Distributed M anagement Task Force, Inc.

Distributed
Management
Task Force, Inc.

—

COMMON INFORMATION MODEL (CIM)
SPECIFICATION

Version 2.2
June 14, 1999

Technical inquiries and editorial comments should be directed in writing to:

Distributed Management Task Force, Inc. (DMTF)
c/loMacKenzie Kesselring, Inc.|

200 SW Market Street, Suite 450

Portland, OR 97201

(503) 294-0739

(503) 225-0765 (fax)

email: dmtf-info@dmtf.org

Additional electronic copies of this specification can be obtained free of charge from the
Internet at:

ftp://ftp.dmtf.org
or
from the World Wide Web at:
http://iwww.dmtf.org

Additional hardcopies can be obtained for afee by contacting the DMTF at the address
listed above.

IMPORTANT INFORMATION AND DISCLAIMERS

1. THIS SPECIFICATION (WHICH SHALL INCORPORATE ANY REVISIONS, UPDATES, AND MODIFICATIONS
HERETO) IS FURNISHED FOR INFORMATIONAL PURPOSES ONLY. INTEL CORPORATION, MICROSOFT
CORPORATION, DIGITAL EQUIPMENT CORPORATION, HEWLETT-PACKARD COMPANY, INTERNATIONAL
BUSINESS MACHINES CORPORATION, NOVELL INC., SUN MICROSY STEMS, INC., COMPAQ COMPUTER
CORPORATION, DELL COMPUTER CORP., SYMANTEC, THE SANTA CRUZ OPERATION, NEC
TECHNOLOGIES, INC., OR ANY OTHER DMTF MEMBER MAKE NO WARRANTIES WITH REGARD
THERETO, AND IN PARTICULAR DO NOT WARRANT OR REPRESENT THAT THIS SPECIFICATION OR ANY
PRODUCTS MADE IN CONFORMANCE WITH IT WILL WORK IN THE INTENDED MANNER OR BE
COMPATIBLE WITH OTHER PRODUCTS IN NETWORK SYSTEMS. NOR DO THEY ASSUME RESPONSIBILITY
FOR ANY ERRORS THAT THE SPECIFICATION MAY CONTAIN OR HAVE ANY LIABILITIESOR
OBLIGATIONS FOR DAMAGES INCLUDING, BUT NOT LIMITED TO, SPECIAL, INCIDENTAL, INDIRECT,
PUNITIVE, OR CONSEQUENTIAL DAMAGES WHETHER ARISING FROM OR IN CONNECTION WITH THE
USE OF THIS SPECIFICATION IN ANY WAY. CORPORATIONS MAY FOLLOW OR DEVIATE FROM THIS
SPECIFICATION AT ANY TIME.

2. NO REPRESENTATIONS OR WARRANTIES ARE MADE THAT ANY PRODUCT BASED IN WHOLE OR IN
PART ON THE ABOVE SPECIFICATION WILL BE FREE FROM DEFECTS OR SAFE FOR USE FOR ITS
INTENDED PURPOSE. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT DOES SO AT HIS OWN
RISK.

3. THE USER OF THIS SPECIFICATION HEREBY EXPRESSLY ACKNOWLEDGES THAT THE SPECIFICATION
ISPROVIDED AS IS, AND THAT THE DMTF, NEITHER INDIVIDUALLY NOR COLLECTIVELY, MAKE ANY
REPRESENTATIONS, EXTEND ANY WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, ORAL OR
WRITTEN, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTY OR REPRESENTATION THAT THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY UTILIZING ANY ASPECT OF THE SPECIFICATION WILL BE FREE FROM ANY CLAIMS OF
INFRINGEMENT OF INTELLECTUAL PROPERTY, INCLUDING PATENTS, COPYRIGHT AND TRADE
SECRETS OF ANY THIRD PARTY, OR ASSUMES ANY OTHER RESPONSIBILITIES WHATSOEVER WITH
RESPECT TO THE SPECIFICATION OR SUCH PRODUCTS. IN NO EVENT WILL DMTF MEMBERSBE LIABLE
FOR ANY LOSSES, DAMAGES INCLUDING, WITHOUT LIMITATION, THOSE DAMAGES DESCRIBED IN
SECTION 1 ABOVE, COSTS, JUDGMENTS, OR EXPENSES ARISING FROM THE USE OR LICENSING OF THE
SPECIFICATION HEREUNDER.

http://www.mkinc.com/

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Abstract

The DMTF Common Information Model (CIM) is an approach to the management of

systems and networks that applies the basic structuring and conceptualization techniques

of the object-oriented paradigm. The approach uses a uniform modeling formalism that—
together with the basic repertoire of object-oriented constructs—supports the cooperative
development of an object-oriented schema across multiple organizations.

A management schema is provided to establish a common conceptual framework at the
level of a fundamental typology—both with respect to classification and association, and
with respect to a basic set of classes intended to establish a common framework for a
description of the managed environment. The management schema is divided into these
conceptual layers:

» Core model—an information model that captures notions that are applicable to all
areas of management.

e Common model—an information model that captures notions that are common to
particular management areas, but independent of a particular technology or
implementation. The common areas are systems, applications, databases, networks
and devices. The information model is specific enough to provide a basis for the
development of management applications. This model provides a set of base classes
for extension into the area of technology-specific schemas. The Core and Common
models together are expressed as the CIM schema.

» Extension schemas—represent technology-specific extensions of the Common
model. These schemas are specific to environments, such as operating systems (for
example, UNIXor Microsoft Windows').

PARTICIPANTS

Thislist shows the names of the companies that participated in the Distributed
Management Task Force - CIM Sub-Committee whose contributions made this document
possible.

e Compag Computer Corporation
e Computer Associates Intl., Inc
* Hewlett-Packard Company

e Intel Corporation

e Microsoft Corporation

* Novdl, Inc.

e Sun Microsystems, Inc.

* Tivoli Systems, Inc.

T Other product and corporate names may be trademarks of other companies and are used only for explanation and to
the owners' benefit, without intent to infringe.

06/14/99 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

ChangeHistory

Version 1 Wednesday, April 09, 1997 First Public Release

Version 1.1 Thursday, October 23, 1997 Output after Working Groups input

Version 1.2a Monday, November 03, 1997 Naming

Version 1.2b Monday, November 17, 1997 Remove reference qualifier

Version 2.0a Thursday, December 11, 1997 | Apply pending changes and new metaschema

Version 2.0d Thursday, December 11, 1997 Output of 12/9/1997 TDC, Dallas

Version 2.0f Monday, February 16, 1998 Qutput of 2/3/1998 TDC, Austin

Version 2.0g Thursday, February 26, 1998 Apply approved change requests and final edits
submitted through 2/26/1998.

Version 2.2 Tuesday, June 14, 1999 Incorporate Errata and approved change requests
through 1999-06-08

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Contents
1 INTRODUCTION AND OVERVIEW ...t seeieins e 1|
A CIM ManNagemMeENt SCNEMIAL.........coueuiieeeiteeeeteiee ettt ettt ettt sr et ereseeresren bea 1
1.1 (e XY L= I 2
1.2 CoMMONMOdE] . 2
1.3 EXEENSION SCNEMA. ... cviieiiececececeeeeeeee ettt etee e eneeneeeeneeneeseeneeeenseneessessensessens seeressessen 2
.2 CIM LMD EMENTALIONS.oecveeceececeseseseeeesesessseessesssiesseesssssssssssssssessssssssssssssssesssssssssssssses seessesies 2
.21 CIM Implementati ON CONfOIMANCE.cveeeeeeeeeeeeeeeeeeeeeeteeeseeseeeeseeseeseeseesseseessessessessessesesnens 4
|2 META SCHEMA oot e et e e et e e s e s e e 5|
p.1 Definition Of the M Eta SCHEMA.veeieieeeiieeeeeeet et eeesreessseeenseseesassresssnsensassresen serens 5|
R.2 Property Data TYDES. e s 11
2.1 Date, Time, and Interval Types.................... OO SO O PO PO PO PO RO RO PPOTROTPOTTROTPUTROTRPPPIOT 12
2.2 Indicating Additional Type Semantics With QUalITIErS..........ccccccveveeceviciiiiececiceece e 12
.3 Supported Schema Modifications. ..o 13
3.1 Lo TR == e L0 =R 14
p.4 [14]
.5 QUAlIIENS 14
5.1 Meta QUalifiers ..o 15|
5.2 S e Lo I LT T — 15
5.3 Optional QUAIIFIENS ..o 22|
5.4 User-defined QUAlTTIEIS.........c.coviiuiiireiictiecee ettt sresaeeneeseens 25
D 5.5 MaPPING MIE AHTTOULES..........couveereectietieieeieiieeiee et eeteeeteeeeeteeeteeeteebeenbesnsesseesseesseesseesseenessnes 25
P.5.6 Mapping Generic Datato CIM Properties.o iiiiiiiieieiesesiisreseceeseessesessresresseeseesssssesseseeas 26
B MANAGED OBJECT FORMAT ...ttt eaas 28|
B.1 IVEORF USAOE. . ..veteuiietieeeteteeiteteeeetetesesseseaeesetesssseseseesesesssseseseasesessssesesesesesessesesesesensssesenessesensssesenes 28|
B.2 [DS T Ao 28|
B.3 [NSEANCE DECIAI BHIONS......c.evieeeeiteeeeeeeteeeeeeeteeeeeet ettt eeeeaeeteeseseeseeseneeseeseneeseeseneeseeseseeseneens 28|
Y Te YooY I e TN = N F T ——— 30
g1 R e 30|
B.2 (ST L E 30|
“.3 N T R a1 30|

06/14/99 11

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

| NaMING OF SCNEMEB EIBMENES..........oeeeeeeveeeeeseeeeeeseeeeeereeeeeeeseeseeeernsneeeseesneeesnesreeeeessneereneereseeneens 30|
@5 Class DEClar AtONS ... 31
4.5.1 D T O =P 31
1.5.2 SUDCIASSES........oecuvictiectiecteecteec ettt ettt et e et e et e et e e eteetesaeesseesseebeenseesseeseesteeteentesnsesneesnes 32
4.5.3 Default Property Values........oooooiii 32
4.5.4 Class and Property QUEITTIEISooweiiieieeiee ettt neenea 32
4.5.5 K BY PrOPEITIES ...ttt ettt et e st et e st e st e sseenceseeseesbeseesbesseeneeneessebessesbesneeneeneens 35
1.6 ASSOCIatiON DECIAI ALIONS........c..veceeeeceeeceeeeeeee ettt ess s csesensssesensessnensessnssassnanas 35
4.6.1 DeCIariNg @n ASSOCIBHI ONcvveeeeeeeeeeeeeseeeteeeeeeeeseeneeseeseeseessesseeseeseeneessessessesseeseeneensessesseneessens 36
1.6.2 SUDBSSOCIALIONS.cvieeeietiieeeietesieicste et eet st esteseeteebe st esesbeseesesbeseeneebeseesesteseeneaseseesesteseesesseneesens 36
1.6.3 Key REferences and PrOPEITIES..........cuiveeeeereeeeeesieeteeeeeeeeseesteseeeresseeneeeessensessessesseseeeens 37
1.6.4 ODJECE REFEIENCESo iveeteieieeeeeeitestesteeteseeteessestestessestesseeseesessessestestesseaseensesensessessessessennseneen 37
u7 QUAIITIET DECIAI AETONS........veveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeseeeeseeseeessreseenseneseensereseeneereeeensereseenserenesneneens 38|
.8 INSLANCE DECIAI BLIONS........oveeeeeee s sssnsssnnss 38
1.8.1 INSEANCE ATTBSING. ettt eee st et et e sresseeneeneeneensessesreseesnesseeneensenes 39
4.8.2 J L T 40
1.9 M EtNO0 DECIAN BEIONS.......cvcvieieeeieetctiiitetieteteteeeseessesesesesssssesesesessssesessssesensssssensssssenssssssnsssssenesns 41|
#.10 [T e =T 42|
B.11 VAIUE CONSLANEScooeveeieeeeeteeeeeeeceeeeeteessesteesessseesssesessesssessssesessasesesessssessseseseasssesesesesensssesensssa 43
11,1 SHING CONSLANES.eiviiiiiiitiieetie it et eetee et et eeteeeteeesseesbeseseessesenseesnsesensesssesansesssessnsessssesessessnse 43
A.11.2 CharaCler CONSLANES e veveieieeeiet ittt eeiencetestee sttt eeetesteessesteessesbeeesesteneesesbeneesessensesessessenens 44
I = T oL 7 44
A.11.4 Floating-POINt CONSIANES.cveeveeieieeetiieetieeeiestesteeteseeeseeeeseseeseestesseeseeeessessessessessessesseenseses 44
A.11.5 ObJECt REF CONSIANESccvieeieeeeeeieitisteiteeteeteeeeie st estestesteeseeeeaessestessessesseeseeseessensessessensennsenes 45
T O 45
B.12 [T T RO ———— 45|
A.12.1 INAliZINg AMTAYS. oo 45
1.12.2 Initializing REFErences USING AlTGSES..........c.uivioveiieieieeee ettt 416
TN YT 47|
b.1 SR e e I 47
E.l.l Management Tool Responsibility for an EXport Operation..............cceceeuveveeeevcveeieeeiiereseeeesnne 50)
1.2 Management Tool Responsibility for an Import OPeration............ccveveeveveeeeesereseeeeneenens 50

b.2 Weak Associations: Supporting Key Propagationccoeoeevieeeiiineeineineisiieieeseeeenns 50
b.2.1 Referencing Weak ODJECES ..ottt srene e 52

