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7.0 PREDICTION 
 
Reliability prediction is useful in a number of ways.   A prediction methodology provides a uniform, 
reproducible basis for evaluating potential reliability during the early stages of a project.  Predictions 
assist in evaluating the feasibility of proposed reliability requirements and provide a rational basis for 
design and allocation decisions.   
 
Predictions that fall short of requirements at any level signal the need for both management and 
technical attention.  In some cases a shortfall in reliability may be offset by the use of fault tolerance 
techniques.  For hardware, adding redundancy will often result in increased reliability.  Software 
reliability may be improved by a focused inspection, defect removal and test effort. Software fault 
tolerance techniques, such as N-version programming and recovery blocks, are used as a last resort 
because of the high cost and controversial impact on reliability. 
 
Hardware reliability prediction provides a constant failure rate value for the "inherent reliability" of the 
product, the estimated reliability attainable when all design and production problems have been worked 
out.  A hardware reliability growth model is used to monitor product reliability in the period during 
which the observed reliability advances toward the inherent reliability. 
 
Software reliability prediction provides a projection of the software failure rate at the start of or any 
point throughout system test.  A software reliability growth model covers the period after the 
prediction, where reliability improves as the result of testing and fault correction.  
 
Hardware and software reliability predictions, when adjusted by their respective growth models to 
coincide with the same point in time, can be combined to obtain a prediction of the overall system 
reliability. 
 
Table 7-1 (page 7-3) lists the software reliability prediction procedures to use during each software 
development life cycle phase.  When system test begins, actual failure data can be used to statistically 
estimate the growth model parameters (see Section 8). 
 
7.1 Hardware Reliability Prediction.   
Hardware reliability prediction is a process of quantitatively assessing an equipment design.  
Techniques have been established so that hardware reliability predictions may be applied and 
interpreted uniformly. The final outcome of a prediction is a constant failure rate that can be combined 
with other failure rates in a system model. 
 
7.2 Software Reliability Prediction.  
Metrics are used to predict a variety of measures including the initial failure rate λ0, final failure rate, 
fault density per executable lines of code, fault profile, as well as the parameters of a software reliability 
growth model. The final outcomes of a software reliability prediction include: 
  
• Relative measures for practical use and management. 
• A prediction of the number of faults expected during each phase of the life cycle. 
• A constant failure rate prediction at system release that can be combined with other failure rates. 
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The major difference between software reliability prediction and software reliability estimation is that 
predictions are performed based on historical data while estimations are based on collected data.  
Predictions, by there nature, will almost certainly be less accurate than estimations.  However, they are 
useful for improving the software reliability during the development process.  If the organization waits 
until collected data is available (normally during testing), it will generally be too late to make substantial 
improvements in software reliability. The predictions should be performed iteratively during each phase 
of the life cycle and as collected data becomes available the predictions should be refined to represent 
the software product at hand. 
 
A software reliability prediction is performed early in the software life cycle, but the prediction provides 
an indication of what the expected reliability of the software will be either at the start of system test or 
the delivery date.  It is largely based on the projected fault count at the point system test is initiated. 
 
While hardware analysts will perform predictions to determine what improvements, if any, can be made 
in designing and selecting parts, the software analysts will perform predictions to determine what 
improvements, if any, can be made to the software development techniques employed and the rigor 
with which the process is carried out.  The techniques can be on a global level, such as organization 
procedures, or they can be on a local level such as the complexity of each software unit.  The software 
analyst, like the hardware analyst, must be involved in the software engineering day-to-day activities to 
be able to measure the software reliability parameters and to be able to understand what improvements 
can be made.   
 
One important benefit from performing predictions is to correlate  the software methods and 
techniques employed to the actual failure rate later experienced.  This comparison can lead to improved 
software methods and techniques, particularly testing techniques. 
 
Tables 7-1 lists five software reliability prediction techniques that are available.  Table 7-2 lists the 
phases where the methods are most applicable. 
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TABLE 7-1. Software Reliability Prediction Techniques 

 

Section Prediction Method Capabilities Description of outputs 
7.2.1 Rome Laboratory TR-92-52 

Software Reliability 
Measurement and Test 
Integration Techniques 

Allows for tradeoffs.  Produces a prediction in 
terms of fault density or 
estimated number of inherent 
faults. 

7.2.2 Raleigh Method The profile of predicted 
faults over time and not 
just the total number is 
needed. Can be used 
with the other prediction 
models. 

Produces a prediction in the 
form of a predicted fault 
profile over the life of the 
project. 

7.2.3 Industry data collection Applicable for any 
industry. 

Produces a prediction of 
fault density per function 
points based on historical 
data collected in industry. 

7.2.4 Musa’s Model  Predicts failure rate at 
start of system test that 
can be used later in 
reliability growth models. 

Produces a prediction of the 
failure rate at the start of 
systems test. 

7.2.5 Historical data collection Can be most accurate, if 
there is organization 
wide commitment. 

Produces a prediction of the 
failure rate of delivered 
software based on company 
wide historical data. 

