocation.
Software reliability allocation involves the establishment of reliability goals for individual CSCIs based
on a top-level reliability requirement for all software. It is a crucial early program activity that
establishes the criteria for evaluating the achieved reliability of elements of the design. As shown in
Table 4-2 five initial allocation procedures and a reallocation procedure are provided in Section 6 of
this notebook. These procedures allow allocations to be made based on the type of execution
expected, sequential or concurrent, or on the basis of operational profile, operational criticality, or
achievable failure rates.

Two equal-apportionment allocation procedures have been provided. Procedure 6.3-1 provides equal
apportionment between software elements for sequentially executing software. Procedure 6.3-2
provides equal apportionment among software elements for concurrently executing software. These

4-14

equal apportionment allocation procedures are designed for use during proposals and early design
phases when very little is known about the relative sizes, complexity, or criticality of the software being
designed.

 TABLE 4-2. Software Reliability Allocation Procedures

Procedure # Procedure Name Use Description

 6.3-1 Equal apportionment
applied to sequential
software components

Use early in the SW development
process when the software
components are executed sequentially

 6.3-2 Equal apportionment
applied to concurrent
software components

Use early in the SW development
process and the software components
are executed concurrently

 6.3-3 Mission or Operational Profile
Allocation

Use when the operational profile of the
CSCIs are known

 6.3-4 Allocation based on operational
criticality factors

Use when the operational criticality
characteristics of the software is
known

 6.3-5 Allocation based on complexity
factors

Use when the complexity factors of the
software components are known

 6.3-6 Allocation based on achievable
failure rates

Use when CSCI utilization varies
significantly

 6.3-7 Re-allocation based on
predicted failure rates

Use to re-balance the SW reliability
allocations

A re-allocation procedure is provided to allow balancing allocated values as more software design
information becomes available. Re-allocation between the various software elements of a design is
expected to be required early in the design process as the software design develops.

4.3.3 Software Reliability Prediction.
Software reliability prediction is performed to help forecast, in conjunction with the software reliability
growth model, the expected end-user reliability.

Historical data is essential in predicting software reliability. Any failure data that can be collected on
previous projects with a similar application and/or similar operational profiles should be collected first
when making a prediction. In the event that historical data is not available, a prediction must be made
based on the best available failure data. This may be failure data from similar or previous products

4-15

developed by the same organization. Along with the predictions, a confidence level should be
determined, highlighting the risk associated with predicted values.

Software reliability predictions are made during the software development phases that precede
software system test, and are available in time to feed back into the software development process.
The predictions are based on measurable characteristics of the software development process and the
products produced by that process.

Figure 4-7 shows the software reliability prediction process. Product and process metrics are collected
and used to predict the initial failure rate and fault content. From these quantities, the reliability growth
model parameters are predicted, then the growth model is used to obtain estimates of the test time and
resources needed to meet reliability objectives.

Up through the requirements analysis phase, the software reliability prediction can be made on the basis
of primitive characteristics of the software such as estimated size and processor speed. There are
techniques that measure other characteristics such as development methods, tools and organization.

During the preliminary design phase through the CSCI testing phase, product/process metrics are used
for prediction. As development proceeds, more and more metrics become available, and metrics that
were available before are updated. The predictions become more accurate and meaningful as system
test is approached. Once system test begins, the metrics are replaced with actual failure data and can
be used to statistically estimate the values of the growth model parameters.

FIGURE 4-7. Software Reliability Prediction Procedure

Since the failure rate of the software changes over time as the software is modified to correct faults, the
prediction procedures contained in Section 7 provide values for the parameters of a software reliability
growth model. A reliability growth model can be used to forecast what the failure rate λ(τ) will be
at any time τ into system test.

Conversely, a growth model can be used to forecast when a particular failure rate objective will be
reached. The amount of execution time to reach an objective can be translated into calendar time for
schedule and resource estimates. Reliability progress is evaluated as a part of the prediction process.

4-16

Note: The software reliability prediction models contained in this notebook were the best known
available ones at the time it was written. These methods are helpful, but they are by no means proven
or final. The user of this notebook is encouraged to establish their own software reliability prediction
procedures which may be more relevant to their specific application or development.

An assessment report detailing the reliability progress to date against established goals and potential
schedule and resource impacts should be prepared and delivered to the Program Manager and
Software Engineering Manager. These reports should be delivered at milestones representing the end
of each development activity such as analysis, design, code, system test and at the end of any formal
review.

