4.0 OVERVIEW

Reiahility assurance of combined hardware and software systems requires implementation of a
thorough, integrated set of reliability modeling, allocation, prediction, estimation and test tasks. These
tasks allow on-going evauation of the rdiability of system, subsystem and lower-tier designs. The
results of these analyses are used to assess the relative merit of competing design dternatives, to
evauate the rdiability progress of the desgn program, and to measure the fina, achieved product
reliability through demonstration testing.

At each step in the design-evauate-design process, the metrics used to predict product reliability
provide a mechanism for atota quality management system to provide ongoing control and refinement
of the design process.

Table 4-1 provides a summary of the anayss and test tasks for both hardware and software that
provide rdiability gods, predictions, and assessments. Fgure 4-1 illustrates an overview of the
interrelationships between these tasks.

4.1 System Rédliability Prediction and Estimation Program.

The rdiability prediction and estimation program for systems which combine both hardware and
software eements must be composed of a complementary set of hardware and software tasks for
religbility modeling, redliability alocation, rdiability prediction, rdiability growth testing, and reiability
qudification testing. Each of the complementary tasks should support system level tasks which
combine the results of the individual hardware and software tasks and alow assessment of the overall
system reiahility performance.

4.1.1 Syssem Modeling.

System modeling provides a functional representation of the syssem under andyss. An accurate
system model provides a mechanism for dl reiability analyses performed. System rdliability modeling
for hardware and software system is an evauation of the dependency between system services and the
various hardware elements and their associated software processes. The system model is developed as
an iterative process of decomposing the dependencies within the various system structurd elements. As
appropriate to the size and complexity of the system being analyzed, the system is first decomposed
into a reiability block diagram showing the dependency between the subsystems and the system
services required for a given misson or mode of operation.

4-1

TABLE 4-1. Rdiahility Prediction and Estimeation Tasks

PREDICTION AND APPLIES
ESTIMATION TO REMARKS
PROGRAM TASK
HW | SW
Operationa Profile Development X X Operationd profile development is
represented in Sections 6 and 9 of this
notebook.
Reliability X X Reliability modeling for HW/SW
Modeling systemsis presented in Section 5. of this
notebook
Reiability X X SW Allocation Procedures are provided
Allocation in 6 of this notebook
Reiability X X Procedures for SW reliability prediction
Prediction at each phase of SW development are
givenin7
Environmental Stress Screening X - A SW equivaent of
HW stress screening
isnot defined
Reiability X X Procedures for use in estimating the time
Development/ and resource impact of needed SW
Growth religbility growth are provided in 8
Tegting
Reiability X X Both hardware and software are
Qudlification assumed to have exponentialy
Tedting distributed failure rates
Production X X Software reliability testing can be
Reiability performed from the system level using
Acceptance these techniques
Tedting
FRACAS X X Effective hardware and software
FRACAS programs are needed to deter
recurrence of observed fault classes

4-2

System '| Hardware | | Hardware |'| Hardware |!'| Fabrication | '| HWCITest | System
Requirements | | | Requirements |! | Preliminary | | | Detailed |! ! ! | Integration
Analysisand | || Analysis |, Design | Design | | | and Test

Design l l l l l l

i AH Prog am Review Board Af:tivity | Q
: : | | | I
| | | | | Reassign Resources
| | | | | v !
i i Design Correction i i ‘ HW/SW Growth Testing b»
l Reallocation Needed | l | 1 1
| ReDesign Activity Q‘ 1 1
| | Not OK Evaluate Growth
i : ‘) Progress Evaluation Q‘
| | | | Hwisw
System System HW/ | || System HW/ HW/SW | } .| Demo Test
Reliability SW ¥ SWReliability | || Reliability | |
Model | ; ‘ | | Evaluate
; ; ; ; ; ; Results
l L Design Activit ‘ 1
‘ N g 4 Q 1| Assessment Assessment
l l 1 1 | Report Report
: : : : To Prograr‘n Manager To Prograr‘n Manager
: : : : and Engineering Manager and Engneering manager
'l Software |/ | Software |!| Software Coding csc !
' |Requirements || | Preliminary | | | Detailed and Unit | | Integration ‘
'l Analysis | Design ! Design Test Test CSClI Test

FIGURE 4-1. System Reliability Tasks

Each of the subsystems is modeled as a series of discrete and, if applicable, redundant hardware and
hardware/software dements. This process is continued until the system mode is detailed enough for
individual hardware equipment to be identified, including those hardware elements which host software
processes. Detailed models of the individud hardware elements that do not host software can then be
developed in accordance with established reiability techniques. Réeliability models for those hardware
elements which hogt software must be developed next.

For those cases where redundant equipment for hardware/software eements is supplied, the reliability
mode developed will depend on the exact method used to implement fault detection and recovery.

Section 5 provides an overview of gpproaches to developing these models. For those cases where a
single equipment with software is used, each hardware/software element is decomposed to the modd
shown in Figure 4-2. As shown in the figure, a single hardware/software eement decomposes into a
religbility block diagram which conssts of a hardware block and a software block in series. This model
assumes that each of the items is independent.