 
 
 

TABLE 7-2.  Prediction Techniques by Phase 
 

           Phase           Procedure 

 Proposal and Pre-contractual 7.2.1.1, 7.2.2, 7.2.3, 7.2.4, 7.2.5 

 Requirements Analysis 7.2.1.1, 7.2.2, 7.2.3, 7.2.4, 7.2.5  

 Preliminary Design  7.2.1.2, 7.2.2, 7.2.3, 7.2.4, 7.2.5 

 Detailed Design 7.2.1.2, 7.2.2, 7.2.3, 7.2.4, 7.2.5 

 Coding and CSU Testing  7.2.1.3, 7.2.2, 7.2.3, 7.2.4, 7.2.5 

 CSC Integration and Testing 7.2.1.3, 7.2.2, 7.2.3, 7.2.4, 7.2.5 
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7.2.1 RL-TR-92-52, “Software Reliability Measurement and Test Integration Techniques” Method.  
RL-TR-92-52 contains empirical data that was collected from a variety of sources, including the 
Software Engineering Laboratory.  There were a total of 33 data sources representing 59 different 
projects. The model consists of 9 factors that are used to predict the fault density of the software 
application.  The 9 factors are: 
 

TABLE 7-3. Summary of the RL-TR-92-52 Model 
 

Factor Measure Range of values Applicable 
Phase* 

Tradeoff 
Range 

A - Application Difficulty in developing 
various application types 

 2 to 14 
(defects/KSLOC) 

A-T None - fixed 

D - Development 
organization 

Development 
organization, methods, 
tools, techniques, 
documentation 

.5 to 2.0 If known at A, 
D-T 

The largest 
range 

SA - Software 
anomaly 
management 

Indication of fault tolerant 
design 

.9 to 1.1 Normally, C-T Small 

ST - Software 
traceability 

Traceability of design and 
code to requirements 

.9 to 1.0 Normally, C-T Large 

SQ - Software 
quality 

Adherence to coding 
standards 

1.0 to 1.1 Normally, C-T Small 

SL - Software 
language 

Normalizes fault density 
by language type 

Not applicable C-T N/A 

SX - Software 
complexity 

Unit complexity .8 to 1.5 C-T Large 

SM - Software 
modularity 

Unit size .9 to 2.0 C-T Large 

SR - Software 
standards 
review 

Compliance with design 
rules 

.75 to 1.5 C-T Large 

 
Key  A- Concept or Analysis Phase 
   D- Detailed and Top level Design 
 C - Coding 
 T - Testing 
 
*If there are software development policies in place which are defined and it is known what these items 
will be (even though the code does not exist yet) then these items can be used earlier in the prediction 
phase. However, the analyst needs to be certain that the prediction reflects what software engineering 
practices will actually be performed. 



7-5 

 
There are certain parameters in this prediction model that have tradeoff capability.  This means that 
there is a large difference between the maximum and minimum predicted values for that particular 
factor. Performing a tradeoff means that the analyst determines where some changes can be made in 
the software engineering process or product to experience an improved fault density prediction.  A 
tradeoff is valuable only if the analyst has the capability to impact the software development process. 
 
The tradeoff analysis can also be used to perform a cost analysis.  For example, a prediction can be 
performed using a baseline set of development parameters.  Then the prediction can be performed 
again using an aggressive set of development parameters. The difference in the fault density can be 
measured to determine the payoff in terms of fault density that can be achieved by optimizing the 
development.  A cost analysis can also be performed by multiplying the difference in expected total 
number of defects by either a relative or fixed cost parameter.  
 
The output of this model is a fault density in terms of faults per KSLOC.  This can be used to compute 
the total estimated number of inherent defects by simply multiplying by the total predicted number of 
KSLOC.  If function points are being used, they can be converted to KSLOC by using Table 7-9.  
Fault density can also be converted to failure rate by using one of the following:  
 
 1) collected test data, 
 2) historical data from other projects in your organization, and/or 
 3) the transformation table supplied with the model, shown in Table 7-4. 
 

TABLE 7-4. Transformation Ratio 
 

Application type Conversion from fault density to failure rate 
Airborne 6.28 
Strategic 1.2 
Tactical 13.8 
Process control 3.8 
Production center 23 
Developmental 132.6 
Average 10.6 
 
These are listed in the order of preference.  Ideally, the developing organization should determine a 
conversion rate between fault density and failure rate. If that data is not available then this technique 
supplies a conversion ratio table.  This table is based on data generated during the development of the 
RL-TR-92-52 report.  The predicted fault density output from this model can also be used as an input 
to the Musa prediction model in 7.2.4.  
 
The values of many of the parameters in this model may change as development proceeds.  The latest 
updated values should always be used when making a prediction.  The predictions will tend to become 
more and more accurate as the metrics from each successive phase become available and as the values 
are updated to more closely reflect the characteristics of the final design and implementation.  The 
details of this model are not contained in this notebook.   
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7.2.1.1 Proposal, Pre-Contract or Requirements Phase Prediction. 
This method requires only that information concerning the type of application and development 
organization be known.  The lower the computed value, the lower the fault density and predicted 
failure rate. 
 