If the reported progress is unacceptable, a Program Review Board can be informed. The board can
then determine whether design correction or re-allocation is needed to meet the specified reliability
requirements in a timely, cost-effective manner.

4.3.4 Software Metrics Collection.
Software metrics are measurable characteristics of the software development process and the products
of that process. The specific objective of collecting the metrics described here is to allow software
reliability to be predicted during the software life cycle phases preceding system test. There are five
prediction techniques presented in this notebook. Each of these techniques predicts a fault parameter
that can be used to predict or gauge failure rate. Table 4-3 provides a mapping between the software
metrics and the phases during which they are used in the prediction process.

Rome Laboratory TR-92-52, “Software Reliability Measurement and Test Integration Techniques,”
contains a method for predicting software reliability summarized in Table 4-3. This method requires
that a fault density parameter in terms of faults per KSLOC is predicted. The fault density parameter
can then be translated to a failure rate by using a default table, collecting data or using historical data.
The total estimated number of inherent defects at delivery can also be predicted by multiplying the fault
density by the total number of KSLOC.

These metrics are not available all at once. Different metrics become available during each life cycle
phase. Metrics that were previously available become updated as work products evolve. Depending on
the development phase (proposal through CSCI testing) during which the prediction is made, some
subset of the metrics will be available. The metrics available during each phase enter into a software
reliability prediction model associated with that phase, as described in Section 7. The metrics are
collected separately for each CSCI.

4-17

TABLE 4-3. Software Reliability Prediction Factors

Factor Measure Phase data collected
RL-TR-92-52 Software
Reliability Measurement and
Test Integration Techniques

Defects per Source Lines of
Code

Concept through coding

Application Empirical difficulty factor in
developing various application
types

Concept through analysis

Development organization Development organization,
methods, tools, techniques,
documentation

Concept through design

Software anomaly management Indication of fault tolerant
design

Design, code and unit test

Software traceability Traceability of design and code
to requirements

Design, code and unit test

Software quality Adherence to coding standards Design, code and unit test
Software language Normalizes fault density by

language type
Code and unit test

Software complexity Unit complexity Code and unit test
Software modularity Unit size Code and unit test
Software standards review Compliance with design rules Code and unit test
Raleigh Model Profile of faults detected over

the life cycle
From start of design through
delivery

Industry Data Defects per function points Anytime from concept through
delivery

Musa Execution Model Failure rate at the start of system
testing

From concept though the start
of system testing

Historical Data Process and product correlation
to previous failure history

Life-cycle data from previous
projects within the organization.

The Raleigh1 model predicts distribution of defects over the life cycle of the software. This fault profile
is used to gauge the defect removal process. This method can and should be used in conjunction with
other methods for predicting the total number of inherent or latent defects.

Industry data can be used to predict defects per function points. Using historical data collected from
previous projects, or by using the Musa execution time model discussed next, a conversion ratio
between fault density and failure rate can be determined. The total predicted defects at delivery can be
predicted by multiplying this defect density by function points.

1 “Measures for Excellence”, Larry Putnam, Ware Myers, Quantitative Software Management, Yourdon Press,
Englewood Cliffs, NJ, 1992.

4-18

The Musa execution time model can be used to predict the initial failure rate, or the failure rate at the
start of system testing. It can be used alone or in conjunction with the other prediction models.

4.3.5 Software Reliability Growth Testing.
Software reliability growth testing takes place during the software system test phase, after the software
has been fully integrated. During growth testing, the software is executed in an environment with
inputs that most closely simulate the way the software is expected to be used in the field. In particular,
the inputs are randomly selected in accordance with the software’s operational profile.

The quality of testing is directly related to reliability growth and is a function of various system level
tests that validate the software from more than one perspective. System tests can validate domains,
paths, states, transaction flow, error handling, etc. The quality of testing is also related to testing the
functionality that is executed most often by end user, most critical to end user, and most error prone.

An operational profile associates each input state or end-user function with a probability of occurrence.
Testing according to the operational profile is efficient with respect to failure intensity reduction,
because it reveals those faults that the user is most likely to encounter in use, those faults that
contribute most to the program failure rate. When a failure is observed, the execution time, among
other information, is recorded. The observed failure times are used as input to a statistical estimation
technique that determines the parameters of the software reliability growth model. This way, the
current reliability can be measured and the future reliability can be forecasted. Figure 4-8 depicts a
failure intensity curve.