.3 Naming CIM OBJECES. .o 52
3.1 NBMESPACE PAEN ...t 53
E.3.2 MOOE] PEEN.......oviicicce ettt ettt ne et sre e ereeneneens 54
.3.3 SpecCifying the OBJECE NBIME........ciiiie ittt sttt sn s sresnenesresnereas 55

b4 Specifying Object NameSIN MOF FIES.........ccccocviiieeieiccece st eete s s et se e neeeas 56
5.4.1 SyNChroNiZING NAMESPACEScverveirieriieeereeeerieseesseererseeseeseessessessessesseeseessessessessessessemsenseenees 56
b.4.2 Building References Between Management SYSLEIMS..........ceuveeeueeiereeeeueeiieeeeriesereeeveesreseeeeas 59

06/14/99 Y,

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

6 MAPPING EXISTING MODELS INTO CIMcooveeiiiiieeeeeeeeeeeeeaaaaann 62|
B.1 TECHNIQUE M ADPING .ttt ettt ettt eteae s eseseesseseseesebesesesesesessesesessssesesesss sbenenas 62|
B.2 R TS o T Te T 63|
B.3 DOMAIN MAPPINGcveevetieeeeteeeeeeteeeeeteeeeteteeeeteteeeeteteeeesetesseseseesesesessessseseeseseseesssessesesesssnssseseans 65|
p.4 Y A B S R Ao AL o [66|
[7 REPOSITORY PERSPECTIVEccuuuuiiiiiieiieeeeeiiieeeeeeeeeeiieaa e 67|
[7.1 DMTF MIF Mapping StralBgiES. .. .coueuiiieiuetiiristeiesesiesestsssresesesiesasesessesessssssasessssesessssesessssssesees 68|
[7.2 ReCOrding M apping DECISIONSvivivieiueeeieieeiesetesesssscsesssessssssessesssesesssssssssssesessssessasssesessssees 69|
APPENDIX A MOF SYNTAX GRAMMAR DESCRIPTION.........ccccvvuvrveennnnn. 72|
IPPENDIX B CIM META SCHEMAoiooiiiiiiiiiieeeis i cisses s seeeesareeeeaeeanes 77]
APPENDIX C VALUES FOR UNITS QUALIFIERccccouveeiiiiiireeeeciiieaan, 86|
(APPENDIX D UML NOTATION.......ccotttiiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeanenanns 87|
APPENDIX E GLOSSARY ..ot eeeeeetaee e eeeaeeeeeennaaaesnaanannenes 90|
APPENDIX F UNICODE USAGEccoottiiiiiieieii e eeeeeeiinaaae e e 93|
F.1 (YR OEOOooy— 93
F.2 QUOLE SETTNOS. ... cveeveeeieeeeeeeeveeteeeeresetetesessseseesssesessssssesensssssssssssesensasssesssssesensasssesensss sesssssesenses 93|
APPENDIX G GUIDELINEScoociiiiiiieeiiiiiiee e e 95|
G.1 M APPING OF OCLEL SEEINTSeieeeeeieeeeieeeeisereeserseessesessasseessasessesssessssssssnsssessssessssssessrssses sessns 05|
G.2 SO R e e I L e L 95|
IAPPENDIX H REFERENCESovvioiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeanneeennnne 08|

06/14/99 Vv

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Table of Figures

FIGURE 1-1 FOURWAYSTO USE CIM L.ttt sns s sn s 3|
FIGURE 2-1 META SCHEMA STRUGCTUREc.oitiiiiiitiiiisetssssssssessssssssssssssssssesessesesessssessssssessssessssssesans 6|
FIGURE 2-2 REFERENCE NAMING.ccctititetiiiteticeteteeesiet sttt seseeiesesiereseseesesesteseseseenessesssens 9|
FIGURE 2-3 REFERENCES, RANGES, AND DOMAINS.......coittititeeieiei st seseseseseseanenns 10|
FIGURE 2-4 REFERENCES, RANGES, DOMAINS AND INHERITANCE ..o 10|
FIGURE 5-1 DEFINITIONS OF INSTANCES AND CLASSEScoiiiiiiiriiisisesssssssssssssessssssssssssssssesees 48|
FIGURE 5-2 EXPORTING TO MOFcciiteiiieieiisisieiesetesesee s esesnesaesnenesesnesaesreresesnessesnerenessesssssnas 49|
FIGURE 5-3 INFORMATION EXCHANGE ...ttt ettt snsnes 50|
FIGURE 5-4 EXAMPLE OF WEAK ASSOCIATIONiuiuititieiiiiteseneeesesesesssssssesesssssesesessssssesssssesessssssaes 51]
FIGURE 5-5 OBJECT NAMING. .. c0cuittititiisitisissessssssesissessssssessssssessssssessssessssasesessssessssnsessssssessssssessssesessnsens 53|
FIGURE 5-6 NAMESPACES ..ottt ettt e seseesenesbesaseseeseneanas 54|
FIGURE 5-7 NAMESPACE PATH ..ottt ettt enees e e s ssesseeestesssenenesssssnsssses 57|
FIGURE 5-8 PRAGMA EXAMPLE ..ottt sttt sttt sn st sesn s nssesesees 58|
FIGURE 5-9 NAMESPACE PATH EXAMPLE ..ottt sssssss s snnes 59|
FIGURE 5-11 EXAMPLE OF NONLOCAL QUALIFIERcciiiiiiieieiei ittt 61
FIGURE 6-1 TECHNIQUE MAPPING EXAMPLE ..ottt sesssessssesessessesesessssases 62|
FIGURE 6-2 MIF TECHNIQUE MAPPING EXAMPLEoitiiiiiciiiicietsisesssssessssssessssssessssssesssssessssesesees 63|
FIGURE 6-3 RECAST MAPPING........ccciiiteiiietetteieiettee ettt tes et st seeseesbeteseseesanessesenesesseneanas 63|
FIGURE 7-1 REPOSITORY PARTITIONS......ootitiiiteteteteteteieisesisesesisiseseet s eneneesesescssseseseesesssenenesesesssssees 67|
FIGURE 7-2 HOMOGENEOUS AND HETEROGENEOQUS EXPORTc.oviiittteceseseseseseeeseseseeeseseseeacs 69|
FIGURE 7-3 SCRATCH PADS AND MAPPING.........coutviiiiieriiirtisiiettisierstisicssteseeessieeeesseeeseessseeneens 70|

06/14/99 Vi

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

1 INTRODUCTIONAND OVERVIEW

This section describes the many ways in which the Common Information Model (CIM) can be
used. It provides a context in which the details described in the later chapters can be understood.

Ideally, information used to perform tasksis organized or structured to allow disparate groups of
people to useit. This can be accomplished by developing a model or representation of the details
required by people working within a particular domain. Such an approach can be referred to as an
information model. An information model requires a set of legal statement types or syntax to
capture the representation, and a collection of actual expressions necessary to manage common
aspects of the domain (in this case, complex computer systems). Because of the focus on common
aspects, the DM TF refersto this information model as CIM, the Common Information Model.

This document describes an object-oriented meta model based on the Unified Modeling Language
(UML). This model includes expressions for common elements that must be clearly presented to
management applications (for example, object classes, properties, methods and associations).

This document does not describe specific CIM implementations, APIs, or communication

protocols — those topics will be addressed in a future version of the specification. For information
on the current core and common schemas developed using this meta model, contact the
DistributedManagement Task Force.

1.1 CIM Management Schema

Management schemas are the building blocks for management platforms and management
applications, such as device configuration, performance management, and change management.
CIM is structured in such a way that the managed environment can be seen as a collection of
interrelated systems, each of which is composed of a number of discrete elements.

CIM supplies a set of classes with properties and associations that provide a well-understood
conceptual framework within which it is possible to organize the available information about the
managed environment. It is assumed that CIM will be clearly understood by any programmer
required to write code that will operate against the object schema, or by any schema designer
intending to make new information available within the managed environment.

CIM itself is structured into these distinct layers:

« Core model—an information model that captures notions that are applicable to all areas of
management.

e Common model—an information model that captures notions that are common to particular
management areas, but independent of a particular technology or implementation. The
common areas are systems, applications, networks and devices. The information model is
specific enough to provide a basis for the development of management applications. This
schema provides a set of base classes for extension into the area of technology-specific
schemas. The Core and Common models together are referred to in this document as the CIM
schema.

06/14/99 1]

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

111

112

113

» Extension schemas—represent technology-specific extensions of the Common model. These
schemas are specific to environments, such as operating systems (for example, UNIX or
Microsoft Windows).

Core Model

The Core model is a small set of classes, associations and properties that provide a basic
vocabulary for analyzing and describing managed systems. The Core model represents a starting
point for the analyst in determining how to extend the common schema. While it is possible that
additional classes will be added to the Core model over time, major re-interpretations of the Core
model classes are not anticipated.

Common Model

The Common model is a basic set of classes that define various technology-independent areas.
The areas are systems, applications, networks and devices. The classes, properties, associations
and methods in the Common model are intended to provide a view of the area that is detailed
enough to use as a basis for program design and, in some cases, implementation. Extensions are
added below the Common model in platform-specific additions that supply concrete classes and
implementations of the Common model classes. As the Common model is extended, it will offer

a broader range of information.

Extension Schema

The Extension schemas are technology-specific extensions to the Common model. It is expected
that the Common model will evolve as a result of the promotion of objects and properties defined
in the Extension schemas.

1.2 CIM Implementations

CIM is a conceptual model that is not bound to a particular implementation. This allows it to be
used to exchange management information in a variety of ways; four of these ways are illustrated
in It is possible to use these ways in combination within a management applicatfon.

06/14/99 5 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Redlization of CIM

CIM Meta Model Content of CIM
@ Has Instances @ Realization @
’M PV
! /" {ore Schema \ N - / \
! 7 ;Common Sch o hd)/ Y
| , , Extension Sch < - , \
[/ , \ P < / \
1 / N / \
1 / // > < N / \
1 / / N N/ \
Class N
'I g // - g) // N .’
1 AN -
! ;7) . '
I / Ve N
1 7 e N
s - / h
% - /
® ‘e
Objects (instances of
classes)
Repository — Application DBMS — Application Objects — Exchange Parameter —
store meta model transform conceptual used to define a set of Content of CIM is used to
information for definition into aphysical data-oriented structure instances passed
program access. schema for particular application objects that between applications.
database technology (for can be instantiated and
example, relationdl). extended in the targeted
technology.

Figure 1-1 Four Waysto Use CIM

As arepository (see the Repository Perspectivelsection for more detail), the constructs defined in
the model are stored in a database. These constructs are not instances of the object, relationship,
and so on; but rather are definitions for someone to use in establishing objects and relationships.
The metamodel used by CIM is stored in arepository that becomes a representation of the meta
model. Thisis accomplished by mapping the meta-model constructsinto the physical schema of
the targeted repository, then populating the repository with the classes and properties expressed in
the Core model, Common model and Extension schemas.

For an application DBMS, the CIM is mapped into the physical schema of atargeted DBMS (for
example, relational). The information stored in the database consists of actua instances of the
constructs. Applications can exchange information when they have access to acommon DBMS

and the mapping occurs in a predictable way.

For application objects, the CIM is used to create a set of application objectsin a particular
language. Applications can exchange information when they can bind to the application objects.

For exchange parameters, the CIM—expressed in some agreed-to syntax—is a neutral form used
to exchange management information by way of a standard set of object APIs. The exchange can
be accomplished via a direct set of API calls, or it can be accomplished by exchange-oriented
APIs which can create the appropriate object in the local implementation technology.

3

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

1.2.1 CIM Implementation Conformance

The ability to exchange information between management applicationsis fundamental to CIM.
The current mechanism for exchangiﬁg management information is the Management Object
Format (MOF). At the present time,” no programming interfaces or protocols are defined by (and
hence cannot be considered as) an exchange mechanism. Therefore, a CIM-capable system must
be able to import and export properly formed MOF constructs. How the import and export
operations are performed is an implementation detail for the CIM-capabl e system.

Objects instantiated in the MOF must, at a minimum, include all key properties and all properties
marked as required. Required properties have the REQUIRED qualifier present and set to TRUE.

! The standard CIM application programming interface and/or communication protocol will be defined in a future version of the
CIM specification.

06/14/99 4|

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

2 META SCHEMA

The Meta Schemais aformal definition of the model. It defines the terms used to express the
model and its usage and semantics (see Appendix B).

The Unified Modeling Language (UML) is used to define the structure of the meta schema. In the
discussion that follows, italicized words refer to abjects in the figure. The reader is expected to be
familiar with UML notation (see http://www.rationa .com/uml) and with basic object-oriented
conceptsin the form of classes, properties, methods, operations, inheritance, associations, objects,
cardinality and polymorphism.

2.1 Definition of the M eta Schema

The elements of the model are Schemas, Classes, Properties and Methods. The model also
supports Indications and Associations as types of Classes and References as types of Properties.

A Schema isagroup of classes with asingle owner. Schemas are used for administration and
class naming. Class names must be unique within their owning schemas.

A Classisacoallection of instances that support the same type: that is, the same properties and
methods.

Classes can be arranged in a generalization hierarchy that represents subtype relationships
between Classes. The generalization hierarchy is arooted, directed graph and does not support
multiple inheritance.