- —Software Configuration ltem— — — —

| |

| |

| |

Hardware | Non- Newly |
Configuration i » Developmental » Developed \
ltem ‘ Software Software ‘

| |

| |

| |
S

FIGURE 4-2. Rdiahility Modd for HW/SW Element

The software block of the hardware/software element then decomposesinto a set of software elements:
non-developmental software (NDS) which includes the operating system, and newly developed
software. At least one of these types of software will exist in a specific model. When software failure
rates are exponential and independent, the failure rates for the software can be added directly to the
fallure rates for the hardware. However, the falure rates for the software elements of the syssem must
be expressed with respect to system operating time.

4-4

Though the process for modeling software reiability, in terms of tasks, is Smilar to that for modeling

hardware reliability, there is one major difference between them that needs to be recognized. Software

systems are composed of Computer Software Configuration Items (CSCls) which are generdly
independent software programs associated with Hardware Configuration Items. These CSCI's are
composed of Computer Software Units (CSUs) that perform some given software function. Even
when these CSUs are implemented to be as independent from each other in terms of processing and
data as much as possible, the units themselves will never be independent and cannot be considered to
have independent failure rates.

The operational profile provides the foundation of software reliability assessmentis the
operational profile that determines unit utilization and how often one or more units will cause a failure.
The units themselves do not experience failures due to temperature, vibration, etc. Therefore, even
though the failure rate of the top level CSCI's can be modeled, it is impractical to model failure rates
for individual units. Figure 4-3 illustrates this. As an alternative to modeéog part failure rates for
software CSUs the operational profile should be modeled instead.

Program
CSCI CSCI CSCI
CSUs CSUs 4 CSUs
Data and processing not independent at CSU level even with
modular or object oriented design

FIGURE 4-3. Dependency of Software CSUs

45

The following are some examples of hardware/software systems.

Hardware/Software Example 1:

Figure 4-4 illustrates the Hardware/Software (HW/SW) reliability model structure for an
automobile Anti-lock Braking System (ABS). In its simplest form, the system consists of the
brakes, sensors and actuators to control the applied brake pressure, and a smart system for
controlling the rapid application and release of pressure many times per second. This system
contains both hardware and software elements. The software in this scenario is stored on a
hardware device called a Programmable Read-Only Memory (PROM) chip. A reliability analysis
should take into account the individual elements of this hardware/software system.

Braes | | Dedision Controls

HW Subsystem PROM | g Aspgfl tl fvitri on

Pressure . FWSbysen SWSbysem

Sensors — i 3

HW Subsystem e i
HW/SW Subsystem

FIGURE 4-4. Block Diagram for Automobile ABS

Hardware/Software Example 2:

Figure 4-5 illustrates some of the elements on a missile guidance system. The Inertia
Measurement Unit (IMU) and Inertial Navigation System (INS) are hardware-only components.
The mission computer, however, contains both hardware and software elements. In this example
the Operating System (OS) software is operating continuously while the application software only
operates when it is commanded to do so. These time factors must be accounted for in the
reliability analysis.

Inetid | Mmission Computer |

Meazu@ment | '~ Guidance Kit Software |

nit ! : - \

HW Subsystem | Central : Operating Application | }

—‘u> Processing — Sysem [Software ; |

| Unit ; Software 1 |

Inertial | HW Subsystem . SW Subsystem SW Subsystem |

Navigation — ' |

System o l
HW Subsystem HW/SW Subsystem

FIGURE 4-5. Block Diagram for Missile Guidance System

46

Hardware/Software Example 3:

A third and final example of combined hardware/software systems is shown in Figure 4-6. This
graphic represents a gateway server which feeds data from three types of workstations to external
users. Each subsystem is composed of both hardware and software elements. The server is the
only subsystem which operates continuously. The others are idle until called on for data.

L
| DOS Workstation : pos software :
! Centrd Operaing Application | !
| Processing | ! System | Software | I
| Unit 3 Software ; ‘ >
| HW Subsystem . SW Subsystem SW Subsystem I
e

HW/SW Subsystem
o oo oo oo noooo o e T LI
| Windows Station windows Software : : ! NonStop Server server Software : :
| Cenrd : Operding Application | : | | Centrd f Operaling Application | : |
| Processing | — | System | Software | —_— Processing | — | System | Software | I
! Unit 3 Software : : ! Unit 3 Software : :
| HW Subsystem . SW Subsystem SW Subsystem I | HW Subsystem . SW Subsystem SW Subsystem I
\ Y : <Y Y : | | . : !
L L

HW/SW Subsystem HW/SW Subsystem

L
: UNIX Workstation " UNIX Software :
! Centrdl Operating Application | !
| Processing | gt System P ootivare | |
: Unit 3 Software : —
| HW Subsystem . SW Subsystem SW Subsystem |

. |
e

HW/SW Subsystem

FIGURE 4-6. Block Diagram for Gateway Server System

4.1.2 System Réiahility Allocation.

System reliability alocation is the process of dlocating the specified system rdiability goals or goa
metrics (MTBF, MTTF, etc.) to each subsystem or area, hardware eement, and hardware/software
element in the system. This allocation process is iterative in nature as knowledge of achievable failure
rates is not aways available. These reliability allocations are based on the system reliability modd,
which must be developed prior to attempting to alocate metrics from the specification to lower tier
elements. The best available method for dlocation pertainsto the system.