TABLE 7-5. Proposal/Pre-Contract/Analysis Phase Factors 
 

Factor Measure Range of values 
A - Application Difficulty in developing various 

application types 
 2 to 14 

D - Development organization* Development organization, 
methods, tools, techniques, 
documentation 

.5 to 2.0 

 
*May not be known during this phase 
 
Steps. 
A. Determine the characteristics of the application type to be developed using the check sheet 

provided with technical report, RL-TR-92-52. 
 
B.  Determine the approximate size of the application in source lines of code and number of units. 
 
C. Determine an initial fault density and estimated number of inherent faults using the checklists 

included in the technical report. 
 
• Compute D = predicted faults per KSLOC = A if D is not known OR 
  
• Compute FD = predicted faults per KSLOC = A*D if D is known  
  
• N = estimated number inherent faults = FD*KSLOC 
 
During the concept and requirements phases the A factor is always known and the D factor may  be 
known.   
 
D. If necessary, convert the fault density to failure rate using a conversion technique. 
 
E. Perform tradeoffs with the D factor to determine what techniques would be necessary to achieve an 

objective fault density or failure rate. Re-compute fault density. 
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7.2.1.2 Design Phase Prediction. 
This method requires only that information concerning the type of application, development 
organization, and design requirements be known.  The lower the computed value, the lower the fault 
density and predicted failure rate. 
 

TABLE 7-6. Design Phase Factors 
 
Factor Measure Range of values 
A - Application Difficulty in developing various 

application types 
 2 to 14 

D - Development organization Development organization, 
methods, tools, techniques, 
documentation 

.5 to 2.0 

SA - Software anomaly 
management* 

Indication of fault tolerant 
design 

.9 to 1.1 

ST - Software traceability* Traceability of design and code 
to requirements 

.9 to 1.0 

SQ - Software quality* Adherence to coding standards 1.0 to 1.1 
 
*Even though there is typically  no code yet in the design phase, the parameters may be gauged based 
on coding practices that may be in place. 
 
Steps. 
A. Verify that the A factor determined previously in step 7.2.1.1 is still valid.  Make any necessary 

refinements. 
 
B. Determine and/or refine the approximate size of the application in source lines of code and number 

of units. 
 
C. Determine an initial fault density and estimated number of inherent faults using the checklists 

included in the technical report. 
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• Compute FD = predicted faults per lines of code = A*D 
  
• If there are coding policies in place then compute FD = predicted faults per KSLOC  
 = A*D*SA*ST*SQ 
  
• Compute N = estimated number inherent faults = FD*KSLOC 
 
During the design phases the A and D factors should be known. 
 
D. If necessary, convert fault density to failure rate using a conversion factor. 
 
E. Perform tradeoffs with the D factor to determine what techniques would be necessary to achieve 

an objective fault density or failure rate. 
 
7.2.1.3 Code, Unit Test and Integration Phase Prediction.  
This method requires that information concerning the type of application, development organization, 
design requirements and coding practices be known.  The lower the computed value, the lower the 
fault density and predicted failure rate. 
 

TABLE 7-7. Coding/Unit Testing/Integration Phase Factors 
 

Factor Measure Range of values 
A - Application Difficulty in developing various 

application types 
 2 to 14 

D - Development organization Development organization, 
methods, tools, techniques, 
documentation 

.5 to 2.0 

SA - Software anomaly 
management 

Indication of fault tolerant 
design 

.9 to 1.1 

ST - Software traceability Traceability of design and code 
to requirements 

.9 to 1.0 

SQ - Software quality Adherence to coding standards 1.0 to 1.1 
SL - Software language Normalizes fault density by 

language type 
n/a 

SX - Software complexity Unit complexity .8 to 1.5 
SM - Software modularity Unit size .9 to 2.0 
SR - Software standards review Compliance with design rules .75 to 1.5 
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Steps. 
A. Verify that the A factor determined previously in step 7.2.1.1 is still valid.  Make any necessary 

refinements. 
 
B. Refine the calculations for the D factor and the SA factor. 
 
C. Determine and/or refine the approximate size of the application in source lines of code and number 

of units. 
 
D. Determine an initial fault density and estimated number of inherent faults using the checklists 

included in the technical report. 
 
• FD = predicted faults per lines of code = A*D*SA*ST*SQ*SL*SX*SM*SR  
  
• N = estimated number inherent faults = FD*KSLOC 
 
E. If necessary convert the fault density to failure rate using a conversion technique. 
 
F. Perform tradeoffs with the applicable D and S factors to determine what techniques would be 

necessary to achieve an objective fault density or failure rate. 
  
7.2.2 Raleigh Model1. 
This model predicts fault detection over the life of the software development effort and can be used in 
conjunction with the other prediction techniques in Section 7.2. Software management may use this 
profile to gauge the defect status.  This model assumes that over the life of the project that the faults 
detected per month will resemble a Raleigh curve (Figure 7-1).  
 