Classes can have Methods, which represent the behavior relevant for that Class. A Class may
participate in Associations by being the target of one of the References owned by the Association.
Classes a'so have instances (not represented in|Figure 2-1).

A Property isavalue used to characterize instances of a Class. A Property can be thought of asa
pair of Get and Set functions that, when applied to an object,“return state and set state,
respectively.

A Method is adeclaration of asignature (that is, the method name, return type and parameters),
and, in the case of a concrete Class, may imply an implementation.

A Trigger isarecognition of a state change (such as create, delete, update, or access) of a Class
instance, and update or access of a Property.

An Indication is an object created as aresult of a Trigger. Because Indications are subtypes of
Class, they can have Properties and Methods, and be arranged in atype hierarchy.

An Association is a class that contains two or more References. It represents arelationship
between two or more objects. Because of the way Associations are defined, it is possible to

2 Note the equivocation between “object” as instance and “object” as class. This is common usage in object-oriented literature
and reflects the fact that in many cases, operations and concepts may apply to or involve both classes and instances.

06/14/99 5 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

establish a relationship between Classes without affecting any of the related Classes. That is,
addition of an Association does not affect the interface of the related Classes. Associations have
no other significance. Only Associations can have References. An Association cannot be a
subclass of a non-association Class. Any subclass of an Association is an Association.

References define the role each object plays in an Association. The Reference represents the role
name of a Classin the context of an Association. Associations support the provision of multiple
relationship instances for a given object. For example, a system can be related to many system
components.

Properties and Methods have reflexive associations that represent Property and Method
overriding. A Method can override an inherited Method, which implies that any access to the
inherited Method will result in the invocation of the implementation of the overriding Method. A
similar interpretation implies the overriding of Properties.

Qualifiers are used to characterize Named Elements (for example, there are Qualifiers that define
the characteristics of a Property or the key of a Class). Qudifiers provide a mechanism that
makes the meta schema extensible in alimited and controlled fashion. It is possible to add new
types of Qualifiers by the introduction of a new Qualifier name, thereby providing new types of
meta data to processes that manage and manipulate classes, properties and other elements of the
meta schema. See below for details on the qualifiers provided.

0.
Named [Element Schema
Element
1 . .
—Characteristics———>|Name: string 1~ ElementTrigger

. . ()1
0.. o..1| Property Method |, 0. /
Override Override
Property e ol Method Schema
Property Method
Domain i i Domain
0.* L > Class - Sm— 0.*
i Subtype .
Qualifier 1 = 01/ Supertype Trigger
Value: Variant Range
0.*
Association Indication
Reference
2.% ' Y

Figure 2-1 Meta Schema Structure

Figure 2-1]provides an overview of the structure of the meta schema. The complete meta schema
is defined by the MOF found inJAppendix B| The rules defining the meta schema are:

1 Every meta construct is expressed as a descendent of a Named Element.

06/14/99 6 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

2. A Named Element has zero or more Characteristics. A Characteristic is a Qualifier that
characterizes a Named Element.

3. A Named Element can trigger zero or more Indications.

4, A Schemais aNamed Element and can contain zero or more classes. A Class must
belong to only one schema.

5. A Qualifier Type (not shown in|Figure 2-1) isa Named Element and must be used to
supply atype for aQualifier (that is, a Qualifier must have a Qualifier Type). A Qualifier
Type can be used to type zero or more Qualifiers.

6. A Quadlifier isaNamed Element and has a Name, a Type (intrinsic datatype), a Value of
this type, a Scope, a Flavor and a default Value. Thetype of the Qualifier Value must
agree with the type of the Qualifier Type.

7. A Property isaNamed Element and has only one Domain: the Class that owns the
Property.
8. A Property can have an Override relationship with another Property from a different

class. The Domain of the overridden Property must be a supertype of the Domain of the
overriding Property.

9. The Class referenced by the Range association (Figure 2-4) of an overriding Reference
must be the same as, or a subtype of, the Class referenced by the Range associations of
the Reference being overridden.

10. The Domain of a Reference must be an Association.

11. A Classisatype of Named Element. A Class can have instances (not shown on the
diagram) and is the Domain for zero or more Properties. A Class isthe Domain for zero
or more Methods.

12. A Class can have zero or one supertype, and zero or more subtypes.

13. An Association isatype of Class. Associations are classes with an Association qualifier.

14. An Association must have two or more References.

15. An Association cannot inherit from a non-association Class.

16. Any subclass of an Association is an association.

17. A Method is a Named Element and has only one Domain: the Class that owns the
Method.

18. A Method can have an Override relationship with another Method from a different Class.
The Domain of the overridden Method must be a superclass of the Domain of the
overriding Method.

19. A Trigger is an operation that is invoked on any state change, such as object creation,
deletion, modification or access, or on property modification or access. Qualifiers,

06/14/99 7 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Qualifier Types and Schemas may not have triggers. The changes that invoke a trigger
are specified as a Qualifier.

20. An Indication isatype of Class and has an association with zero or more Named Triggers
that can create instances of the Indication.

21. Every meta-schema object is a descendent of a Named Element and, as such, has a Name.
All names are case-insensitive. The rules applicable to Name vary, depending on the
creation type of the object.

A

Fully-qualified Class Names (that is, the Class name prefixed by the schema
name) are unique within the schema. (See the discussion of schemas later in this
section).

Fully-qualified Association and Indication Names are unique within the schema
(implied by the fact that Associations and Indications are subtypes of Class).

Implicitly-defined Qualifier Names are unique within the scope of the
characterized object (that is, a Named Element may not have two Characteristics
with the same Name). Explicitly-defined Qualifier Names are unique within the
defining Schema. An implicitly-defined Qualifier must agree in type, scope and
flavor with any explicitly-defined Qualifier of the same name.

Trigger names must be unigue within the Property, Class or Method to which the
Trigger applies.

Method and Property names must be unique within the Domain Class. A Class
can inherit more than one Property or Method with the same name. Property and
Method names can be qualified using the name of the declaring Class.

Reference Names must be unique within the scope of their defining Association.
Reference Names obey the same rules as Property Names. Note that Reference
names are not required to be unique within the scope of the related Class. In such
a scope, the Reference provides the name of the Class within the context defined
by the Association.

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

22.

23.

24.

System System System

Hosted Services Dependency

Service Service Service Service

Figure 2-2 Reference Naming

Itislegal for the class System to be related to Service by two independent
Associations (Dependency and Hosted Services, each with roles System and
Service). It would not be legal for Hosted Services to define another Reference
Service to the Service class, since a single association would then contain two
references called Service.

Qualifiers are Characteristics of Named Elements. A Qualifier has a Name (inherited

from Named Element) and aValue. The Vaueis used to define the characteristics of the
Named Element. For example, a Class might have a Qualifier with the Name

“Description,” the Value of which is the description for the Class. A Property might have
a Qualifier with the Name “Units,” which has Values such as “Bytes” or “KiloBytes.”
The Value can be thought of as a variant (that is, a value plus a type).

Association and Indication are types of Class; as such, they can be the Domain for
Methods, Properties and References (that is, Associations and Indications can have
Properties and Methods in the same way as a Class does). Associations and Indications
can have instances. The instance of an Association has a set of references that relate one
or more objects. An instance of an Indication represents the occurrence of an event, and
is created because of that occurrence—usually a Trigger. Indications are not requirgd to
have keys. Typically, Indications are very short-lived objects used to communicate
information to an event consumer.

A Reference has a range that represents the type of the Reference. For example, in the
model of PhysicalElements and PhysicalPackages, there are two References:
ContainedElement, which has PhysicalElement as its range and Container as its domain,
and ContainingElement, which has PhysicalPackage as its range and Container as its
domain.

06/14/99 9 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Physical

Containing Element Package

Container

Physical

Element Contained Element

Figure 2-3 References, Ranges, and Domains

25. A Class has a subtype-supertype association that represents substitutability relationships
between the Named Elements involved in the relationship. The association implies that
any instance of a subtype can be substituted for any instance of the supertypein an
expression, without invalidating the expression.

Revisiting the Container example: Card is a Subtype of Physical Package. Therefore, Card
can be used as avalue for the Reference ContainingElement (that is, an instance of Card
can be used as a substitute for an instance of Physical Package).

Physical

Containing Element Package

Container

Physical
Element

Contained Element

Card Cabinet

Figure 2-4 References, Ranges, Domains and I nheritance

A similar relationship can exist between Properties. For example, given that
Physical Package has a Name property (which is a simple a phanumeric string), Card
Overrides Name to a name of alpha-only characters.

The same idea applies to Methods. A Method that overrides another Method must support
the same signature as the origina Method and, most importantly, must be substitutable
for the original Method in all cases.

26. The Override relationship is used to indicate the substitution relationship between a
property or method of a subclass and the overridden property or method inherited from
the superclass. Thisisthe opposite of the C++ convention in which the superclass
property or method is specified as virtual, with overriding occurring thereafter as aside
effect of declaring a feature with the same signature as the inherited virtual feature.

06/14/99 10 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

27. The number of references in an Association class defines the arity of the Association. An
Association containing two referencesis a binary Association. An Association
containing three referencesis aternary association. Unary Associations (Associations
containing one reference) are not meaningful. Arrays of references are not allowed.
When an association is sub-classed, its arity cannot change.

28. Schemas provide a mechanism that allows ownership of portions of the overall model by
individuals and organizations who are responsible for managing the evolution of the
schema. In any given installation, all classes are mutually visible, regardless of schema
ownership. Schemas have a universally unique name. The schema name is considered
part of the class name. The full class name (that is, class name plus owning schema
name) is unique within the namespace and is referred to as the fully-qualified name (see

Section[2.4).

2.2 Property Data Types

Property data types are limited to the intrinsic data types, or arrays of such. Structured types are
constructed by designing new classes. If the Property is an array property, the corresponding
variant type is smply the array equivalent (fixed or variable length) of the variant for the
underlying intrinsic type.

This table contains the intrinsic data types and their interpretation:

INTRINSIC DATA TYPE INTERPRETATION
uint8 Unsigned 8-bit integer
sint8 Signed 8-bit integer

uintl6 Unsigned 16-bit integer
sint16 Signed 16-bit integer
uint32 Unsigned 32-bit integer
sint32 Signed 32-bit integer
uinté4 Unsigned 64-bit integer
sint64 Signed 64-bit integer
string UCS-2 string
boolean Boolean
real 32 | EEE 4-byte floating-point
real64 | EEE 8-byte floating-point
datetime A string containing a date-time
<classname> ref Strongly typed reference
charl6 16-bit UCS-2 character

06/14/99 11 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2 ‘

221

222

Date, Time, and I nterval Types

Date, datetime, interval and time property types are aliases for each other and use the same fixed
string-based format:

yyyymddhhmss. nmmmmmsut ¢
where
e yyyyisa4digit year
« mmisthe month
e ddistheday
* hhisthe hour (24-hour clock)
e mmisthe minute
e ssisthesecond
e mmmmmm is the number of microseconds
e sisa"+" or"-",indicating the sign of the UTC (Universal Coordinated Time; for all

intents and purposes the same as Greenwich Mean Time) correction field, or a “:". In this

case, the value is interpreted as a time intervalygyyinm are interpreted as days.

» utcis the offset from UTC in minutes (using the sign indicated)bit is ignored for a
time interval.

For example, Monday, May 25, 1998, at 1:30:15 PM EST would be represented as:
19980525133015. 0000000- 300

Values must be zero-padded so that the entire string is always the same 25-character length.
Fields which are not significant must be replaced with asterisk characters.

Similarly, intervals use the same format, except that the interpretation of the fields is based on

elapsed time. For example, an elapsed time of 1 day, 13 hours, 23 minutes, and 12 seconds would

be:
00000001132312. 000000: 000

A UTC offset of zero is always used for interpabperties.

The string-based interval format is:
ddddddddhhnmss. nmmmmm 000

Indicating Additional Type Semantics with Qualifiers

Since "counter" and "gauge" types (as well as many others) are actually simple integers with

specific semantics, they are not treated as separate intrinsic types. Instead, qualifiers must be used
to indicate such semantics when properties are being declared (note the example below merely

suggests how this may be done; the qualifier names chosen are not part of this standard):

06/14/99 12 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

cl ass Acne_Exanpl e

{

[counter]
ui nt 32 Number OF Cycl es;
[gauge]
ui nt 32 MaxTenper at ur e;
[octetstring, ArrayType("Indexed")]
ui nt 8 | PAddress[10];
s

Implementers are permitted, for documentation purposes, to introduce arbitrary qualifiersin this
manner. The semantics are not enforced.

2.3 Supported Schema M odifications

Thisisalist of supported schema modifications, some of which, when used, will result in
changes in application behavior. Changes are all subject to security restrictions; in particular, only
the owner of the schema, or someone authorized by the owner, can make modificationsto the
schema.

A class can be added to or deleted from a schema.

A property can be added to or deleted from a class.

A class can be added as a subtype or supertype of an existing class.

A WD P

A class can become an association as aresult of the addition of an Association qualifier,
plus two or more references.

A qualifier can be added to or deleted from any Named Element.
The Override qualifier can be added to or removed from a property or reference.

o

A class can dlias a property (or reference, if the classis a descendent of an association),
using the Alias qualifier. Both inherited and immediate properties of the class may be
aliased.