At the leve of the hardware/software elements, rdiability alocations are decomposed to apportion the
relevant metrics between the hardware dement and the software which executes on the specific
hardware configuration item. The best available method, asit pertainsto the system, should be used to
balance the dlocations to each eement of the sysem. Section 6 describes some of these methods.
Allocations should be performed at the system level and include not only reliability but other design
parameters as well.

4-7

Typicdly, the achievable failure rates for the hardware and software eements of the system will be
needed to obtain allocated reiability vaues for each syssem element which is achievable and ill
supportsthe system leve reliability requirements.

The initid alocation is successvely refined to take into account the achievable failure rate for the
hardware and software elements as these become better defined and their failure rates are estimated.
The high levd dlocation is modified while maintaining the overal system godl.

Methods for obtaining rdliability estimates for system hardware are well documented and discussed in
Sections 4.2.2 and 4.2.3, below. Estimates of the software failure rate which is achievable can be
obtained using the methods discussed in Section 4.3.3 and the procedures provided in Section 7 of this
notebook.

4.1.3 System Reliability Prediction.

System reliahility predictions are used to assess overall design progress toward achieving the specified
system reliability. Reliability predictions and estimates for the various sysem hardware elements
(Section 4.2.3) and software elements (Section 4.3.3) are combined using a syssem modd. The
resultant reliability calculation is then compared againgt the specified system requirement to determine
whether the current system design achieves the specified reliability. If the current design falls to
achieve the needed system rdiability within a specified level of confidence, appropriate corrective
action should be implemented.

4.1.4 System Rédiahility Growth.

System reliability growth congsts of a combination of hardware and software religbility growth. The
hardware and software growth estimates are combined, using the system reliability model, and used to
estimate system reliability growth over time. Projections of hardware religbility growth and software
reliability growth are based on independent growth curves. Hardware and software growth tests are
conducted either:

1. separately with the results combined using the system reliability model, or
2. together with hardware and software failures identified in one test and combined using the system
reliability model.

Usudly, conducting separate test, analyze, and fix procedures may be appropriate since different
engineering groups are often assigned to the development of hardware and software system elements.

However, conducting concurrent hardware and software growth testing in a system test is not
precluded and may be advantageous in congderation of cost and schedule. In this case, both hardware
and software failures are identified in one test. When both hardware and software religbility growth
testing are required on a program, a system level reliability growth test plan discussing all aspects of the
planned growth testing and the methods to be used in estimating and reporting system reliability
growth should be prepared.

48

4.1.5 System Reliability Qualification Testing.

System reliability qualification testing for hardware/software systems is performed in accordance with
religbility demongtration testing techniques currently used in industry. The failure rates for hardware
and software are assumed to be constant with an exponential growth alowing use of test methods for a
combined test of the hardware and software elements of the system. Software is exercised during
Forma Qudification Testing in a manner that represents its operationa profile. Ensuring an
appropriate environment for reliability testing is discussed in Sections 4.3.6 and 8 of this notebook.

4.1.6 System-L evel Failure Reporting and Corrective Action Systems (FRACAS).

A FRACAS should exigt for both hardware and software development. Many times the FRACAS
programs are separate for software and hardware because different departments within an organization
are respongible for development, failure reporting, correcting and analyzing software and hardware.

A software FRACAS is implemented in a Smilar manner to a hardware FRACAS. Software failure
events are reported, reviewed, corrected and analyzed in much the same way as hardware failures. For
software, the analyss process conssts of identifying the most common software failure modes and
implementing defect prevention on these modes.

A sysem-level FRACAS should be ingtituted as a part of the reliability assurance and control program
for a combined HW/SW system. The system-level FRACAS activity should support resolution of
those problems which cannot readily be assigned to either hardware or software causes. Additionally,
asysem-level FRACAS activity to track and assess the results of the hardware and software FRACAS
activities can provide a resource for ensuring that the results of al observed failures are available for
use within system safety programs.

4.2 Hardware Rdliahility Prediction and Estimation Program.

Rédiahility allocation, prediction, and testing techniques for electronic hardware have been thoroughly
investigated and have existing procedures documented within the industry literature. The addition of
software to electronic hardware does not change the expected rate of hardware physical failures. The
handbooks that are in use remain applicable to the design of eectronic hardware that provides a
platform for software execution. One example of an industry handbook is Mil-Hdbk-217, Religbility
Prediction of Electronic Equipment.

4.2.1 Hardware Reliability Modeling.

Hardware reiability modeling supports system and hardware reliability estimation, and provides abasis
for the dlocation of rdiability goas to individual hardware dements. Reliability modeling for the
hardware elements in systems that use both hardware and software is the same as for systems which
congst of hardware only. Once system level modeling has decomposed the combined HW/SW system
into hardware elements and software eements, genera rdiability techniques may be used directly to
modd any individual hardware elements, including those which execute software.

49

Section 4.1.1 provides an overview of the system modeling process that results in the decomposition of
the system into individual hardware and software elements.

4.2.2 Hardware Rdliability Allocation.

Allocated reliability goals are assigned to each hardware element and lower-tiered indenture item on
the basis of user selected criteria such as criticaity or complexity. The system reliability specification
vaue which was alocated between the various subsystems and elements as a part of the system
religbility allocation process is further divided into religbility alocations for lower indenture hardware
elements.