Steps. 
A. Obtain the milestones for the schedule, in particular the  
 
• Start date and total months in project  
• Date of expected full operational capability - td 
 
B. Estimate the number of faults over the life of the project - Er. The other prediction techniques can 

be used to predict the fault density.  The fault density can then be multiplied by either KSLOC or 
function points as depending on the prediction technique used. 

 
C. From these unknowns, a Raleigh curve can be calculated by solving for each month t (1 to number 

of months in project) using this equation , Em = ( 6 * Er/td
2
 ) * t * exp(-3t2/td

2).  When finished, the 
result should be a plot that resembles a Raleigh distribution. 

 
D. Use this profile to gauge the fault detection process during each phase of development. In 

particular, this profile can be used to gauge the original schedule estimate and the prediction for the 
                                                        
1 “Measures for Excellence”, Larry Putnam, Ware Myers, Quantitative Software Management, Yourdon Press, 
Englewood Cliffs, NJ, 1992. 
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total number of defects. For example, the estimated number of defects impacts the height of the 
curve while the schedule impacts the length of the curve.  If the actual defect curve is significantly 
different from the predicted curve then one or both of these parameters may have been estimated 
incorrectly and should be brought to the attention of management. 

 
          Defects or Failures Detected

Schedule Time
 

 
FIGURE 7-1. Raleigh Curve  

 
7.2.3 Industry Data. 
Table 7-8 summarizes data that has been collected by industry, in particular by Software Productivity 
Research, Inc.2  The output from this prediction technique is defects per function points.  This metric 
can be used to predict the total estimated number of inherent defects and can also be used as an input 
to the Musa prediction model in 7.2.4. See the Appendix for procedures for calculating function points. 
The potential defects are those that are discovered at any time during development.  The delivered 
defects are those that are discovered after delivery. 
 
Steps. 
A. Compute function point measure for each unit.  See instructions in the Appendix. 
 
B. Determine the capability level of the software organization developing the software.  Keep in mind 

that there may be joint efforts between more than one software organization and therefore more 
than one capability level.  If that is the case, then perform a separate prediction for each 
organization based on the function points developed by each organization. 

 
 If the capability level is not known then determine the industry type that most closely represents 

this software. 
 
C. Use Table 7-8 as an estimate of the potential defects per function point and the delivered defects 

per function point. 

                                                        
2 “Measuring Global Software Quality”, Software Productivity Research, Capers Jones, Burlington, MA, 1995. 
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TABLE 7-8. Industry Data Prediction Technique 

 

CMM Approach  
Measure Average defects/ function points  
Typical defect potential and delivered defects for SEI 
CMM Level 1  

5.0 potential 
.75 delivered 

Typical defect potential and delivered defects for SEI 
CMM Level 2  

4.0 potential 
.44 delivered 

Typical defect potential and delivered defects for SEI 
CMM Level 3  

3.0 potential 
.27 delivered 

Typical defect potential and delivered defects for SEI 
CMM Level 4  

2.0 potential 
.14 delivered 

Typical defect potential and delivered defects for SEI 
CMM Level 5  

1.0 potential 
.05 delivered 

 

Industry Approach  
Measure Average defects/ function points 
Delivered defects per industry System Software - .4 

Commercial Software - .5 
Information Software - 1.2 
Military Software - .3 
Overall average - .65 

  
7.2.4 Musa Prediction Method.  
This prediction technique is used to predict, prior to system testing, what the failure rate will be at the 
start of system testing.  This prediction can then later be used in the reliability growth modeling.  This 
prediction technique also allows for a prediction in terms of failure rate which can be combined with 
the hardware failure rate predictions.   
 
At any point, an executing computer program exhibits a constant failure rate λ, provided that the code 
is frozen and the operational profile is stationary. A constant failure rate implies an exponential time-to-
failure distribution; therefore, the reliability (probability that the program executes without failure for a 
period of time t’) is given by 

 R( ) =  [- ]′ ′τ λτexp  (7.1) 
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The reliability of a software configuration item will change as the software is tested and repair activity 
takes place.  Consequently, a software reliability prediction must be associated with a particular point in 
time.  The earliest point that it makes sense to estimate the reliability of the software is when the 
software is fully integrated and is executed in an environment that is representative of its operational 
use.  This point is the start of system test and is designated t = 0.  For any later point in time, t indicates 
the cumulative execution time since the start of system test. 
 
The failure rate will vary over time.  The failure rate at the instant t is denoted λ(τ).  When the program 
code is unchanging during operation, the software may exhibit a constant failure rate λ = λ(τ).  The 
failure rate predicted by this model is the initial failure rate λ0 = λ(0),the failure rate the software is 
expected to exhibit at the beginning of system test (τ = 0.  The prediction procedures in this section 
provide λ0.  The procedures in Section 7.3.4 employ the software reliability growth model to estimate 
additional quantities, such as the schedule and resource impact to achieve a failure rate objective. 
 
For this prediction method, it is assumed that the only thing known about the hypothetical program is a 
prediction of its size and the processor speed. 
 