8. A method can be added to a class.

9. A method can override an inherited method.

10. Methods can be deleted, and the signature of a method can be changed.
11. A trigger may be added to or deleted from a class.

In defining an extension to a schema, the schema designer is expected to operate within the

constraints of the classes defined in the Core model. With respect to classification, it is

recommended that any added component of a system be defined as a subclass of an appropriate

Core model class. It is expected that the schema designer will address the following question to

each of the Core model classes: “Is the class being added a subtype of this class?” Having
identified the Core model class to be extended, the same question should be addressed with
respect to each of the subclasses of the identified class. This process, which defines the
superclasses of the class to be defined, should be continued until the most detailed class is
identified. The Core model is not a part of the meta schema, but is an important device for
introducing uniformity across schemas intended to represent aspects of the managed environment.

06/14/99 13 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2 ‘

2.3.1 Schema Versions

Certain modifications to a schema can cause failure in applications that operated against the
schema prior to the modification. These modifications are:

1. Deletion of classes, properties, or methods.

2. Movements of aclass anywhere other than down a hierarchy.

3. Alteration of property type or method signature.

4. Altering areference range to anything other than the original specification.

Other alterations are considered to be interface-preserving. Any use of the schema changes listed
above implies the generation of a new major version of the schema (as defined by the VERSION
qualifier described in Section(2.5.2).

2.4 Class Names

Fully-qualified class names are in the form <schema name>_<class name>. An underscoreis
used as a delimiter between the <schema name> and the <class name>. The delimiter is not
alowed to appear in the <schema name> athough it is permitted in the <class name>.

The format of the fully-qualified name is intended to allow the scope of class names to be limited
to aschema: that is, the schema name is assumed to be unigue, and the class nameis only
required to be unique within the schema. The isolation of the schema name using the underscore
character allows user interfaces to conveniently strip off the schemawhen the schemaisimplied
by the context.

Examples of fully-qualified class names:

e CIM_ManagedSystemElement: the root of the CIM managed system element hierarchy.
e CIM_ComputerSystem: the object representing computer systems in the CIM schema.
e CIM_SystemComponent: the association relating systems to their components.

* Win32_ComputerSystem: the object representing computer systemsin the Win32
schema.

2.5 Qualifiers

Qualifiers are values that provide additional information about classes, associations, indications,
methods, method parameters, triggers, instances, properties or references. All qualifiers have a
name, type, value, scope, flavor and default value. Qualifiers cannot be duplicated; there cannot
be more than one qualifier of the same name for any given class, instance, or property.

The following sections describe meta, standard, optional and user-defined qualifiers. When any
of these quaifiers are used in amodel, they must be declared in the MOF file before being used.
These declarations must abide by the details (name, applied to, type) specified in the tables
below. Itisnot valid to change any of thisinformation for the meta, standard and optional
qualifiers. It is possible to change the default values. A default value is the assumed value for a
qualifier when it is not explicitly specified for particular model elements.

06/14/99 14 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2 ‘

251

252

Meta Qualifiers

Thistable lists the qualifiersthat are used to refine the definition of the meta constructsin the
model. These qualifiers are used to refine the actua usage of an object class or property
declaration within the MOF syntax. These qualifiers are all mutually exclusive.

QUALIFIER DEFAULT TYPE MEANING
ASSOCIATION FALSE BOOLEAN | Theobject classis defining an association.
INDICATION FALSE BOOLEAN | Theobject classis defining an indication.

Standard Qualifiers

Thistableisalist of standard qualifiersthat all CIM-compliant implementations are required to
handle. Any given object will not have al of the qualifierslisted. It is expected that additional
qualifierswill be supplied by extension classes to facilitate the provision of instances of the class
and other operations on the class.

It is aso important to recognize that not all of these qualifiers can be used together. First, as

indicated in the table, not all qualifiers can be applied to all meta-model constructs. These

limitations are identified in the “Applies To” column. Second, for a particular meta-model
construct like associations, the use of the legal qualifiers may be further constrained because
some qualifiers are mutually exclusive or the use of one qualifier implies some restrictions on the
value of another qualifier, and so on. These usage rules are documented in the “Meaning” column
of the table. Third, legal qualifiers are not inherited by meta-model constructs. For example, the
MAXLEN qualifier that applies to properties is not inherited by references.

The “Applies To” column in the table identifies the meta-model construct(s) that can use a
particular qualifier. For qualifiers like ASSOCIATION (discussed in the previous section), there
is an implied usage rule that the meta qualifier must also be present. For example, the implicit
usage rule for the AGGREGATION qualifiers is that the ASSOCIATION qualifier must also be
present.

QUALIFIER DEFAULT | APPLIESTO | TYPE MEANING
ABSTRACT FALSE Class, BOOLEAN | Indicates that the classis abstract and
Association, serves only as a base for new classes. It
Indication is not possible to create instances of
such classes.
AGGREGATE FALSE Reference BOOLEAN | Definesthe "parent” component of an

Aggregation association.

Usage Rule: The Aggregation and
Aggregate qualifiers are used together —
Aggregation qualifying the association|,
and Aggregate specifying the "parent”
reference.

AGGREGATION FALSE Association BOOLEAN Indicates that the association is an
aggregation.

06/14/99 15 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFIER DEFAULT | APPLIESTO | TYPE MEANING
ALIAS NULL Property, STRING Establishes an alternate name for a
Reference, property or method in the schema.
Method
ARRAYTYPE "Bag" Property, STRING Indicates the type of the quaified array.
Parameter Valid values are "Bag", "Indexed" and
"Ordered".

Usagerule: The ArrayType qualifier
should only be applied to properties and
method parameters that are arrays
(defined using the square bracket syntax
specified in Appendix A).

BITMAP NULL Property, STRING Indicates which bit positions are
Method, ARRAY significant in abit map. The position of
Parameter aspecific value in the BitMap array

defines an index that is used in selecting
astring literal from the BitValues array.

BITVALUES NULL Property, STRING Provides trangl ation between a bit
Method, ARRAY position value and an associated string.
Parameter See the description for the BitMap
qualifier.
COUNTER FALSE Property, BOOLEAN | Applicable only to unsigned integer
Method, types.
Parameter

Represents a non-negative integer which
monotonically increases until it reaches
amaximum value of 2*n-1, when it
wraps around and starts increasing again
from zero. N can be 8, 16, 32 or 64
depending on the datatype of the object
to which the qualifier is applied.

Counters have no defined "initial"
value, and thus, asingle value of a
Counter has (in generd) no information

content

DESCRIPTION NULL Any STRING Provides a description of aNamed
Element.

DISPLAYNAME NULL Any STRING Defines aname that will be displayed
on Ul instead of the actual name of the
element.

06/14/99 16 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFIER

DEFAULT

APPLIESTO

TYPE

MEANING

GAUGE

FALSE

Property,
Method,
Parameter

BOOLEAN

Applicable only to unsigned integer
types.

Represents a non-negative integer,
which may increase or decrease, but
shall never exceed a maximum value.
The maximum value can not be greater
than 2"n - 1. N can be 8, 16, 32 or 64
depending on the datatype of the object
to which the qualifier is applied.

The vaue of a Gauge has its maximum
value whenever the information being
modeled is greater or equal to that
maximum value; if the information
being modeled subsequently decreases
below the maximum value, the Gauge
also decreases.

TRUE

Parameter

BOOLEAN

Indicates that the associated parameter
is used to pass values to a method.

KEY

FALSE

Property,
Reference

BOOLEAN

Indicates that the property is part of the
namespace handle (see Section[5.3.1.2
for information about namespace
handles). If more than one property has
the KEY qudlifier, then all such
properties collectively form the key (a
compound key).

Usage Rule: Keys are written once at
object instantiation and must not be
modified thereafter. It does not make
sense to apply a default valueto aKEY -
qualified property.

MAPPINGSTRINGS

NULL

Class,
Property,
Association,
Indication,
Reference

STRING
ARRAY

Mapping strings for one or more
management data providers or agents.
See Section and for more
details.

MAX

NULL

Reference

INT

Indicates the maximum cardinality of
the reference (i.e. the maximum number
of values agiven reference can have for
each set of other reference valuesin the
association). For example, if an
association relates A instancesto B
instances, and there must be at most one
A instance for each B instance, then the
reference to A should have aMax(1)
qualifier.

06/14/99

17 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFIER

DEFAULT

APPLIESTO

TYPE

MEANING

MAXLEN

NULL

Property,
Method,
Parameter

INT

Indicates the maximum length, in
characters, of astring dataitem. When
overriding the default value, any
unsigned integer value (uint32) can be
specified. A value of NULL implies
unlimited length.

MAXVALUE

NULL

Property,
Method,
Parameter

INT

Maximum value of this object.

MIN

Reference

INT

Indicates the minimum cardinality of
the reference (i.e. the minimum number
of values a given reference can have for
each set of other reference valuesin the
association). For example, if an
association relates A instances to B
instances, and there must be at least one
A instance for each B instance, then the
reference to A should have aMin(1)
qualifier.

MINVALUE

NULL

Property,
Method,
Parameter

INT

Minimum value of this object.

MODEL
CORRESPONDENCE

NULL

Property

STRING
ARRAY

Indicates a correspondence between an
object’s property and other properties
the CIM Schema. Object properties a
identified using the following syntax:

<class or

" <property name

<schema name>"_'
association name>

=]

V

NONLOCAL

NULL

Reference

STRING

Indicates the location of an instance. |
value is
<namespacetype>://<namespacehand

Usage Rule: Cannot be used with the
NonLocalType qualifier.

0

e

NONLOCALTYPE

NULL

Reference

STRING

Indicates the type of location of an
instance. Its value is <namespacetype

Usage Rule: Cannot be used with the
NonLocal qualifier.

V

06/14/99

18

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFIER DEFAULT | APPLIESTO | TYPE MEANING

NULLVALUE NULL Property STRING Defines a value the presence of which
indicates that the associated property is
NULL - that is that the property cannot
be considered as having a valid or
meaningful value.

The conventions and restrictions used
for defining null values are the same as
those applicable to the ValueMap
qualifier.

Note this qualifier cannot be overridden
as it seems unreasonable to permit a
subclass to return a different null value
to that of the superclass.

ouT FALSE Parameter BOOLEAN Indicates that the associated parameter
is used to return values from a method.
OVERRIDE NULL Property, STRING Indicates that the property, method, o
Method, reference in the derived class overridgs
Reference the similar construct (of the same name)

in the parent class in the inheritance
tree, or in the specified parent class. The
value of this qualifier MAY identify the
parent class whose subordinate

construct (property, method, or

reference) is overridden. The format of
the string to accomplish this is:

[<class>.]<subordinate construct>

If the class name is omitted, the
Override applies to the subordinate
construct in the parent class in the
inheritance tree.

Usage Rule: The Override qualifier can
only refer to constructs based on the
same meta model. Also, it is not
allowed to change a construct's name |or
signature when overriding.

06/14/99 19 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFIER DEFAULT | APPLIESTO | TYPE MEANING

PROPAGATED NULL Property STRING The propagated qualifier is astring-
valued qualifier that contains the name
of the key that is being propagated. Its
use assumes the existence of only one
weak qualifier on areference that has
the containing class asits target. The
associated property must have the same
value as the property named by the
qualifier in the class on the other side of
the weak association. The format of the
string to accomplish thisis:

[<class>.]<subordinate construct>
Usage Rule: When the PROPAGATED

qualifier isused, the KEY qualifier must
be specified with avalue of TRUE.

READ TRUE Property BOOLEAN | Indicates that the property is readable.
REQUIRED FALSE Property BOOLEAN | Indicatesthat anon-NULL vaueis
required for the property.
REVISION NULL Class, STRING Provides the minor revision number of
Association, the schema object.
Indication,
Schema Usage Rule: The VERSION qualifier

must be present to supply the major
version number when the REVISION

qualifier is used.
SCHEMA NULL Property, STRING The name of the schemain which the
Method feature is defined.
SOURCE NULL Class, STRING Indicates the location of an instance. Its
Association, vaueis
Indication, <namespacetype>://<namespacehandle>
Reference
Usage Rule: Cannot be used with the
SourceType qudlifier.
Indicates the type of location of an
SOURCETYPE NULL cl &S, STRING instance. Its value is <namespacetype>
Association,
Indication i
’ Usage Rule: Cannot be used with the
Reference Source qudlifier.
For methods indicates that the method is
STATIC FALSE zg&%&y' BOOLEAN aclass method that does not depend on

any per-instance data.

For properties, indicates that the
property is aclass variable rather than
an instance variable.

06/14/99 20 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFIER

DEFAULT

APPLIESTO

TYPE

MEANING

TERMINAL

FALSE

Class

BOOLEAN

Indicate that the class can have no
subclasses. If such asubclassis declared
the compiler will generate an error.

Note this qualifier cannot coexist with
the Abstract qualifier. If both are
specified the compiler generates an
error.

UNITS

NULL

Property,
Method,
Parameter

STRING

Provides units in which the associated
dataitemis expressed. For example, a
Size dataitem might have Units
("bytes"). The complete set of standard
unitsis defined in Appendix C.

VALUEMAP

NULL

Property,
Method,
Parameter

STRING
ARRAY

Defines the set of permissible values for
this property, method return type or
method parameter. The VaueMap can
be used alone, or in combination with
the Values qudifier. When used in
combination with the Vaues qudlifier,
the location of the valuein the
VaueMap array provides the location of
the corresponding entry in the Vaues

array.