Generdly, the reliability allocation given to non-developmental hardware is based on the item's
previoudy observed reliability. Reliability alocations internal to non-developmental equipment are not
generdly needed. Rdiability dlocations to hardware being desgned as a part of the sysem
development process are usudly based on a combination of the system requirements, the reiability
performance of previous generations of smilar equipment, and the overal criticality or complexity of
the hardware device. Allocations of reliability goas for lower indenture circuit cards and modules are
generdly provided for developmenta hardware. The dlocation of reliability goas to hardware
elements proceeds in exactly the same manner for hardware systems that host software processes as for
hardware that does not host executable software.

4.2.3 Hardware Rdliability Prediction.

In order of precedence, hardware reiability predictions are based on 1) known field performance of the
same equipment produced during previous production, 2) reliability demongtration test results, 3)
religbility test, analyze, and fix (TAAF) or other reliability growth testing results, or 4) MTTF estimates
obtained using industry available prediction methods.

Hardware reliability predictions for hardware systems that host software processes proceed in the same
manner as the predictions for hardware that does not host software. For hardware which hosts
software, however, the hardware prediction results must be combined with the software reiability
prediction results using the sysstem model to obtain predictions of the overal system reliability.

4.2.4 Hardware Rdliability Growth.

Hardware rdiability growth programs, in the form of atest, analyze and fix process, are often used to
ensure the design rdiability of newly developed hardware prior to either reliability demongtration
testing or release to the field for use.

4.2.5 Hardware Reliability Quaification Testing.

Detailed procedures, including measurement criteria and environmental criteria, for hardware
demonstration testing are available in industry handbooks, including MIL-HDBK-781, Rdliability Test
Methods, Plans, and Environments for Engineering Development, Qualification, and Production.

4-10

4.2.6 Hardware FRACAS.

The procedures should be applied to al hardware which isa part of acombined hardware and software
system. The hardware FRACAS program for equipment which is a part of a combined hardware and
software system needs to be carefully tailored to support the sysem FRACAS activity, alowing the
results of both hardware and software FRACAS activities to be combined.

The hardware FRACAS program is generally established as a standalone program that provides
information to the syssem FRACAS program in recognition that different organizationa entities are
usually assigned to the hardware and software designs. The hardware and software FRACAS efforts
will need to coordinate with different design teams to resolve ongoing problems and corrective action
recommendations. Also, the composition of the failure review boards needed for software failures is
likely to be significantly different from that needed for hardware failures as there are different personnel
required to analyze the software failures.

4.3 Software Reliahility Prediction And Estimation Program.

The tasks required for the prediction, evaluation, and estimation of software reliability have been
presented in Table 4-1 and Figure 4-1. The software religbility prediction and estimation tasks comprise
four fundamenta conceptual tasks:

Establishment of reiability goas for software elements through modeling and allocation
Estimation of software design reliability through the software reiability prediction process
Software religbility growth through operationa profile testing, and

Evaluation of the achieved software réiability through Formal Qudlification Testing.

AW PRE

Rdiability modeling supports the alocation of reliability requirements to software, software operational
profiles and hardware elements. Reliability modeling also supports assessment of system and software
reliability predictions against specified reliability goas at the system level.

Software religbility requirements should be alocated to functional or operationd profiles as opposed to
software components. This method is used because software components fail as a result of a specific
functional or operationa profile (input states) and not as a result of an inherent characteristic (such as
wear out).

Software reliability prediction is performed at each phase of the software development process up to
software system test. Product and process metrics applicable to the gods of the project are collected
and used to predict the fallure rate that the software will exhibit at the beginning of system test and at
deployment. The fallure rate prediction is then used to estimate the duration of, and assurance
resources required for, the reliability growth testing, which will be needed to achieve the dlocated
software reliability. 1t should be noted that being able to predict an initia failure rate with any degree
of confidence requires well documented historical data based on smilar applications.

The testing duration and resource requirements are then compared against program schedule and
resource plans to evauate the feashility of achieving the allocated software rdliability. If the alocated

4-11

software reliability is achievable within planned schedule and resource congraints, no preliminary
action is necessary. If achieving the dlocated reiability will result in an unplanned impact to program
schedule and resources, one of three decisonsis possible:

1. Reassignment of needed resourcesif theimpact is tolerably small,

2. Redlocation of software reliability goas if other elements of the system are achieving beyond their
alocated requirements by a sufficient margin, or

3. Design corrective action

Design corrective actions may include structura changes in the system interrelationships as shown in
the reliability modedling. Design changes that result in a more robust design may alow redllocation of
system reiability requirements into lower-tiered software goas that are more achievable.

As a part of the software reliability prediction process, a report providing an assessment of the degree
of compliance of the software being developed should be provided to the program and software
engineering managers. Thisreport should contain:

1. Allocated religbility requirements
2. Potentia program impact of any additiond reliability growth testing that may be needed

This ensures that any program impacts are identified and controlled. Procedures for software reliability
prediction are provided within this notebook as a part of Section 7. An overview and discussion of the
software reliability prediction processis provided in Section 4.3.3.