This model assumes that failure rate of the software is a function of the number of faults it contains and 
the operational profile.  The number of faults is determined by multiplying the number of developed 
executable source instructions by the fault density.  Developed excludes re-used code that is already 
debugged.  Executable excludes data declarations and compiler directives.  For fault density at the start 
of system test, a value for faults per KSLOC needs to be determined.  For most projects the value 
ranges between 1 and 10 faults per KSLOC.  Some developments which use rigorous methods and 
highly advanced software development processes may be able to reduce this value to 0.1 fault/KSLOC. 
 
The measurement of processor speed is complicated by the fact that each instruction takes a different 
amount of time, depending on the nature of the operation and where the operands reside.  A unit such 
as "million instructions per second" (MIPS) implies an average taken over some arbitrary mix of 
instructions.  The best way to determine the average instruction execution rate, denoted r, is through 
benchmarking, using an application program and environment representative of the program whose 
reliability is being predicted. Second best, a "MIPS rating" can be obtained from the computer vendor. 
 
Steps. 
A.  Determine the processor speed, r, in instructions per second. 
 
B.  To compute the number of object instructions I, take the number of executable lines of code and 

multiply by the code expansion ratio, supplied in Table 7-93 (previous page).  Use this table only if 
real project data is not available.  The rationale behind this data is that the relationship between a 
line of code and a machine instruction varies depending on the language.  Also, the relationship 
between a line of code and a function point also vary with language. 

 
 

                                                        
3 ““Backfiring” or Converting Lines of Code Metrics Into Function Points”, Capers Jones, October 6, 1995, 
Software Productivity Research, Burlington, MA. 
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TABLE 7-9.  Code Expansion Ratios 
 

Programming Language Expansion Ratio Mean Source Statements/Function Point 

Basic Assembly 1.0 320 

Macro Assembly 1.5 320 

C 2.5 128 

Interpreted Basic 2.5 128 

2nd Generation language 3.0 107 

Fortran 3.0 107 

ALGOL 3.0 107 

COBOL 3 107 

CMS2 3 107 

JOVIAL 3 107 

Pascal 3.5 91 

3rd Generation language  4.0 80 

PL/I 4.0 80 

Modula 2 4.0 80 

Ada 83 4.5 71 

Prolog 5.0 64 

Lisp 5.0 64 

Forth 5.0 64 

Quick Basic 5.5 58 

C++ 6.0 53 

Ada 9X 6.5 49 

Database Default 8.0 40 

Visual Basic 10.0 32 

APL 10.0 32 

SMALLTALK 15.0 21 

Generators 20.0 16 

Screen Painters 20.0 16 

SQL 27.0 12 

Spreadsheet Default 50.0 6 
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C.  Estimate the fault content ω  by using the prediction techniques in Section 7.2.1, 7.2.3 and 7.2.5. In 
the event that only function points are known, this metric can be converted using Table 7-9. 

 
D.  Calculate the initial failure rate using formula (6.8), 0 i 0i i =  r K / Iλ ω• • . 
  
Example: 
A 20,000-line Ada program is to be developed.  It will execute on a 2-MIPS machine.  Assume six (6) 
defects per KSLOC.  What failure rate can be expected at the beginning of system test? 
 
The number of object instructions is calculated by multiplying the 20,000 executable lines of source 
code by the code expansion ratio for Ada, 4.5, to yield 

The fault content is predicted as 

The initial failure rate is then computed by 

 

I =  (20,000  ) 4.5
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The prediction technique presented thus far relies on the new program’s predicted size and processor 
speed.  Beginning with the requirements analysis phase of software development, product/process 
metrics become available.  These metrics can be used in conjunction with empirically obtained 
prediction models to provide better predictions.  In order to determine the software reliability growth 
model parameters (see Section 7.3.4), the value of ω0 needs to be retained for use during later phases. 
If the projected number of developed source lines of code changes, this value should be updated. 
 
7.2.5 Historical Data Collection.  
The software development organization can collect interval as well as industry wide historical data to 
predict software failure rates.  The accuracy of this method is completely dependent on the availability 
and completeness of the data collected. This method is generally considered to be the most expensive, 
but from an accuracy perspective is preferred.   
 
The collection, storage and analysis of data about the development of the software products as they 
correlate to reliability and failure rate can be invaluable in discovering the relationship between the 
process and the product4. 
 
7.3 Use of Predictions for Project Planning and Control.   
The prediction techniques presented in Section 7.2 can be used for planning and control as described in 
Sections 7.3.2 through 7.3.4 that follow.  There are also other industry metrics used for planning and 
control, described in Section 7.3.1. 
 
7.3.1 RL-TR-92-52 Model.  
This model, discussed in Section 7.2.1 and 7.2.2 and 7.2.3, can be used for planning and control as well 
as for prediction purposes.  This model can be used to obtain relative as well as absolute measures of 
reliability.  For example, the factors in this model that have the widest possible range of values are the 
following: 
 
• Development factor 
• Complexity factor 
• Modularity factor 
• Software Review factors   
 
These factors provide relative improvement values.  They also allow comparisons between projects. 
Cost comparisons can be performed by assessing the improvement in fault density of a more aggressive 
development approach.  
 