VaueMap may only be used with string
and integer values. The syntax for
representing an integer value in the
VaueMap array is:

[+][-]digit[*digit]

The content, maximum number of digits
and represented value are constrained by
the type of the associated property. For
example, uint8 may not be signed, must
be less than four digits, and must
represent a value less than 256.

VALUES

NULL

Property,
Method,
Parameter

STRING
ARRAY

Provides trand ation between an integer
value and an associated string. If a
VaueMap qudlifier is not present, the
Vaues array isindexed (zero relative)
using the value in the associated
property, method return type or method
parameter. If aVaueMap qudifier is
present, the Valuesindex is defined by
the location of the property valuein the
VaueMap.

VERSION

NULL

Class, Schema,
Association,
Indication

STRING

Provides the mgjor version number of
the schema object. Thisisincremented
when changes are made to the schema
that alter the interface.

06/14/99

21 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFIER DEFAULT | APPLIESTO | TYPE MEANING

WEAK FALSE Reference BOOLEAN | Indicates that the keys of the referenced
classinclude the keys of the other
participantsin the association. This
qualifier is used when the identity of the
referenced class depends on the identity
of the other participantsin the
association. No more than one reference
to any given class can be weak. The
other classes in the association must
define akey. The keys of the other
classesin the association are repeated in
the referenced class and tagged with a
propagated qualifier.

WRITE FALSE Property BOOLEAN | Indicates whether write accessis
alowed for a property by any
"consumers' of that property’s data.
This qualifier does not address the
initial assignment of a property value,
nor its maintenance by its "provider".

It describes the maximal level of access
that is alowed, and does not address
whether security and authorization
restrictions may actually prevent writing
of the data. A value of true indicates that
the property is readable and writable by
"consumers', given appropriate
administrative authorization. A value of
falseindicates that the property is only
readable by "consumers', regardless of
authorization.

2.5.3 Optional Qualifiers

The optional qualifierslisted in this table address situations that are not common to al CIM-
compliant implementations. Thus, CIM-compliant implementations can ignore optiona
qualifiers since they are not required to interpret or understand these qualifiers. These are
provided in the specification to avoid random user-defined qualifiers for these recurring
situations.

QUALIFER DEFAULT | APPLIESTO | TYPE MEANING

06/14/99 29 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFER DEFAULT | APPLIESTO | TYPE MEANING
DELETE FALSE Association, BOOLEAN | For associations: Indicates that the
Reference qualified association must be deleted if
any of the objects referenced in the
association are deleted, AND the
respective object referenced in the
association is qualified with
IFDELETED.
For references: Indicates that the
referenced object must be deleted if the
association containing the reference is
deleted, AND qualified with
IFDELETED, or if any of the objects
referenced in the association are deleted
AND the respective object referenced in
the association is qualified with
IFDELETED.
Usage Rule: Applications must to chase
associations according to the modeled
semantic and delete objects
appropriately. Note: Thisusagerule
must be verified when the CIM security
mode! is defined.
EXPENSIVE FALSE Property, BOOLEAN | Indicates the property or classis
Reference, expensive to compute.
Class,
Association,
Method
IFDELETED FALSE Association, BOOLEAN | Indicatesthat al objects qualified by
Reference DELETE within the association must be
deleted if the referenced object or the
association, respectively, is deleted.
INVISIBLE FALSE Association, BOOLEAN | Indicates that the association is defined
Property, only for internal purposes (for example,
Method, for definition of dependency semantics)
Reference, and should not be displayed (for
Class example, in maps).
LARGE FALSE Property, BOOLEAN | Indicates the property or class requires a
Class large amount of storage space.
PROVIDER NULL Any STRING An implementation specific handle to
the instrumentation that popul ates those
elements in the schemas which refer to
dynamic data.
SYNTAX NULL Property, STRING Specific type assigned to a dataitem.
Reference,
Method, Usage Rule: Must be used with the
Parameter SyntaxType qualifier.
06/14/99 23

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

QUALIFER DEFAULT | APPLIESTO | TYPE MEANING

SYNTAXTYPE NULL Property, STRING Defines the format of the SYNTAX
Reference, qualifier.
Method,
Parameter Usage Rule: Must be used with the

SYNTAX qudlifier.

TRIGGERTYPE NULL Class, STRING Indicates the circumstances under which
Property, atrigger isfired.
Method,
Association, Usage Rule: The trigger types vary by
Indication, meta-model construct. For classes and
Reference associations, the legal values are

CREATE, DELETE, UPDATE and
ACCESS. For properties and references,
the legal values are: UPDATE and
ACCESS. For methods, the legal values
are BEFORE and AFTER. For
indications, the legal values are

THROWN.
UNKNOWN NULL Property STRING Defines a set of values the presence of
VALUES ARRAY which indicates that the value of the

associated property is unknown — that
that the property cannot be considered
as having a valid or meaningful value.

S

The conventions and restrictions used
for defining unknown values are the
same as those applicable to the
ValueMap qualifier.

Note this qualifier cannot be overridde
as it seems unreasonable to permit a
subclass to treat as a known value a
value that is treated as unknown by
some superclass.

>

UNSUPPORTED NULL Property STRING Defines a set of values the presence qf
VALUES ARRAY which indicates that the value of the
associated property is unsupported —
that is that the property cannot be
considered as having a valid or
meaningful value.

The conventions and restrictions used
for defining unsupported values are the
same as those applicable to the
ValueMap qualifier.

Note this qualifier cannot be overridde
as it seems unreasonable to permit a
subclass to treat as a supported value|a
value that is treated as unknown by
some superclass.

>

06/14/99 24 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

2.5.4 User-defined Qualifiers

The user can define any additional arbitrary named qualifiers. However, it is recommended that
only defined qualifiers be used, and that the list of qualifiers be extended only if thereis no other
way to accomplish a particular objective.

255 Mapping MIF Attributes

Mapping Management Information Format (MIF) attributes to CIM Properties can be
accomplished using the MAPPINGSTRINGS qualifier. This qualifier provides a mechanism to
specify the mapping from DM TF and vendor-defined MIF groups to specific properties. This
alows for mapping using either Domain or Recast Mapping.

Every MIF group contains a unique identification that is defined using the class string, which is
defined as follows:

defi ni ng body| specific nane| version

where defining body isthe creator and owner of the group, specific name is the unique name of
the group and version is athree-digit number that identifies the version of the group definition. In
addition, each attribute has a unique numeric identifier, starting with the number one.

Therefore, the mapping qualifier can be represented as a string that is formatted as follows:

M F. defi ni ng body| speci fic nane|version.attributeid

where MIF is a constant defining this as a MIF mapping followed by adot. Thisis then followed
by the class string for the group this defines, and optionally followed by a dot and the identifier of
aunique atribute.

In the case of a Domain Mapping, al of the above information is required, and provides away to
map an individual MIF attribute to a particular CIM Property. In the case of the recast mapping, a
CIM class can be recast from a MIF group and only the MIF constant, followed by the dot
separator followed by the class string, is required.

For example, a Domain Mapping of a DMTF MIF attribute to a CIM property would be as
follows:

[MAPPI NGSTRI NGS{ "M F. DMTF| Conrponent | D| 001. 4"}, READ]
Seri al Nunber = "";

The above declaration defines a mapping to the SerialNumber property from the DMTF Standard
Component ID group’s serial number attribute. Because the qualifiers of CIM are a superset of
those found in MIF syntax, any qualifier may be overridden in the CIM definition.

06/14/99 25 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

2.5.6

To recast an entire MIF group into a CIM Object, the mapping string can be used to define an
entire Class. For example:

[MAPPI NGSTRI NGS {"M F. DMTF| Sof t war e Si gnat ur e| 002"}]
class McroSoftWrd : SoftwareSi gnature

{
}

Mapping Generic Data to CIM Properties

In addition to mapping MIF attributes, the MAPPINGSTRINGS qualifier can be used to map
SNMP variablesto CIM properties. Every standard SNMP variable has associated with it a
variable name and a unique object identifier (OID) that is defined by a unique naming authority.
This naming authority isastring. This string can either be a name

standards body (e.g., "IETF"), acompany name (e.g., "Acme") for defining the mappingsto a
company?s private MIB, and/or an appropriate management protocol (e.g., "SNMP"). For the
IETF case, the ASN.1 module name, not the RFC number, should be used as the MIB name (e.g.,
instead of saying RFC1493, the string "BRIDGE-MIB" should be used). Thisis also true for the
case of acompany name being used as the naming authority. For the case of using a management
protocol like SNMP, the SNMP OID can be used to identify the appropriate SNMP variable. This
latter is especially important for mapping variablesin private MIBs.

It should be noted that the concept of a naming authority for mapping data other than SNMP data
into CIM properties could be derived from this requirement. As an example, this can be used to
map attributes of other data stores (e.g., directories) using an application-specific protocol (e.g.,
LDAP).

The syntax for mapping MIF attributes as defined in Section isasfollows:

' MF.<defining_body | specific_name | version>. attributeid"

The above MIF format can be reconciled with the more general syntax needed to map generic
datato CIM properties by realizing that both forms can be represented as follows:

' <For mat >. <Scopi ng_Nane>. <Content > "

where:

"Format" defines the format of the entry. It has the following values:
"MIF" means that the rest of the string isinterpreted as MIF data
"MIB" means that the rest of the string is interpreted as a variable name of aMIB
"OID" means that the rest of the string isinterpreted as an OID that is defined by a

particular protocol to represent a variable name

"Scoping_Name" defines the format used to uniquely identify the entry. It has the following
values:

06/14/99 26

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

"defining_body | specific_name | version™ is used for MIF mappings

"Naming_Authority | MIB_Name" is used for MIB mappings

"Naming_Authority | Protocol_Name" is used for protocol mappings that use OIDsto

represent a variable name

"Content" defines the value of the entry. It has the following values:
"attributeid" is used for MIF mappings
"Variable Name" is used for MIB mappings

"OID" is used for protocol mappings

Here are two examples of the syntax. The first usesthe MIB format and looks as follows:

[Description(

"QperatingSystem s notion of the local date and time of day"),

Mappi ngStrings {"M B. | ETF | HOST- RESOURCES- M B. hr Syst enDat e"}]
dateti me Local Dat eTi ne;

The second exampl e uses the OID format and looks as follows:

[Descri ption(
"QperatingSystem s notion of the local date and tinme of day"),
Mappi ngStrings {"OD.IETF | SNMP.1.3.6.1.2.1.25.1.2"}]

dateti me Local Dat eTi ne;

06/14/99

27 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

3 MANAGED OBJECT FORMAT

The management information is described in alanguage based on Interface Definition Language
(IDL) [3] called the Managed Object Format (MOF). This document uses the term MOF
specification to refer to a collection of management information described in a manner
conformant to the MOF syntax.

Elements of MOF syntax are introduced on a case-by-case basis with examples. In addition, a
complete description of the MOF syntax is provided in

Note: All grammars defined in this specification use the notation defined in [7]; any exceptions
are stated with the grammar.

The MOF syntax is away to describe object definitions in textual form. It establishes the syntax
for writing definitions. The main components of a MOF specification are textual descriptions of
classes, associations, properties, references, methods and instance declarations and their
associated qualifiers. Comments are permitted.

In addition to serving the need for specifying the managed objects, a MOF specification can be
processed using a compiler. To assist the process of compilation, a MOF specification consists of
aseries of compiler directives.

A MOF file can be encoded in either Unicode or UTF-8.

3.1 MOFusage

The managed object descriptions in a M OF specification can be validated against an active
namespace (See Section B) Such validation is typically implemented in an entity acting in the
role of a Server. This section describes the behavior of an implementation when introducing a
MOF specification into a namespace. Typically, such a process validates both the syntactic
correctness of a MOF specification, as well as the semantic correctness of such a specification
against a particular Implementation. A MOF specification can be validated for the syntactic
correctness aone, in acomponent such as aMOF compiler.

3.2 ClassDeclarations

A class declaration is treated as an instruction to create a new class. It isaloca matter asto
whether the process of introducing a M OF specification into a namespace is alowed to add
classes or modify classes.

Any class referenced in the specification of aclass or reference specification must exist at the
time of the specification (that is, forward references are not allowed).

3.3 Instance Declarations

Classes must be defined before they are used to declare instances. However, if a class definition
is already resident within the namespace, that class declaration need not appear in aMOF
specification that introduces the instances of that class.

06/14/99 28 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Any instance declaration is treated as an instruction to create a new instance where the object’s
key values do not aready exist, or an instruction to modify an existing instance where an object
with identical key values already exists.

06/14/99 29 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

4 MOF COMPONENTS

4.1

4.2

4.3

4.4

Keywords

All keywords in the MOF syntax are case-insensitive.

Comments

Comments can appear anywhere in MOF syntax and are indicated by either aleading double
slash "/I", or apair of matching "/*" and "*/" sequences.

A "/I" comment isterminated by carriage return, line feed or by the end of the MOF specification
(whichever comesfirst).

For example:

/1 This is a coment

A "/[*" comment isterminated by the next "*/" sequence or by the end of the MOF specification
(whichever comes first). Comments are not recognized by the meta model and as such, will not be
preserved across compilations. In other words, the output of a MOF compilation is not required
to include any comments.

Validation Context

Semantic validation of a MOF specification involves an explicit or implied namespace context.
Thisis defined as the namespace against which the objects in the MOF specification are validated
and the namespace in which they are created. M ultiple namespaces typically indicate the presence
of multiple management spaces or multiple devices.