Software reliability evaluation testing consists of reliability growth testing and acceptance and stress
testing. These tests continuoudy evauate and improve the reliability of the software product.
Rdiability qualification testing certifies for acceptance the final achieved tested software reigbility.

Software reliability growth testing is a process of operation (test), failure occurrence, fault isolation,
and software modification to iminate recurrence of the same and smilar falures. This continuous
test, analyze, and fix procedure is coupled with an ongoing evaluation of the software reliability for rate
of growth and current value. The software reliability growth testing continues until models show that
the software falure rate has achieved its dlocated requirement.

Once the reliability growth testing indicates that the software has achieved the needed maturity, the
software can be subjected to rdiability qualification testing either for just the software element or asan
integral part of acombined hardware/software system.

Rdiability qudification testing for software is based on statistical test plans using failure free intervals.
Both hardware and software have requirements that must be placed on their test environment to ensure
that the testing adequately smulates field usage. An overview and discusson of software reiability
growth and qudlification testing is provided in Section 4.3.5 and Section 4.3.6 of this notebook.

4-12

Procedures for evaluating software reiability growth and salecting appropriate input environments are
provided in Section 8.

4.3.1 Software Reliability Modeling.

Rdiability modeling of system software eements is similar in gpproach to the modeling performed for
the overall system and for the hardware elements with subtle differences. Combining software failure
rates to caculate an overdl failure rate for the software introduces complexity not normally associated
with combining hardware failure rates. As shown previoudy in Figure 4-2, the executing software can
be decomposed into two separate types of software elements; re-used application software, and newly
developed application software.

The Operating System (OS) or executive is unique in that it operates continuously, on an interrupt
driven basis with the application program, monitoring system operation and providing control of and
access to processor resources for al executing processes. Thus, the falure rate of the OS is
conveniently measured in failures per machine operating hour which is directly compatible with
hardware failure rates. When the OS being used is a purchased product, acceptance testing should be
implemented on the OS to determine if it meets the reliability level that the supplier claims.

The failure rate for reused software should be obtained from previous use(s) of the software if possible.

It should be noted that fallure rates of reused software components are applicable only when the
component’s historical operational profile is consistent with its intended operational profile. If the
reused software is being used in an environment which is substantially different from its previous
environment, it must be tested in the same way as newly developed software to determine reliability
values. Care should be used to ensure that the failure rate for re-used code obtained from a previous
use is either expressed in or converted to a rate expressed in failures per system operating hour for
compatibility with hardware failure rates.

The operational profile is essential for modeling software reliability. Its development consists of the
customer, user, system mode, functional and operational profiles. Section 9 discusses modeling of
operational profiles.

4.3.2 Software Reliability Allocation

Software reliability allocation involves the establishment of reliability goals for individual CSCls based
on a top-level reliability requirement for all software. It is a crucial early program activity that
establishes the criteria for evaluating the achieved reliability of elements of the design. As shown in
Table 4-2 five initial allocation procedures and a reallocation procedure are provided in Section 6 of
this notebook. These procedures allow allocations to be made based on the type of execution
expected, sequential or concurrent, or on the basis of operational profile, operational criticality, or
achievable failure rates.

Two equal-apportionment allocation procedures have been provided. Procedure 6.3-1 provides equal
apportionment between software elements for sequentially executing software. Procedure 6.3-2
provides equal apportionment among software elements for concurrently executing software. These

4-13

equal apportionment alocation procedures are designed for use during proposals and early design
phases when very little is known about the relative sizes, complexity, or criticdity of the software being
designed.

TABLE 4-2. Software Rdiahility Allocation Procedures

Procedure # Procedure Name Use Description

6.3-1 Equal apportionment Use early in the SW development
applied to sequentia process when the software
software components components are executed sequentialy

6.3-2 Equal apportionment Use early in the SW development
applied to concurrent process and the software components
software components are executed concurrently

6.3-3 Mission or Operationd Profile | Use when the operationd profile of the
Allocation CSClsare known

6.3-4 Allocation based on operational | Use when the operationd criticality
criticality factors characterigtics of the softwareis

known

6.3-5 Allocation based on complexity | Use when the complexity factors of the
factors software components are known

6.3-6 Allocation based on achievable | Use when CSCI utilization varies
falurerates sgnificantly

6.3-7 Re-dlocation based on Use to re-balance the SW rdliability
predicted failure rates dlocations

A re-allocation procedure is provided to alow balancing allocated values as more software design
information becomes available. Re-dlocation between the various software elements of a design is
expected to be required early in the design process as the software design develops.

4.3.3 Software Reliability Prediction.
Software rdiability prediction is performed to help forecast, in conjunction with the software rdiability
growth model, the expected end-user reliability.

Historical data is essentia in predicting software reliability. Any failure data that can be collected on
previous projects with a smilar gpplication and/or smilar operationa profiles should be collected first
when making a prediction. In the event that historical data is not available, a prediction must be made
based on the best available fallure data. This may be failure data from smilar or previous products

4-14

developed by the same organization. Along with the predictions, a confidence level should be
determined, highlighting the risk associated with predicted values.