7.3.2 The Raleigh Model.  
The Raleigh method discussed in Section 7.2.2 can be used to gauge the defect discovery process. The 
height of this curve is based on the estimated number of inherent faults Er.  The width of this curve is 
based on the accuracy of the milestone scheduling or the effectiveness of the assurance activities at 
each phase.  This curve should be updated in the event that either one of these estimates is updated. 
 
                                                        
4 Software Reliability Handbook, Edited by Paul Rook, Centre for Software Reliability, Elsevier Applied Science, 
London, 1990. 
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7.3.3 Industry Metrics Used.  
Some practical and measurable means of planning and controlling software reliability have been 
developed in industry5.  These metrics can be used to gauge the reliability and/or quality of a project.  
These metrics are shown in Table 7-10. 
 

TABLE 7-10. Using Metrics For Planning and Control 
 

Measure Indicator of Good 
Reliability and/or 
Quality 

Average  Poor 

Low defect potential (defects 
detected during 
development) 

<1 defect per function 
point 

  

High defect removal 
efficiency 

> 95% of all defects are 
removed prior to 
delivery 

  

Stability of requirements < 2.5% change in 
baselined requirements 

  

Achieving explicit 
requirements 

> 97.5 % explicit 
requirements verified 

  

Defects per function point 
experienced after test 

0.06 0.44 0.75 

Productivity 39 function points or 
4250 SLOC per man 
year 

23 function points or 
2500 SLOC per man 
year 

12 function 
points or 
1100 SLOC 
per man year 

 

                                                        
5 “Measuring Global Software Quality”, Software Productivity Research, Capers Jones, Burlington, MA, 1995. 
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TABLE 7-10. Using Metrics For Planning and Control (continued) 
 

Measure Indicator of Good 
Reliability and/or 
Quality 

Average  Poor 

Best case vs. average defect 
potentials in terms of function points 
per phase of life cycle 

Reqs - .20 
Design - .25 
Code - .25 
Doc - .20 
Bad fix - .1 
Total 1.0 defect per 
function point 

Reqs - 1.0 
Design - 1.25 
Code - 1.25 
Doc - 1.0 
Bad fix - .5 
Total 5.0 defect per 
function point 

 

Best case delivered defects per 
function points. 

Reqs - .02 
Design - .0125 
Code - .003 
Doc- .01 
Bad fix - .01 
Total .0560 delivered 
defects per function 
points 

Reqs - .16 
Design - .10 
Code - .024 
Doc- .08 
Bad fix - .08 
Total .444 delivered 
defects per function 
points 

 

Defect Removal Efficiency - Ability 
to remove defects without 
introducing new ones during 
development 

CMM Level 5 - 95% 
CMM Level 4 - 93% 

CMM Level 3 - 91% 
CMM Level 2 - 89% 

CMM 
Level 1- 
85% 

Techniques used to achieve results: • Formal inspections 
• Joint Application Design 
• Quality metrics 
• Removal efficiency measurement 
• Functional metrics 
• Active quality assurance 
• User satisfaction surveys 
• Formal test planning 
• Quality estimation tools 
• Complexity metrics 
• Quality Function Deployment 
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7.3.4 The Musa Reliability Growth Method.  
The failure rate predicted by the prediction technique in Section 7.2.4 is λ0, the failure rate at the start 
of system test.  To determine the failure rate at any time t into system test, the software reliability 
growth model (see Section 8) is employed.  
 
The growth model parameters are β and ν0.  The parameter β is the (expected) decrement in failure 
rate per failure occurrence.  The parameter ν0 is the total failures: the number of failures that must be 
experienced to uncover and remove all faults.  They are obtained from the predicted values of the initial 
failure rate λ0 and fault content ω0.  The fault content is obtained by multiplying the number of 
developed executable lines of code by the fault density. The relationships are given by: 

 

0
0

 =  
B

ν
ω

     (7.3) 

 
where B is the fault reduction factor.  This parameter is sometimes called the defect removal efficiency. 
 
The fault reduction factor parameter should be estimated based on collected project data whenever 
possible.  Suggested defect removal efficiencies for Levels of the CMM are indicated in Table 7-116: 
 

 TABLE 7-11. Suggested Defect Removal Efficiencies for SEI CMM Levels 
 

SEI CMM Levels Removal Efficiency 
SEI CMM 1 
SEI CMM 2 
SEI CMM 3 
SEI CMM 4 
SEI CMM 5 

0.85 
0.89 
0.91 
0.93 
0.95 

 
Performing a software reliability prediction, time-adjusted by the growth model, provides a continuous 
customer-oriented assessment of software quality the end-user can expect to experience if the software 
is released at a given future date. Reliability planning and management are facilitated by use of the 
software reliability growth model, which can be interpreted in different ways to derive various 
quantities of interest.  A few of the more important ones are described here. 
 