Naming of Schema Elements

This section describes the rules for naming of schema elements; this applies to classes, properties,
qualifiers, methods and namespaces.

CIM is aconceptual model that is not bound to a particular implementation. This allowsit to be
used to exchange management information in a variety of ways, examples of which are described
in Section lﬂ Some implementations may use case-sensitive technol ogies, while others may use
case-insensitive technologies. The naming rules defined in this section are chosen to alow
efficient implementation in either environment, and to enable the effective exchange of
management information between all compliant implementations.

All names are case-insensitive, in that two schemaitem names are identical if they differ only in
case. Thisis mandated so that scripting technologies that are case-insensitive can leverage CIM
technology. (Note, however, that string values assigned to properties and qualifiers are not
covered by thisrule, and must be treated in a case-sensitive manner).

06/14/99 30

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

The case of anameis set by its defining occurrence and must be preserved by all
implementations. Thisis mandated so that implementations can be built using case-sensitive
technol ogies such as Java and object databases. (This also allows names to be consistently
displayed using the same user-friendly mixed-case format).

For example, an implementation, if asked to create class 'Disk’, must rgject the request if there is
already aclass 'DISK’ in the current schema. Otherwise, when returning the name of the class
'Disk’, it must return the name in mixed case asit was originally specified.

CIM does not currently require support for any particular query language. It is assumed that
implementations will specify which gquery languages are supported by the implementation and
will adhere to the case conventionsthat prevail in the specified language. That is, if the query
language is case-insensitive, statements in the language will behave in a case-insensitive manner.

For the full rulesfor schema names see Appendix H [Unicode Usage]

45 ClassDeclarations

A classis an object describing a grouping of dataitems that are conceptually related and thought
of as modeling an object. Class definitions provide a type system for instance construction.

45.1 Declaring aClass
A classis declared by specifying these components:

1. Thequadlifiers of the class. This may be empty, or alist of qualifier name/value bindings
separated by commas"," and enclosed with square brackets ("[" and "]").

2. Theclassname.
3. Thename of the class from which this classis derived (if any).

4. The class properties, which define the data members of the class. A property may also
have an optional qualifier list, expressed in the same way asthe class quaifier list. In
addition, a property has a datatype, and (optionally) a default (initializer) value.

5. The methods supported by the class. A method may have an optional qualifier list. A
method has a signature consisting of its return type, plus its parameters and their type and

usage.

This sample shows how to declare aclass:

[abstract]
cl ass W n32_Logi cal Di sk
{
[read]
string DriveLetter;
[read, Units("KiloBytes")]
sint 32 RawCapacity = 0;
[wite]
string Vol unelLabel ;
[Danger ous]
bool ean Format ([in] bool ean FastFornmat);

06/14/99 31 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2 ‘

452 Subclasses

To indicate that a classis a subclass of another class, the derived classis declared by using a
colon followed by the superclass name.

For example, if the class Acme _Disk vl isderived from the class CIM_Media:
class Acme_Disk_vl : Cl M Media
/1 Body of class definition here ...
}

The terms Base class, superclass and supertype are used interchangeably, as are Derived class,
subclass and subtype.

The superclass declaration must appear at a prior point in the MOF specification or already be a
registered class definition in the namespace in which the derived classis defined.

4.5.3 Default Property Values

Any properties in a class definition can have default initializers. For example:

class Acnme_Disk vl : CIM Media
{

string Manufacturer
string Model Nunber

"Acne";
"123- AAL";

b

When new instances of the class are declared, then any such property is automatically assigned its
default value unless the instance declaration explicitly assigns a value to the property.

4.5.4 Classand Property Qualifiers

Qualifiers are meta data about a property, method, method parameter, class, or instance and are
not part of the definition itself. For example, aqualifier is used to indicate whether a property
value is modifiable (using the WRITE qualifier). Qualifiers always precede the declaration to

which they apply.

Certain qualifiers are well known and cannot be redefined (see the description of the meta
schema). Apart from these, arbitrary qualifiers may be used.

Qualifier declarationsinclude an explicit type indicator, which must be one of the intrinsic types.
A qualifier with an array-based parameter is assumed to have atype, which is a variable-length
homogeneous array of one of the intrinsic types. Note that in the case of boolean arrays, each
element in the array iseither TRUE or FALSE.

Examples:
Wite(true) /'l bool ean
profile { true, false, true } /'l bool ean []
description("A string") Il string
info { "this", "a", "bag", "is" } Il string []
id(12) /'l uint32
idlist { 21, 22, 40, 43} /1 uint32 []
appl e(3. 14) Il real 32
oranges { -1.23E+02, 2.1} Il real 32 []

06/14/99 32 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Qualifiers are applied to a class by preceding the class declaration with aqualifier list, comma-
separated, and enclosed within square brackets. Qualifiers are applied to a property or method in
asimilar fashion.

For example:

class CI M Process: Cl M Logi cal El enent

{
uint32 Priority;
[Wite(true)]
string Handl e;

b

When specifying a boolean qualifier in aclass or property declaration, the name of the qualifier
can be used without also specifying a value. From the previous example:

class CI M Process: Cl M Logi cal El enent
{
uint32 Priority;
[Wite] // Equivalent declaration to Wite (True)
string Handl e;
b

If only the qualifier nameislisted for a boolean qualifier, it isimplicitly set to TRUE.

In contrast, when a qudifier is not specified at all for aclass or property, the default value for the
qualifier is assumed. Using another example:

[Associ ati on,
Aggr egati on] /1 Specifies the Aggregation qualifier to be True
cl ass Cl M _SystenmDevi ce: Cl M _Syst emConponent
{
[Override ("G oupConmponent"),
Aggregate] // Specifies the Aggregate qualifier to be True
Cl M_Conput er Syst em Ref G oupConponent ;
[Override ("PartConponent"),
Weak] // Defines the Weak qualifier to be True
Cl M Logi cal Devi ce Ref Part Conponent;

b

[Associ ati on] /1 Since the Aggregation qualifier is not specified,
/1 its default value, False, is set
cl ass Acnme_Dependency: ClI M Dependency

[Override ("Antecedent")] /1 Since the Aggregate and Weak
/1 qualifiers are not used, their
/1 default values, False, are assuned
Acne_Speci al Sof tware Ref Antecedent;
[Override ("Dependent")]
Acnme_Devi ce Ref Dependent;

b

Qualifiers can be transmitted automatically from classes to derived classes, or from classes to
instances, subject to certain rules. The rules behind how the transmission occurs are attached to
each qualifier and encapsulated in the concept of the qudifier flavor. For example, aqualifier
may be designated in the base class as automatically transmitted to all of its derived classes, or it
may be designated as belonging specifically to that class and not transmittable. In addition, the
qualifier flavor can be used to control whether or not derived classes can override the qualifier

06/14/99

33 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

value, or whether it must be fixed for an entire class hierarchy. This aspect of qualifier flavor is
referred to as override permissions.

Qualifier flavors are indicated by an optional clause after the qualifier and preceded by a colon.

They consist of some combination of the key words EnableOverride, DisableOverride,

ToSubclass and Restricted, indicating the applicable propagation and override rules. For example:

cl ass Cl M _Process: Cl M _Logi cal El enent

uint32 Priority;
[Wite(true): Di sabl eOverride ToSubcl ass]
string Handl e;

b

In this example, Handle is designated as writable for the Process class and for every subclass of

this class.

The recognized flavor types are:

PARAMETER

INTERPRETATION DEFAULT

EnableOverride

The qualifier is overridable. yes

DisableOverride

The qualifier cannot be overriden. no

ToSubclass

The qualifier isinherited by any subclass. yes

Restricted

The qualifier applies only to the classin which it is declared. no

Translatable

Indicates the value of the qualifier can be specified in multiple no
locales (language and country combination). When
Translatable(yes) is specified for aqualifier, itislegal to create
implicit qualifiers of the form :

label_Il_cc

where " label” is the name of the qualifier with
Translatable(yes), and Il and cc are the language code ang
country code designation, respectively, for the translated
string. In other words, a label_Il_cc qualifier is a clone, or
derivative, of the “label” qualifier with a postfix to capture the
translated value's locale. The locale of the original value (that
is, the value specified using the qualifier with a name of
“label”) is determined by the locale pragma.

When a label_lI_cc qualifier is implicitly defined, the values
for the other flavor parameters are assumed to be the same as
for the “label” qualifier. When a label_II_cc qualifier is
defined explicitly, the values for the other flavor parameters
must also be the same. A “yes” for this parameter is only valid
for string-type qualifiers.

Example: if an English description is translated into Mexicg
Spanish the actual name of the qualifier is:
DESCRIPTION_es_MX.

=

06/14/99

34 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2 ‘

455 Key Properties

Instances of a class require some mechanism through which the instances can be distinguished
within asingle namespace. Designating one or more properties with the reserved qualifier "key
provides instance identification.

For example, this class has one property (Volume) which serves asits key:

class Acne_Drive

{
[key]
string Vol une;
string Fil eSystem
sint32 Capacity;
b
In this example, instances of Drive are distinguished using the VVolume property, which acts as
the key for the class.

Compound keys are supported and are designated by marking each of the required properties with
the key qualifier.

If anew subclassis defined from a superclass, and the superclass has key properties (including
those inherited from other classes), the new subclass cannot define any additional key properties.
New key propertiesin the subclass can be introduced only if all classesin the inheritance chain of
the new subclass are keyless.

If any reference to the class has the Weak qualifier, the properties that are qualified as Key in the
other classesin the association are propagated to the referenced class. The key properties are
duplicated in the referenced class using the name of the property, prefixed by the name of the
origina declaring class. For example:

class CI M System Cl M _Logi cal El enent

[Key]
string Nane;

}
class Cl M Logical Device: Cl M Logical El enment

[Key]
string Devicel D
[Key, Propagated("Cl M System Nane")]
string SystenNaneg;

[Associ ati on]
class Cl M SystenDevi ce: Cl M Syst enmConponent
{
[Override ("G oupConponent"), Aggregate, Mn(1l), Mx(1)]
Cl M_System Ref G oupConponent;
[Override ("PartConponent™"), Wak]
Cl M_Logi cal Devi ce Ref Part Conponent;
b

4.6 Association Declarations

06/14/99 35 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

46.1

4.6.2

An association is a specia kind of a class describing a link between other classes. As such, they
a so provide atype system for instance constructions. Associations are just like other classes with
afew additional semantics explained below.

Declaring an Association
An association is declared by specifying these components:

1. Thequdifiers of the association (at least the ASSOCIATION qualifier, if it doesn't have
a supertype). Further qualifiers may be specified asalist of qualifier/name bindings
separated by commas™,". The entire qualifier list is enclosed in square brackets ("[* and
7).

2. . The association name.
3. The name of the association from which this association is derived (if any).

4. The association references which define pointers to other objects linked by this
association. References may also have qualifier lists, expressed in the same way as the
association qualifier list. Especially the qualifiers to specify cardinalities of references are
important to be mentioned (seeR.5.2] " Standard Qualifiers"). In addition, areference has a
datatype, and (optionally) adefault (initializer) value.

5. Additiona association properties which define further data members of this association.
They are defined in the same way as for ordinary classes.

6. The methods supported by the association. They are defined in the same way as for
ordinary classes.

The following example shows how to declare an association (assuming given classes CIM_A and
CIM_B):

[Associ ati on]
cl ass Cl M_Li nkBet weenAandB : Cl M_Dependency

[Override ("Antecedent")]
Cl M_A Ref Antecedent;
[Override ("Dependent")]
Cl M B Ref Dependent;
}s

Subassociations
To indicate that an association is a subassoci ation of another association, the same notation as for

ordinary classesis used, i.e. the derived association is declared by using a colon followed by the
superassociation name. (An exampleis provided above.)

06/14/99 36 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

4.6.3 Key Referencesand Properties

Instances of an association al so require some mechanism through which the instances can be
distinguished, implied by the fact that they are just a special kind of a class. Designating one ore
more references/properties with the reserved KEY qualifier provides instance identification.

A reference/property of an association is (part of) the association key if the KEY qualifier is
applied.

[Associ ation, Aggregation]
cl ass Cl M _Conponent

{
[Aggregate, Key]
Cl M_ManagedSyst enEl enent Ref G oupConponent;

[Key]
Cl M_ManagedSyst entl enent Ref Part Conponent;

b
In principle, the key definition of association follows the same rules as for ordinary classes.
Compound keys are supported in the same way. Also a new subassociation cannot define any
additional key properties/references.

If any reference to a class hasthe WEAK qualifier, the KEY -qualified properties of the other
class, whose reference is not WEAK -qualified are propagated to the class. (see subchapter
"Key Properties").

4.6.4 Object References

Object references are properties which are links or pointersto other objects (classes or instances).
The value of an object reference is a string, which represents a path to another object. The path
includes:

1. The namespace in which the object resides.
2. The class name of the object.
3. If the object represents an instance, the values of all key properties for that instance.

Object reference properties are declared by "X XX ref", indicating a strongly typed reference to
objects of the class with name "XXX" (or aderived class thereof). For example:

[Associ ati on]
cl ass Acne_Exanpl eAssoc

{

Acme_Anot her Cl ass ref Instl;
Acnme_Acl ass ref lnst2;

b
In the above declaration, Inst1 can only be set to point to objects of type Acme_AnotherClass.
Also see Section [4.12.2pn Initializing References Using Aliases.