Software rdiability predictions are made during the software development phases that precede
software system test, and are available in time to feed back into the software development process.
The predictions are based on measurable characteristics of the software development process and the
products produced by that process.

Figure 4-7 shows the software reliability prediction process. Product and process metrics are collected
and used to predict the initid failure rate and fault content. From these quantities, the rdliability growth
modd parameters are predicted, then the growth model is used to obtain estimates of the test time and
resources needed to meet reliability objectives.

Up through the requirements analysis phase, the software reliability prediction can be made on the basis
of primitive characteristics of the software such as estimated size and processor speed. There are
techniques that measure other characteristics such as development methods, tools and organization.

During the preliminary design phase through the CSCI testing phase, product/process metrics are used
for prediction. As development proceeds, more and more metrics become available, and metrics that
were available before are updated. The predictions become more accurate and meaningful as system
test is approached. Once system test begins, the metrics are replaced with actud failure data and can
be used to atigticaly estimate the values of the growth moded parameters.

Fault Content
b
Histarical Predict
an . Metric Predict Initial Growth Estirnated tirme
— I . Al
Collect Data currert | Use Metrics Values | Failure Rate ® Model and resources
deta Parameters

FIGURE 4-7. Software Rdliahility Prediction Procedure

Since the failure rate of the software changes over time as the software is modified to correct faults, the
prediction procedures contained in Section 7 provide vaues for the parameters of a software reiability
growth modd. A rdliability growth model can be used to forecast what the failurerate A(1) will be
at any time T into systemted.

Conversdly, a growth modd can be used to forecast when a particular failure rate objective will be
reached. The amount of execution time to reach an objective can be trandated into calendar time for
schedule and resource estimates. Rdliability progressis evaluated as a part of the prediction process.

4-15

Note: The software religbility prediction models contained in this notebook were the best known
available ones at the time it was written. These methods are helpful, but they are by no means proven
or final. The user of this notebook is encouraged to establish their own software rdliability prediction
procedures which may be more relevant to their specific application or development.

An assessment report detailing the reiability progress to date against established goals and potential
schedule and resource impacts should be prepared and delivered to the Program Manager and
Software Engineering Manager. These reports should be delivered at milestones representing the end
of each development activity such as andlysis, design, code, system test and at the end of any forma
review.

If the reported progress is unacceptable, a Program Review Board can be informed. The board can
then determine whether design correction or re-alocation is needed to meet the specified reiability
requirements in atimely, cost-effective manner.

4.3.4 Software Metrics Collection.

Software metrics are measurable characteristics of the software development process and the products
of that process. The specific objective of collecting the metrics described here is to alow software
reliability to be predicted during the software life cycle phases preceding system test. There are five
prediction techniques presented in this notebook. Each of these techniques predicts a fault parameter
that can be used to predict or gauge falure rate. Table 4-3 provides a mapping between the software
metrics and the phases during which they are used in the prediction process.

Rome Laboratory TR-92-52, “Software Reliability Measurement and Test Integration Techniques,”
contains a method for predicting software reliability summarized in Table 4-3. This method requires
that a fault density parameter in terms of faults per KSLOC is predicted. The fault density parameter
can then be translated to a failure rate by using a default table, collecting data or using historical data.
The total estimated number of inherent defects at delivery can also be predicted by multiplying the fault
density by the total number of KSLOC.

These metrics are not available all at once. Different metrics become available during each life cycle
phase. Metrics that were previously available become updated as work products evolve. Depending on
the development phase (proposal through CSCI testing) during which the prediction is made, some
subset of the metrics will be available. The metrics available desicly phase enter into a software
reliability prediction model associated with that phase, as described in Section 7. The metrics are
collected separately for each CSCI.

4-16

TABLE 4-3. Software Rdiability Prediction Factors

Factor Measure Phase data collected

RL-TR-92-52 Software Defects per Source Lines of Concept through coding

Reliability Measurement and | Code

Ted Integration Techniques

Application Empirical difficulty factor in Concept through analysis
developing various application
types

Development organization Development organization, Concept through design
methods, tools, techniques,
documentation

Software anomaly management | Indication of fault tolerant Design, code and unit test
design

Software traceability Traceability of design and code | Design, code and unit test
to requirements

Software quality Adherenceto coding ssandards | Design, code and unit test

Software language Normalizes fault density by Code and unit test
language type

Software complexity Unit complexity Code and unit test

Software modularity Unit sze Code and unit test

Software slandards review Compliance with design rules Code and unit test

Raleigh Modd Profile of faults detected over From start of design through
thelife cycle delivery

Industry Data Defects per function points Anytime from concept through

delivery

M usa Execution M odé Failurerate a the start of system | From concept though the start

testing of systemtesting

Higorical Data

Process and product correlation
to previous failure history

Life-cycle data from previous
projects within the organization.

The Raleigh' mode predicts distribution of defects over the life cycle of the software. Thisfault profile
is used to gauge the defect removal process. This method can and should be used in conjunction with
other methods for predicting the total number of inherent or latent defects.

Industry data can be used to predict defects per function points. Using historical data collected from
previous projects, or by usng the Musa execution time model discussed next, a converson ratio
between fault density and failure rate can be determined. The tota predicted defects at delivery can be
predicted by multiplying this defect density by function points.