The most important parameter is the failure rate (failures/CPU hr.).  A software reliability growth 
model (see 8.4) describes the decline in the software failure rate that occurs during the system growth 

                                                        
6 “Measuring Global Software Quality”, Software Productivity Research, Capers Jones, Burlington, MA, 1995. 

 β
λ
ω

 =  B
0

0

    (7.2) 
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phase as the number of faults in the code declines. Let λ(τ) be the instantaneous failure rate at time t.  
The failure rate at the start of system test is denoted λ0 ≡ λ(0). 
 
Management may be interested in calendar time parameters.  The relationship between calendar time, 
denoted t, and execution time, denoted τ, during system test, is governed by a resource-limiting 
parameter: failure identification personnel (testers), failure resolution personnel (debuggers), or 
computer time.  The calendar time component allows a schedule to be established relating the amount 
of time (in weeks) needed to reach a failure intensity objective.  The method for mapping execution 
time to calendar time is detailed in Section 8.  
 
The software reliability growth model, once its parameters are determined, provides one-to-one 
mappings between any two of the following quantities:  execution time, calendar time, failure rate, and 
expected cumulative number of failures. 
 
7.4 Forecasting Failure Rate Versus Execution Time. 
A reliability growth model can be used to forecast the failure rate the software will exhibit at any time t 
into system test.  A well-known reliability model is the Musa execution time reliability growth formula: 

The function 

will plot as a straight line on semi-log paper.  If the software code is frozen and is operational at time t, 
the software may then exhibit a constant failure rate λ.  The reliability function is then R(τ’) = exp[-λτ’], 
where τ’ is execution time measured from the present. 
 
7.5 Forecasting Cumulative Failures Versus Execution Time. 
A method for predicting the expected cumulative number of software failures that will be experienced 
in system test through time t is given by 

 
See Section 7.3.4 for a discussion of the input parameters to this model. 
 
7.6 Forecasting When a Reliability Objective Will be Met. 
The growth model can answer many useful planning questions.  For example, when will a failure rate 
requirement or some intermediate failure rate objective λF be met?  From the Musa reliability growth 
model, the number of failures that must be experienced to reach that objective is 

 λ τ β ν βτ( ) =  [- ]0 exp  (7.4) 

 ln lnλ τ β ν βτ( ) =   -  0  (7.5) 

 µ τ ν βτ( ) =  (1- [- ])0 exp  (7.6) 

 µ ν
λ
λ

 =  1 -0
F

0





  (7.7) 
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where ν0 is one of the two parameters of the software reliability growth model. The amount of 
execution time to meet that failure rate objective is 

where β is the other growth model parameter. 
 
Steps. 
A.  Predict or estimate the software reliability growth model parameters β and ν0. 

 
B.  Predict or estimate the initial failure rate λ0.  Note that 

 
C.  Determine a failure rate objective λF. 
 
D.  Determine the expected number of software failures that must be experienced from equation (7.7). 

 
E.  Determine the amount of execution time to reach λF using equation (7.8). 
 
 
Example: 
Suppose that the initial failure rate has been predicted to be λ0 = 18 failures per CPU hour.  The 
software reliability growth model parameters have been predicted at ν0 = 139, therefore 

 
 
The expected number of failures that must be experienced to reach λF = 1 failure per CPU hours is 

The execution time required is 

 

 τ
β

λ
λ

 =  
1 0

F

ln  (7.8) 

 0 0 =  λ β ν  (7.9) 

 β
λ
ν

 =   =  
18

139
0

0

  

 µ ν
λ
λ

 =  1-  =  139 1-
1

18
  1310

F

0











 ≈   

 τ =  
1

18 / 139

1

18
  22.317  ln CPU hours≈   
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7.7 Additional Failures and Execution Time to Reach a Reliability Objective. 
The growth model can also estimate the incremental number of failures or amount of execution time to 
get from a present failure rate λP to a failure rate objective λF.  The additional number of failures that 
must be experienced to go from λP to λF is 

See Section 7.3.4 for a discussion of the input parameters to this model. The additional execution time 
∆τ that is required to reach the failure rate objective is 

Steps. 
A.  Start with a present failure rate λP and a failure rate objective λF. 
 
B.  Determine the software reliability growth model parameter β. 
 
C.  Obtain the additional number of failures that must be experienced to go from failure rate λP down 

to failure rate λF, use formula (7.10). 
 
D.  To determine the additional amount of execution time to reach λF, use formula (7.11). 
 
Example: 
Suppose that the present failure rate is λP=22 failures per hour and an intermediate failure rate objective 
is λF=8 failures per hour.  The software reliability growth model parameter β has been estimated at 
0.6. 
 
A.  Obtain the additional number of failures that must be experienced to get from the present failure 

rate λP to the future failure rate objective λF: 

B.  Obtain the additional execution time to get from λP to λF through the formula 

 
Project management generally thinks in terms of calendar time (t) rather than execution time (τ).  
Determining the relationship between the two is described in Section 8.  The quantities derived from 
the prediction and growth models feed back into the software development process to provide 
systematic planning for and control of reliability achievement as a function of calendar time.   