In associations, object references have cardinalities - denoted using Min and Max qualifiers. Here
are examples of UML cardinality notations and their respective combinations of Min and Max
values:

06/14/99 37

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

UML MIN MAX Required MOF Text* Description
* 0 NULL Many

1. 1 NULL Min(2) At least one
1 1 1 Min(1), Max(1) One
01(or0.1) O 1 Max (1) At most one

4.7 Qualifier Declarations

Qualifiers may be declared using the keyword “qualifier”. The declaration of a qualifier allows
the definition of types, default values, propagation rules (also known as Flavors), and restrictions
on use.

The default value for a declared qualifier is used when the qualifier is not explicitly specified for
a given schema element (explicit specification includes when the qualifier specification is
inherited).

The MOF syntax allows specifying a qualifier without an explicit value. In this case, the assumed
value depends on the qualifier type: booleans are true, numeric types are null, strings are null and
arrays are empty.

For example, the alias qualifier is declared as follows:

qualifier alias :string = null, scope (property, reference, nethod);
This declaration establishes a qualifier called alias. The type of the qualifier is string. It has a
default value of null and may only be used with properties, references and methods.

The meta qualifiers are declared as:

Qualifier Association : boolean = fal se,
Scope(cl ass, association), Flavor(Di sabl eOverride);

Qualifier Indication : boolean = fal se,
Scope(class, indication), Flavor(Di sabl eOverride);

Sed Appendix B for the complete list of standard qualifiers.

4.8 Instance Declarations

Instances are declared using the keyword sequence "instance of" and the class name. The
properties of the instance may be initialized within an initialization block.

Property initialization consists of an optional list of preceding qualifiers (which must be
compatible with the qualifiers declared in the class definition), the name of the property and an
optional value. Any properties not initialized will have default values as specified in the class

06/14/99 38 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

definition, or (if no default value has been specified) the special value NULL to indicate "absence
of value'. For example, given the class definition:
class Acrme_Logi cal Disk: CIM Partition
{
. ~ [key]
string DrivelLetter;
[Units(“kilo bytes™)]
sint32 RawCapacity = 128000;
[write]
string VolumeLabel;
[Units(“kilo bytes™)]
sint32 FreeSpace;
3
an instance of the above class might be declared as:

instance of Acme_LogicalDisk

{

DrivelLetter = "C";
VolumeLabel = "myvol";

%
The resulting instance would take these property values:
1. DrivelLetter would be assigned the value "C".
2. RawCapacity would be assigned the default value 128000.
3. Volumel abel would be assigned the value "myvol".
4. FreeSpace would be assigned the value NULL.

For subclasses, al of the propertiesin the superclass must be initialized a ong with the properties
in the subclass. Any properties not specifically assigned in the instance block will have either the
default value for the property (if thereis one), or else the value NULL (if thereis not one).

The values of al key properties must be specified in order for an instance to be identified and
created. There is no requirement to explicitly initialize other properties. See Section on
behavior when there is no property initialization.

Instances of Associations may also be defined. For example:

instance of CIM_Service SAPDependency |

Dependent = "CIM_Service.Name = \"mail\""; ‘
Antecedent = "CIM_ServiceAccessPoint.Name = \"PostOffice\""; ‘

b

4.8.1 InstanceAliasing

An alias can be assigned to an instance using this syntax:

instance of Acme_LogicalDisk as $Disk

// Body of instance definition here ...

I3

Such an dias can later be used within the same M OF specification as a value for an object
reference property. For more information, see Sectio Initializing References using Aliases.

06/14/99 39 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

4.8.2 Arrays

Arrays of any of the basic data types can be declared in the MOF specification by using square
brackets after the property identifier. Fixed-length arrays indicate their length as an unsigned
integer constant within the square brackets; otherwise, the array is assumed to be variable length.
Arrays can be bags, ordered lists or indexed arrays. An array’s typeis defined by the
ARRAYTY PE qudlifier, whose values are "Bag", "Ordered" or "Indexed". The default array type
is"Bag". Regarding each of the array types.

* Anarray of type"Bag" is unordered and multi-valued, allowing duplicate entries.

e Anordered list ("Ordered") isaspecia case of abag, whichis multi-valued and allows
duplicate entries. It returns the property values in an implementation dependent, but fixed
order.

* Anindexed array ("Indexed") maintains the order of the elements, and could be
implemented based on an integer index for each of the array values.

Note that for the "Bag" array type, no significance is defined for the array index other than a
convenience for accessing the elements of the array. For example, there can be no assumption
that the same index will return the same value for every access to the array. The only assumption
isthat a complete enumeration of the indices will return acomplete set of values.

For the "Ordered" array type, the array index is significant aslong as no array elements are
added, deleted or changed. In this case the same index will return the same value for every access
tothe array. If an element is added, deleted or changed, the index of the elements might change
according to the implementati on-specific ordering algorithm.

The"Indexed" array maintains the correspondence between element position and value. Array
elements can be overwritten, but not deleted. Indexes start at 0 and have no gaps.

The current release of CIM does not support n-dimensional arrays.

Arrays of any basic datatype are legal. Arrays of referencesare not legal. Arrays must be
homogeneous. Arrays of mixed types are not supported. In MOF, the data type of an array
precedes the array name. Array size, if fixed length, is declared within square brackets, following
the array name. If avariable length array is to be defined, empty square brackets follow the array
name.

Arrays are declared using this MOF syntax:

class A

{
[Description("An indexed array of variable length"), ArrayType("I|ndexed")]
ui nt 8 Myl ndexedArray[];

[Description("A bag array of fixed length")]
ui nt 8 MyBagArray[17];
b

If default values are to be provided for the array elements, this syntax is used:

06/14/99 40 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

class A
[Description("A bag array property of fixed |l ength")]
uint8 MyBagArray[17] = {1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17};
}s
This MOF presents further examples of "Bag", "Ordered" and "Indexed" array declarations:

cl ass Acne_Exanpl e

char16 Propl[]; /1 Bag (default) array of chars, Variable |ength
[ArrayType ("Ordered")] // Ordered array of doubl e-precision reals,

real 64 Prop2[]; /'l Variable |length

[ArrayType ("Bag")] /] Bag array containing 4 32-bit signed integers

sint32 Prop3[4];

[ArrayType ("Ordered")] // Ordered array of strings, Variable length
string Prop4[] = {"an", "ordered", "list"};

/1 Prop4 is variable length with default values defined at the
/1 first three positions in the array

[ArrayType ("Indexed")] // Indexed array of 64-bit unsigned integers
ui nt 64 Prop5[];

b
49 Method Declarations

A method is defined as an operation together with its signature. The signature consists of a
possibly empty list of parameters and areturn type. There are no restrictions on the type of
parameters other than they must be one of the data types described in Section afixed or
variable length array of one of those types, or be an object reference. Return types must be one
of the data types described in Section @ Return types cannot be arrays, but otherwise are
unrestricted. Syntactically, the only thing that distinguishes a method from a property is the
parameter list. The fact that methods are expected to have side-effects is outside the scope of this
specification.

In this example, Start and Stop methods are defined on the Service class. Each method returns an
integer value:

class Cl M Service: Cl M _Logi cal El enent

[Key]

string Nane;

string StartMde;

bool ean Start ed;
uint32 Start Service();
ui nt 32 StopService();

b

In this example, a Configure method is defined on the Physical DiskDrive class. It takesa
DiskPartitionConfiguration object reference as a parameter, and returns a boolean value.

06/14/99 a1 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

class Acne_Di skDrive: CI M Medi a

{
sint 32

sint 32
si nt 32
sint 32
string
string
string
string

Byt esPer Sect or ;
Partitions;
TracksPer Cyl i nder;
Sect or sPer Tr ack;
Tot al Cyl i nders;
Tot al Tr acks;

Tot al Sectors;
InterfaceType;

bool ean Configure([IN DiskPartitionConfiguration REF config);

b

4.10 Compiler Directives

Compiler directives are provided as the keyword "pragma’, preceded by a hash (‘#) character,
and followed by a string parameter.

The current standard compiler directives are:

COMPILER DIRECTIVE INTERPRETATION

#pragmainclude() Has afile name as a parameter. Thefileis assumed to be aMOF

file. The pragma has the effect of textually inserting the contents
of theincludefile at the point where the include pragmais
encountered.

#pragma instancel ocal&() Declares the locale used for instances described in aMOF file.

This pragma specifies the locale when "INSTANCE OF' MOF
statements include string or charl6 properties, and the locale is not
the same as the locale specified by a#pragmalocale() statement.
Thelocaleis specified as a parameter of the form Il_cc wherell is
the language code based on ISO/IEC 639, and cc is the country
code based on 1SO/IEC 3166.

#pragmalocale()

Declares the locale used for a particular MOF file. The localeis
specified as a parameter of the form II_cc, where I is the language
code based on ISO/IEC 639, and cc is the country code based on
ISO/IEC 3166. When the pragmais not specified, the assumed
locaeis"en US".

It isimportant to note that this pragma does not apply to the
syntax structures of MOF. Keywords, such as "class' and
"instance”, are dwaysin en_US.

#pragma namespace() This pragmais used to specify a Namespace path. The syntax

needs to conform to the following:
<namespacetype>://<namespacehandle>

#pragma nonlocal () See the description of the NonLocal qualifier for an explanation of

this pragma.

Usage Rule: Cannot be used with NonLoca Type pragma.

#pragma nonlocaltype() See the description of the NonLocal Type qualifier for an

explanation of this pragma.

Usage Rule: Cannot be used with NonLocal pragma

06/14/99

42

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

COMPILER DIRECTIVE INTERPRETATION
#pragma source() See the description of the Source qualifier for an explanation of
this pragma.

Usage Rule: Cannot be used with sourcetype pragma

#pragma sourcetype() See the description of the SourceType qualifier for an explanation
of this pragma.
Usage Rule: Cannot be used with source pragma.

Additional pragma directives may be added as a MOF extension mechanism. Unless
standardized in afuture CIM specification, such new pragma definitions must be considered
vendor-specific. Use of non-standard pragmas will affect interoperability of MOF import and
export functions.

When a quaifier value is derived from either aqualifier or a pragma, the quaifier overrides the
pragma.

4.11 Value Constants

4111

The constant types supported in the MOF syntax are described in the subsections that follow.
These are used in initializersfor classes and instances, and in the parameters to named qualifiers.

A formal specification of the representation is found in JAppendix A|[MOF Syntax Grammar |
Pescriptior,

String Constants

A string constant is a sequence of zero or more UCS-2 characters enclosed in double-quotes (*).
A double-quoteis alowed within the value, aslong asit is preceded immediately by a backslash

(\).
For example:
"This is a string"

Successive quoted strings are concatenated, as long as only white space or acomment intervenes:

"This" " becomes a long string"
"This" /* coment */ " becones a long string"

The escape sequencessuch as\n, \t and\r arerecognized aslegal characters within a string.
Thecomplete set is:

06/14/99

43 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

4.11.2

4.11.3

4114

\b /1 \x0008: backspace BS

\'t /1 \x0009: horizontal tab HT
\n /1 \x000A: linefeed LF

\ f /1 \x000C. formfeed FF

\r /1 \x000D: carriage return CR
\ " /1 \x0022: double quote "

\’ /1 \x0027: single quote ’

\\ /1 \x005C:. backsl ash \

\ x<hex> [/ where <hex> is one to four hex digits
\ X<hex> [/ where <hex> is one to four hex digits

The character set of the string depends on the character set supported by the local installation.
While the MOF specification may be submitted in UCS-2 form [10], the local implementation
may only support ANSI and vice-versa. Therefore, the string type is unspecified and dependent
on the character set of the MOF specification itself. If a MOF specification is submitted using
UCS-2 characters outside of the normal ASCII range, then the implementation may have to
convert these characters to the locally-equivalent character set.

Character Constants

Character and wide-character constants are specified as.
C
il \ n1
ot
"\ x32

Note: Forms such as octal escape sequences (e.g. \020’) are not supported.
Integer values can also be used as character constants, as long as they are within the numeric

range of the character type. For example, wide-character constants must fall within the range 0 to
OXFFFF.

Integral Constants
Integer constants may be decimal, binary, octal or hexadecimal.

For example, these are all legal:

1000
-12310
0x100
01236
100101B

Note that binary constants have a series of 1 and 0 digits, with a "b" or "B" suffix to indicate that
the value is binary.

The number of digits permitted depends on the current type of the expression. For example, it is
not legal to assign the constant OXFFFF to a property of type uint8

Floating-Point Constants ‘

Floating point constants are declared as specified by IEEE in Ref. [6].

06/14/99 a4 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

4.11.5

4.11.6

For example, these are legal:

3.14
-3.14
-1.2778E+02

The range for floating point constants depends on whether float or double properties are used and
must fit within the range specified for IEEE 4-byte and 8-byte floating point values, respectively.

Object Ref Constants

Object references are simple URL-style links to other objects (which may be classes or
instances). They take the form of a quoted string containing an object path. The object path isa
combination of a namespace path and the model path.

For example:

“/I./root/default:Logical Di sk. Syst emNane=\"acne\", Logi cal Di sk. Drive=\"Q""
"/l./lroot/default:NetworkCard=2"

An object reference can also be an alias. See Section.12.2)for more details.