! “Measures for Excellence”, Larry Putnam, Ware Myers, Quantitative Software Management, Yourdon Press,

Englewood Cliffs, NJ, 1992.

4-17

The Musa execution time model can be used to predict the initid failure rate, or the failure rate a the
start of system testing. It can be used done or in conjunction with the other prediction models.

4.3.5 Software Reliability Growth Testing.

Software reliability growth testing takes place during the software system test phase, after the software
has been fully integrated. During growth testing, the software is executed in an environment with
inputs that most closaly simulate the way the software is expected to be used in the field. In particular,
the inputs are randomly selected in accordance with the software’s operational profile.

The quality of testing is directly related to reliability growth and is a function of various system level
tests that validate the software from more than one perspective. System tests can validate domains,
paths, states, transaction flow, error handling, etc. The quality of testing is aso related to testing the
functionality that is executed most often by end user, most critical to end user, and most error prone.

An operationa profile associates each input state or end-user function with a probability of occurrence.
Testing according to the operationd profile is efficient with respect to falure intensty reduction,
because it reveds those faults that the user is most likely to encounter in use, those faults that
contribute most to the program failure rate. When a falure is observed, the execution time, among
other information, is recorded. The observed fallure times are used as input to a statistical estimation
technique that determines the parameters of the software rdiability growth modd. This way, the
current reliability can be measured and the future reliability can be forecasted. Figure 4-8 depicts a
failureintensity curve.

Failure Rate (A)

Execution Time (t)

FIGURE 4-8. Software Failure Intensity Curve

Software rdiability growth testing assumes that faults exist in the software and they will be uncovered
during execution to produce software failures. As testing proceeds, failures will occur, the faults
underlying the failures are identified and removed, the system is recompiled, and new input states are
selected randomly from the operationa profile. As software faults are removed, the falure intensity

4-18

should decrease over time. This should continue until enough faults have been removed from the
system to meet reliability goals.

Resource Usage. A software program that is not executing cannot fail. Thus, the growth model
selected expresses its basic results with respect to execution time. Since project managers and
software engineers may think in terms of calendar time, some growth models contain a component
that addresses the relationship between execution time and caendar time by focusing on resource
usage rates.

Three primary resources are involved in system test: failure identification personnel, failure resolution
personndl, and computer time. Failure identification personnd are the testers, the people who run test
cases and detect the occurrence of failures. Failure resolution personne are the debuggers, the people
who isolate and remove the faults that cause the failures.

The expenditure of failure identification personnel resource and failure resolution resource are each
modeled as having a cost per unit of execution time and a cost per fallure experienced. At any time,
one of the three resources will be the limiting resource that determines the ratio of calendar time to
execution time. Testing can only be accelerated by adding more of the limiting resource.

In addition to religbility assessment, another benefit of growth testing is that the debugging activity
after each failure occurrence will result in fault remova. Debugging is many times imperfect. The
occurrence of one falure does not guarantee the immediate remova of one fault. Sometimes new
faults are inadvertently introduced during the repair activity. Sometimes multiple, related faults are
removed at once. Sometimes the causative fault behind a failure is not found. Over the long run, the
reliability of reasonably maintainable software improves as growth testing continues. Section 8 of this
notebook provides a detailed discusson and specific procedures for software religbility growth testing.

4.3.6 Software Religbility Qualification Testing.

Rdiability qualification testing is performed toward the end of system te<t. Its purpose is to prove with
a specified gatistical confidence that the software meets the stated reiability requirement. Software
reliability qualification testing, like growth testing, is performed using inputs randomly selected in
accordance with the operationa profile the software will experience in field use.

During demonstration testing, the code should be under configuration control (just as it would be
between releases). Any failures that occur are merely recorded; no software repair activity takes place.
Since the code is under configuration control and should be stable, multiple occurrences of the same
falure should be counted. The test should represent a true operational environment. In a true
environment where corrective action is available, multiple occurrences of the same failure would
impact the system reliability just as occurrences of different failures would.

Software that is operational, under configuration control and subjected to inputs randomly selected

from a stationary (non-changing) operationd profile is assumed to exhibit a congtant failure rate. This
implies that the inter-failure times are exponentialy distributed. The exponential modd is currently

4-19

employed for complex, maintained hardware systems that do not have redundancy. The exponential
modd is applicable to the software product aone and to the combined hardware/software system when
the software is under configuration control and is operationd.

Three types of qualification tests are described in Section 8: fixed-duration test, sequential test, and
failure-free execution period test. Each type of test has advantages and disadvantages, as summarized
in Table 4-4.

TABLE 4-4. Software Rdiability Qualification Test Types

Test Type Advantages Disadvantages
Fixed-Duration - used when the amount of | Totd test timeis Takeslonger than
test time and cost must be knownin known in advance. Ssequentia test on
advance. A fixed duration test provides Anedimatecanbe | average.

demondrated fallurerate to a desired
confidence leve.

meade of truefailure
rate.

Sequential - will accept softwarethat hasa | Acceptsvery low Totd test duration is
fallure rate much lower than Ao and reject fallure rates and undetermined,
software that has afailure rate much higher | rgectsvery high maximum duration
than A1 more quickly than afixed duration fallure rates quickly. | must be planned for.
test having Similar parameters. However, the | Shorter test times

total test time may vary sgnificantly on average than the

according to the true failure rate. other types.