Fa
ilu

re
 R

at
e

(λ
)

Execution Time (t)

FIGURE 4-8. Software Failure Intensity Curve

Software reliability growth testing assumes that faults exist in the software and they will be uncovered
during execution to produce software failures. As testing proceeds, failures will occur, the faults
underlying the failures are identified and removed, the system is recompiled, and new input states are
selected randomly from the operational profile. As software faults are removed, the failure intensity

4-19

should decrease over time. This should continue until enough faults have been removed from the
system to meet reliability goals.

Resource Usage. A software program that is not executing cannot fail. Thus, the growth model
selected expresses its basic results with respect to execution time. Since project managers and
software engineers may think in terms of calendar time, some growth models contain a component
that addresses the relationship between execution time and calendar time by focusing on resource
usage rates.

Three primary resources are involved in system test: failure identification personnel, failure resolution
personnel, and computer time. Failure identification personnel are the testers, the people who run test
cases and detect the occurrence of failures. Failure resolution personnel are the debuggers, the people
who isolate and remove the faults that cause the failures.

The expenditure of failure identification personnel resource and failure resolution resource are each
modeled as having a cost per unit of execution time and a cost per failure experienced. At any time,
one of the three resources will be the limiting resource that determines the ratio of calendar time to
execution time. Testing can only be accelerated by adding more of the limiting resource.

In addition to reliability assessment, another benefit of growth testing is that the debugging activity
after each failure occurrence will result in fault removal. Debugging is many times imperfect. The
occurrence of one failure does not guarantee the immediate removal of one fault. Sometimes new
faults are inadvertently introduced during the repair activity. Sometimes multiple, related faults are
removed at once. Sometimes the causative fault behind a failure is not found. Over the long run, the
reliability of reasonably maintainable software improves as growth testing continues. Section 8 of this
notebook provides a detailed discussion and specific procedures for software reliability growth testing.

4.3.6 Software Reliability Qualification Testing.
Reliability qualification testing is performed toward the end of system test. Its purpose is to prove with
a specified statistical confidence that the software meets the stated reliability requirement. Software
reliability qualification testing, like growth testing, is performed using inputs randomly selected in
accordance with the operational profile the software will experience in field use.

During demonstration testing, the code should be under configuration control (just as it would be
between releases). Any failures that occur are merely recorded; no software repair activity takes place.
Since the code is under configuration control and should be stable, multiple occurrences of the same
failure should be counted. The test should represent a true operational environment. In a true
environment where corrective action is available, multiple occurrences of the same failure would
impact the system reliability just as occurrences of different failures would.

Software that is operational, under configuration control and subjected to inputs randomly selected
from a stationary (non-changing) operational profile is assumed to exhibit a constant failure rate. This
implies that the inter-failure times are exponentially distributed. The exponential model is currently

4-20

employed for complex, maintained hardware systems that do not have redundancy. The exponential
model is applicable to the software product alone and to the combined hardware/software system when
the software is under configuration control and is operational.

Three types of qualification tests are described in Section 8: fixed-duration test, sequential test, and
failure-free execution period test. Each type of test has advantages and disadvantages, as summarized
in Table 4-4.

 TABLE 4-4. Software Reliability Qualification Test Types

Test Type Advantages Disadvantages

Fixed-Duration - used when the amount of
test time and cost must be known in
advance. A fixed duration test provides
demonstrated failure rate to a desired
confidence level.

Total test time is
known in advance.
An estimate can be
made of true failure
rate.

Takes longer than
sequential test on
average.

Sequential - will accept software that has a
failure rate much lower than λ0 and reject
software that has a failure rate much higher
than λ1 more quickly than a fixed duration
test having similar parameters. However, the
total test time may vary significantly
according to the true failure rate.

Accepts very low
failure rates and
rejects very high
failure rates quickly.
 Shorter test times
on average than the
other types.

Total test duration is
undetermined;
maximum duration
must be planned for.

Failure-Free Execution Interval - will
accept software that has a failure rate lower
than λ0 more quickly than a fixed duration
test. Producer’s and consumer’s risks usually
range from 10% (low risk) to 30% (high
risk). The lower the risks, the longer the
test.

Will accept very
quickly if true failure
rate is much better
than required.