 ∆µ β λ λ =  
1

( - )P F  (7.10) 

 ∆τ β
λ
λ

 =  
1 P

F

ln  (7.11) 

 ∆µ
β λ λ =  
1

( - ) =  
1

0.6
(22 - 8)  23P F ≈   

 ∆τ
β

λ
λ

 =  
1

 =  
1

0.6

22

8
  1.686

P

F

ln ln ≈ hours.  
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Project management can set intermediate reliability goals based on the predicted reliability figure and 
growth rate.  If later predictions show that an intermediate goal is not likely to be met, management 
can re-allocate resources based on comparison between the planned and assessed reliability figures. 
 
An important schedule determinant once the software is in system test is the ratio between execution 
time and calendar time.  This ratio is determined by the limiting resource.  The resources involved in 
system test are failure identification personnel, who perform the testing; failure resolution personnel, 
who debug the programs; and computer time. 
 
If too many failures are experienced, the failure resolution personnel will become backlogged with 
debug work, holding up testing.  If setting up test cases and analyzing the output for failures takes a 
long time, then the failure identification personnel are the limiting resource.  If one category of 
personnel is the limiting resource, then overtime may be an appropriate solution.  It is important to 
remember that the management decisions are based on the achievable reliability. 
 
7.8 Optimum Release Time. 
There are methods available for predicting the optimal release time. Table 7-12 summarizes these 
methods: 
 

TABLE 7-12. Methods For Predicting Optimal Release Time 
 

Method Description 
Musa model Based on software reliability growth. 
Process Productivity Parameter7 Developed by Quantitative Software 

Management, Inc. Can predict optimal release 
time based on current productivity, effort and size 
of product. 

COCOMO model8 Developed by Barry Boehm.  Based on size, 
schedule time and effort as well as some product 
and development characteristics. 

 
 
The Musa software reliability growth model discussed previously can be used to determine the 
optimum release time for minimizing overall cost.  Each failure during development entails a cost c1.  
 
Each failure in operational use entails a cost c2 (the failure costs can be broken out by failure severity 
category).  Additionally, there is a cost c3 for each time unit of system test. The total cost of system test 
can be computed as follows:   
 
If the software is hypothetically released at time te, the cost attributed to system test failures is 

                                                        
7  “Measures for Excellence”, Larry Putnam, Ware Myers, Quantitative Software Management, Yourdon Press, 
Englewood Cliffs, NJ, 1992. 
8 “Software Engineering Economics”, Boehm, Barry, Prentice Hall, Englewood Cliffs, NJ, 1981. 
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The cost incurred by failures during operation is 

where y is the number of time units of operation.  The cost incurred by system test is 

The total cost when the software is released at time te is the sum of the three costs: 

The optimum time to release the software, from a pure cost point of view, is found by minimizing the 
function D(te). 
 

 
Steps. 
A.  Based on labor, overhead, and related expenses, determine the cost per failure c1 for failures that 

occur during system test, as well as the cost per unit of execution time, c3. 
 
B.  Based on program maintenance, service impact, and related expenses, determine the cost per 

failure c2 for failures that occur during operational use.  Determine the operational life of the 
system, y. 

 
C.  From prediction or growth testing, determine the software growth model parameters β and ν0. 
 
D.  Compute the minimum-cost release time using equation (7.16) 
 

 1 e 1 eD ( ) =  c   ( )τ µ τ•  (7.12) 

 2 e e 2D ( ) =  y  ( )  cτ λ τ• •  (7.13) 

 3 e e 3D ( ) =    cτ τ •  (7.14) 

 D( ) =  D ( ) +  D ( ) +  D ( )e 1 e 2 e 3 eτ τ τ τ  (7.15) 

 ( )  =  

yc - c

c
e

2
2

0 1 0

3τ

β ν β ν

βmin

ln
 (7.16) 
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Example: 
Suppose that the cost of a failure during system test is c1 = $1000, and that the cost of a failure during 
operation is $6000. Each day of system test costs $4500.  The growth model parameters are 

Using the day as the unit of time, the minimum-cost release point is 

 
7.9 Ultra High Reliability Prediction. 
It is essential to consider achievability and testability when predicting reliability for software systems 
that must be relatively high.  Demands for perfection should be avoided as they are not testable or 
demonstrable. For example, if the demand for the failure rate is 10-4 then there must be sufficient 
resources for extensive validation and verification to demonstrate this level. The current state of the art 
is limited in providing any help in assessing the software reliability at this level.  
 
Techniques such as Formal Methods9 are currently being used by software organizations 
developing ultra high reliability systems.  Refer to the Appendix of this notebook for more 
information on ultra high reliability prediction. 
 

                                                        
9 Refer to “Software Engineering A European Perspective”, Richard Thayer and Andrew McGettrick, IEEE 
Computer Society Press, Los Alamitocs, CA, 1992, as well as “The Cleanroom Approach to Quality Software 
Development” by Michael Dyer, John Wiley & Sons, Inc, NY, 1992. 
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