Failure-Free Execution Interval - will Will accept very Cantakealong time

accept software that has afailure rate lower
than Ao more quickly than afixed duration
test. Producer’s and consumer’s risks usualy
range from 10% (low risk) to 30% (high
risk). Thelower the risks, the longer the
test.

quickly if true failure
rate is much better
than required.

if truefalurerateis
closeto that
required

4-20

4.3.7 Software Failure Reporting and Corrective Action System (FRACAS).

A software FRACAS is an efficient closed-loop management tool established to identify and correct
deficiencies in software. The software FRACAS program must be carefully talored to support
providing the information required by the system level FRACAS program. Software FRACAS is based
on the sysematic reporting and anadyss of software failures during testing. Software FRACAS
includes documented procedures for reporting fallures, andyzing falures to determine their root
causes, and establishing effective corrective action to prevent future recurrence of the failure. Figure 4-
9illustrates a software FRACAS process.

System Level FRACAS

b

Software Level FRACAS

[
% Symptoms
Steps to
Failure event reported reproduce
Conditions
| J Inputs
Not Corrected .
] . Priority
Failure event reviewed Properly > Status
Not software OR does not % M\
require corrective action Root cause
Failure event corrected Corrective
‘ action
@ information
Failure event verified as
correct and closed
]
Root causes analyzed

Improvements to development
process made

FIGURE 4-9. Software FRACAS

As a part of the process, each failure must be documented and reported, with sufficient information to
identify the software element involved, the symptoms of the failure, input and other conditions
preceding the failure, and, for the purposes of software réiability growth modeling, the cumulative
execution time at the moment of fallure. The falure should be verified, if possble, by repeating the

4-21

circumstances that led to it. All files and other pertinent data must be preserved. The root cause of the
fault that caused the software failure should be determined. Corrective action requires a change to the
software code. The failure report is closed out when there is formal concurrence by individuals other
than those who performed the corrective action.

Software FRACAS should be augmented by the establishment of a "defect prevention” program. Ina
defect prevention program, not only is the fault removed from the code but attention is also focused on
the root cause of the fault, how it got there in the first place. A fault in the code may be the result of
any of the known fault types described in Table 4-5 %

TABLE 4-5. Lig of Known Fault Types

Activity introducing fault Fault typeor root cause

Requirements Missing requirements
Misinterpreted requirements
Requirements not clear
Changed requirements
Conflicting requirements

Desgn Design not to requirements
Missing design

Top level design logic
Low level design logic
Design not robust

Code Code not implemented to design
Code not implemented to requirements
Missing code

Initialization error

Compiled typos

Storing error

Mismatched parameters

Math operations not robust

1/O operations not robust
Memory errors

Domain errors

Maintenance and corrective action New fault generated in maintenance

Seeking out and diminating the root cause of the fault modifies the development process to reduce or
completely eiminate the cause and prevent awhole class of related faults. If that cannot be done, then
the objectiveisto at least expedite detection of these faults.

2 “Tactical Software Reliability Guidmok” Technology Transfet95092967A-GEN, SEMATECH, Fulton, S.,
Neufelder, AM, , Austin, Tx, 1995.

4-22

After the fault is isolated and removed, information about the fault should be fed back to the
programmers, who establish and categorize the root cause of the fault. This is called the "causal
andyss" Corrective action includes not only the remova of the immediate fault on hand but
modification to the development process to diminate the recurrence of the class of smilar faults.
Often, just making programmers aware of the root cause will discourage recurrence.

One technique, called Orthogonal Defect Classfication (ODC)** is used by industry to analyze
software defects. This method requires that the following information in Table 4-6 be tracked during
the correction of adefect. The data collected is then regularly analyzed to determine:

* Maturity of the software associated with defect types,
* Most common failure modes, and eiminate them, and
» Causdlity of problems and associated methods to reduce defects

¥ Ram Chillarege, “Orthogonal Defect Classification - A concept for in process Measurements” IEEE Transactions

on Software Engineering, 11/92.
“ David Rentschler, “Implementing Orthogonal Defect Classification”, Transactions from the Fifth International

Conference on Software Quality, October 1995, pages 277-279.

4-23

TABLE 4-6. Orthogonal Defect Classfication

Classfication type

Description

Detection method What activity detected the defect? Each detection method must be orthogonal
in that thereis no overlap between them. Some examples include:
* Reviews
* Inspections
* Audits
o Internal test
» Externa test
» Externd use
Types Thisisdirectly related to what isrepaired in the software. These typesinclude
but are not limited to:
* Requirements defects
» Deggn defects
» Coding defects
» Defects dueto acorrective action
Idedlly, the development organization should tailor this list to those most
commonly related to the defects on a specific application.
Trigger This is an orthogonal list of activities that caused the defect to be discovered
or observed. Some examples are:
* Ingdlation
e Sartup
* Norma operations
» Changein configuration
» Corrective action
» Changeininput domain
» Error handling
» Environmentd influences such asloss of power or communication
» Changein customer requirements
» Operator error
Source The place in the source code where the defect exists or existed.

4-24