Can take a long time
if true failure rate is
close to that
required

4-21

4.3.7 Software Failure Reporting and Corrective Action System (FRACAS).
A software FRACAS is an efficient closed-loop management tool established to identify and correct
deficiencies in software. The software FRACAS program must be carefully tailored to support
providing the information required by the system level FRACAS program. Software FRACAS is based
on the systematic reporting and analysis of software failures during testing. Software FRACAS
includes documented procedures for reporting failures, analyzing failures to determine their root
causes, and establishing effective corrective action to prevent future recurrence of the failure. Figure 4-
9 illustrates a software FRACAS process.

System Level FRACAS

Software Level FRACAS

Failure event reported

Failure event reviewed

Failure event corrected

Failure event verified as
correct and closed

Root causes analyzed

Improvements to development
process made

Not Corrected

Properly

Symptoms
Steps to
reproduce
Conditions
Inputs

Priority
Status

Not software OR does not

require corrective action Root cause
Corrective
action
information

FIGURE 4-9. Software FRACAS

As a part of the process, each failure must be documented and reported, with sufficient information to
identify the software element involved, the symptoms of the failure, input and other conditions
preceding the failure, and, for the purposes of software reliability growth modeling, the cumulative
execution time at the moment of failure. The failure should be verified, if possible, by repeating the

4-22

circumstances that led to it. All files and other pertinent data must be preserved. The root cause of the
fault that caused the software failure should be determined. Corrective action requires a change to the
software code. The failure report is closed out when there is formal concurrence by individuals other
than those who performed the corrective action.

Software FRACAS should be augmented by the establishment of a "defect prevention" program. In a
defect prevention program, not only is the fault removed from the code but attention is also focused on
the root cause of the fault, how it got there in the first place. A fault in the code may be the result of
any of the known fault types described in Table 4-5 2:

TABLE 4-5. List of Known Fault Types

Activity introducing fault Fault type or root cause
Requirements Missing requirements

Misinterpreted requirements
Requirements not clear
Changed requirements
Conflicting requirements

Design Design not to requirements
Missing design
Top level design logic
Low level design logic
Design not robust

Code Code not implemented to design
Code not implemented to requirements
Missing code
Initialization error
Compiled typos
Storing error
Mismatched parameters
Math operations not robust
I/O operations not robust
Memory errors
Domain errors

Maintenance and corrective action New fault generated in maintenance

Seeking out and eliminating the root cause of the fault modifies the development process to reduce or
completely eliminate the cause and prevent a whole class of related faults. If that cannot be done, then
the objective is to at least expedite detection of these faults.

2 “Tactical Software Reliability Guidebook” Technology Transfer #95092967A-GEN, SEMATECH, Fulton, S.,
Neufelder, AM, , Austin, Tx, 1995.

4-23

After the fault is isolated and removed, information about the fault should be fed back to the
programmers, who establish and categorize the root cause of the fault. This is called the "causal
analysis." Corrective action includes not only the removal of the immediate fault on hand but
modification to the development process to eliminate the recurrence of the class of similar faults.
Often, just making programmers aware of the root cause will discourage recurrence.

One technique, called Orthogonal Defect Classification (ODC)3,4 is used by industry to analyze
software defects. This method requires that the following information in Table 4-6 be tracked during
the correction of a defect. The data collected is then regularly analyzed to determine:

• Maturity of the software associated with defect types,
• Most common failure modes, and eliminate them, and
• Causality of problems and associated methods to reduce defects

3 Ram Chillarege, “Orthogonal Defect Classification - A concept for in process Measurements” IEEE Transactions
on Software Engineering, 11/92.
4 David Rentschler, “Implementing Orthogonal Defect Classification”, Transactions from the Fifth International
Conference on Software Quality, October 1995, pages 277-279.

4-24

TABLE 4-6. Orthogonal Defect Classification

Classification type Description
Detection method What activity detected the defect? Each detection method must be orthogonal

in that there is no overlap between them. Some examples include:

• Reviews
• Inspections
• Audits
• Internal test
• External test
• External use

Types This is directly related to what is repaired in the software. These types include
but are not limited to:

• Requirements defects
• Design defects
• Coding defects
• Defects due to a corrective action

Ideally, the development organization should tailor this list to those most
commonly related to the defects on a specific application.

Trigger This is an orthogonal list of activities that caused the defect to be discovered
or observed. Some examples are:

• Installation
• Startup
• Normal operations
• Change in configuration
• Corrective action
• Change in input domain
• Error handling
• Environmental influences such as loss of power or communication
• Change in customer requirements
• Operator error

Source The place in the source code where the defect exists or existed.