NULL

All types can be initialized to the predefined constant NULL, which indicates no value has been
provided. The details of the internal implementation of the NULL value are not mandated by this
document.

4.12 Initializers

412.1

Initializers are used both in class declarations for default values and instance declarations to
initialize a property to avalue. The format of initializer valuesis specified in Section@ and its
subsections.

Theinitiaizer value must match the property datatype. The only exceptions are the NULL
value, which may be used for any data type, and integral values, used for characters.

Initializing Arrays

Arrays can be defined to be of type, "Bag", "Ordered" or "Indexed", and can be initialized by
specifying their valuesin a comma-separated list (asin the C programming language). Thelist of
array elementsis delimited with curly brackets.

For example, given this class definition:

cl ass Acne_Exanpl ed ass

{
[ArrayType ("Indexed")]

string i p_addresses []; /1 Indexed array of variable |ength
sint32 sint32_values [10]; // Bag array of fixed length = 10

b

thisisavalid instance declaration:

06/14/99

45 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

4.12.2

i nstance of Acne_Exanpl ed ass
i p_addresses = { "1.2.3.4", "1.2.3.5", "1.2.3.7" };

/! ip_address is an indexed array of at |east 3 elenents, where
/1 val ues have been assigned to the first three elenents of the
Il array

sint32 values = { 1, 2, 3, 5, 6 };
3

Refer to Section[4.8.2]for additional information on declaring arrays, and the distinctions between
bags, ordered arrays and indexed arrays.

Initializiing References Using Aliases

Aliases are symbolic references to an object located el sewhere in the MOF specification. They
only have significance within the MOF specification in which they are defined, and are only used
at compile timeto facilitate establishment of references. They are not available outside of the
MOF specification.

Classes and instances may be assigned an alias as described in Section Aliases are
identifiers which begin with the $ symbol. When a subsequent reference to that instance is
required for an object reference property, the identifier is used in place of an explicit initializer.

Assuming that $Aliasl and $Alias2 have been declared as aliases for instances, and the obref1
and obref2 properties are object references, this example shows how the object references could
be assigned to point to the aliased instances:

i nstance of Acne_AnAssoci ation

strval = "ABC';
obrefl = $Aliasl;
obref2 = $Alias2;

b
Forward-referencing and circular aliases are permitted.

06/14/99

46 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

5 NAMING

Because CIM is not bound to a particular technology or implementation, it promises to facilitate
sharing management information between a variety of management platforms. The CIM Naming
mechanism was defined to address enterprise-wide identification of objects, as well as the sharing
of management information.

CIM Naming addresses these requirements:

1. Ability to locate and uniquely identify any object in an enterprise
e Unambiguous enumeration of all objects
« Ability to determine when two object names reference the same entity

e Location transparency (no need to understand which management platforms proxy other
platforms’ instrumentation)

2. Allow sharing of objects and instance data among management platforms

« Allow creation of different scoping hierarchies which vary by “time” (for example, a
“current” vs. “proposed” scoping hierarchy)

3. Facilitate move operations between object trees (including within a single management
platform)

* Hide underlying management technology/provide technology transparency for the
domain-mapping environment

* Object name identifiable regardless of instrumentation technology
« Allowing different names for DMI vs. SNMP objects requires the management platform
to understand how the underlying objects are implemented

The KEY qualifier is the CIM Meta-Model mechanism used to identify the properties that
uniquely identify an instance of a class (and indirectly an instance of an association). CIM
Naming enhances this base capability by:

e introducing the WEAK and PROPOGATED qualifiers to express situations in which the
keys of one object are to be propagated to another object.

* introducing the SOURCE pragma and qualifier (“namespacetype://namespace_handle”)
to allow details about the implementation source to be recorded in a MOF file.

« introducing the NONLOCAL qualifier (“namespacetype://namespace_handle”) to
reference an object instance kept in another implementation.

5.1 Background

CIM MOF files can contain definitions of instances, classes or both, as illustrated in this diagram:

06/14/99 47 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

model.mof

L Object M anager
Definition i

T Compile D atabase
~——
B e —— Implementation

modelwithinst.mof

Definition Nam@

———— Compile
I and Import
~———— >
Instance Of

~——— e ———— ——
~—— e —

~—— e —
~——

instanceonly.mof

Instance Of Import

~——————————— —
~—————————
~—————————
~—————————————

\

Figure 5-1 Definitions of instances and classes

MOF files can be used to populate a technology that understands the semantics and structure of

CIM. When aMOF file is consumed by a particular implementation, there are two operations that

are actually being performed, depending on the file's content. First, a compile or definition
operation is performed to establish the structure of the model. Second, an import operation is
performed to insert instances into the platform or tool.

Once the compile and import are completed, the actual instances are manipulated using the native
capabilities of the platform or tool. In other words, in order to manipulate an object (for example,
change the value of a property), one must know the type of platform the information was

imported into, the APIs or operations used to access the imported information, and the name of
the platform instance that was actually imported. For example, the semantics become:

Set the Version property of the Logical Element object with Name="Cool” in the relational
database named LastWeeksData to “1.4.0".

The contents of a MOF file are loaded into a namespace that provides a domain (in other words, a
container), in which the instances of the classes are guaranteed to be unique per the KEY qualifier
definitions. The term namespace is used to refer to an implementation that provides such a
domain.

Namespaces can be used to:

« Define chunks of management information (objects and associations) to limit
implementation resource requirements, such as database size.

« Define views on the model for applications managing only specific objects, such as hubs.

e Pre-structure groups of objects for optimized query speed.

Another viable operation is exporting from a particular management platform. Essentially, this
operation creates a MOF file for all or some portion of the information content of a platform.

06/14/99 48 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Type: Mgmt_X
Type Handle: EastCoast

Object Manager
| mplementation eastcoast.mof

Definition

| nstance Of

e

[]

class Figs_Circle
instance of Figs_Triangle {Label=2 ; Color="Blue”;Area=12 };
instance of Figs_Triangle {Label=4 ; Color="Blue”;Area=12 };
instance of Figs_Circle { Name=1 ; Color="Blue” };

instance of Figs_Circle { Name=3 ; Color="Blue” };

instance of Figs_Circle { Name=5 ; Color="Blue” };

[key] uint32 Name;
string Color; };

class Figs_Triangle

[key] uint32 Label; instance of Figs_CircleToTriangle
string Color ; { ACircle = "Circle.Name=1",
uint32 Area; ATriangle = "Triangle.Label=2"; };

h
instance of Figs_ CircleToTriangle
[Association] class Figs_CircleToTriangle { ACircle = "Circle.Name=5",
ATriangle = "Triangle.Label=2"; };
Figs_Circle REF ACircle;
Figs_Triangle REF ATriangle; instance of Figs_ CircleToTriangle

Y { ACircle = "Circle.Name=5",
ATriangle = "Triangle.Label=4"; };
[Association] class Figs_Covers
{ instance of Figs_ Covers
Figs_Triangle REF Over; { Over = "Triangle.Label=2";
Figs_Triangle REF Under; Under = "Triangle.Label=4"; };
h

Figure 5-2 Exporting to MOF

For example, information is exchanged when the source system is of type Mgmt_X and its name
is EastCoast. The export produces a MOF file with the circle and triangle definitions and
instances 1, 3, 5 of the circle class and instances 2, 4 of thetriangle class. This MOF file isthen
compiled and imported into the management platform of type Mgmt_ABC with the name
AllCoasts.

06/14/99 49 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

_ Type: Mamt 2
Ohbject Managﬁr Type Handle: EastC oast
Implementation

eastcoast.m of

@ Definition Type: Mgmt ABC
T e Type Handle: AlC oasts

T e Object MManager
\E_> Instance OFf Implementati on
Kport e e~

©

Importt

Figure 5-3 Information Exchange

The import operation involves storing the information in alocal or native format of Mgmt_ ABC
S0 its native operations can be used to manipulate the instances. The transformation to a native
format is shown in the figure by wrapping the five instances in hexagons. The transformation
process must maintain the original keys.

5.1.1 Management Tool Responsibility for an Export Operation

The management tool must be able to create unique key values for each distinct object it placesin
the MOFfile.

For each instance placed in the MOF file, the management tool must maintain a mapping from
the MOF file keys to the native key mechanism.

5.1.2 Management Tool Responsibility for an Import Operation

The management tool must be able to map the unique keys found in the MOF file to a set of
localy-understood keys.

5.2 Weak Associations: Supporting Key Propagation

CIM provides a mechanism to name instances within the context of other object instances. For
example, if amanagement tool is handling aloca system, then it can refer to the C drive or the D
drive. However, if a management tool is handling multiple machines, it must refer to the C drive
on machine X and the C drive on machine Y. In other words, the name of the drive must include

06/14/99 50 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

the name of the hosting machine. CIM supports the notion of weak associations to specify this
type of key propagation.

A weak association is defined using a qualifier. For example:

Qualifier Weak: boolean = fal se, Scope(reference), Flavor(Di sabl eQverride);

The key(s) of the referenced class includes the key(s) of the other participantsin the WEAK
association. This situation occurs when the referenced class identity depends on the identity of
other participantsin the association.

Usage Rule: This qualifier can only be specified on one of the references defined for an
association. The Weak referenced object is the one that depends on the other object for identity.

Thisfigure shows an example. There are three classes: ComputerSystem, OperatingSystem and
Local User. The Operating System class is weak with respect to the Computer System class, since
the runs association is marked weak. Similarly, the Local User classis weak with respect to the
Operating System class, since the association is marked weak.

Mode!... | nstances...
Computer CS_Name=UnixHost
System
runs
—| weak
Operating CS_Nname=UnixHost
System OS_Name=acmeunix
has
weak
Local CS Name=UnixHost CS Name=UnixHost
UO OS_Name=acmeunix OS_Name=acmeunit
S uid=33 uid=44
Propagated Keys

Figure 5-4 Example of Weak Association

In the context of aweak association definition, the Computer System classis a scoping class for

the Operating System class, since its keys are propagated to the Operating System class. The

Computer System and the Operating System classes are both scoping classes for the Local User

class, since the Local User class gets keys from both. Finally, the Computer Systemis referred to
asaTop Level Object (TLO) becauseit is not weak with respect to any other class. The fact that
aparticular classis atop-level object isinferred because no referencesto that class are marked

with the WEAK qualifier. In addition, Top Level Objects must have the possibility of an
enterprise-wide, unique key. An example may be a computer’s IP address in a company’s
enterprise-wide IP network. The goal of the TLO concept is to achieve uniqueness of keys in the

06/14/99 51 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

model path portion of the object name. In order to come as close as possible to thisgoal, TLO
must have relevance in an enterprise context.

Objectsin the scope of another object can in turn be a scope for other objects; hence, all model

object instances are arranged in directed graphs with the Top Level Object’s (TLO’s) as peer
roots. The structure of this graph — in other words, which classes are in the scope of another given
class — is defined as part of CIM by means of associations qualified with the WEAK qualifier.

5.2.1 Referencing Weak Objects

5.3

A reference to an instance of an association includes the propagated keys. The properties must
have the propagated qualifier that identifies which class the property originates in and what the
name of the property is in that class — for example

i nstance of Acne_has
{
anCS = "Acne_OS. Nanme=\"acneuni t\ ", Syst emNane=\ " Uni xHost\"";
aUser = "Acne_User. ui d=33, OSNane=\"acneuni t\", Syst emNane=\"Uni xHost\"";

The operating system being weak to system would be declared as:
Cl ass Acne_CS

[key]
String Nane;
[key, Propagated("Cl M System Nane")]
String SystenNane;
b

The user class being weak to operating system would be declared as:

Cl ass Acne_User

[key]
String uid;

[key, Propagated("Acne_OS. Nane")]
String OSNane;

[key, Propagated("Acne_OS. Syst enNane")]
String SystenNane;

3
Naming CIM Objects

Since CIM allows for multiple implementations, it is not sufficient to think of the name of an

object as just the combination of properties that have the KEY qualifier. The name must also
identify the implementation that actually hosts the objects. The object name consists of the
Namespace Path, which provides access to a CIM implementation, plus the Model Path, which
provides full navigation within the CIM schema. The namespace path is used to locate a
particular name space. The details of the namespace path are dependent on a particular
implementation. The model path is the concatenation of the properties of a class that are qualified
with the KEY qualifier. When the class is weak with respect to another class, the model path
includes all key properties from the scoping objeEke following figure shows the various
components of an object name. These are described in more details in the following sections.

06/14/99 592

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Object Name
e N
- N
Namespace Path Model Path
— — — —— ~
Namespace Namespace
Type Handle

I_H —— ™
HTTP://CIMOM _host/root/CIMV2 : CIM_Disk.keyl=valuel

Figure 5-5 Object Naming

5.3.1 Namespace Path

A Namespace path references a namespace within an implementation that is capable of hosting
CIM objects.

A Namespace path resolves to a namespace hosted by a CIM-Capable implementation (in other
words, a CIM Object Manager). Unlike the Model Path, the details of the Namespace path are
implementation-specific. Therefore, the Namespace path provides two pieces of information: it
identifies the type of implementation or namespace type, and it provides a handle that references
a particular implementation or namespace handle.

5.3.1.1 Namespace Type

The namespace type classifies or identifies the type of implementation. The provider of such an
implementation is responsible for describing the access protocol for that implementation. Thisis
analogous to specifying http or ftp in a browser.

Fundamentally, a namespace type implies an access protocol or API set that can be used to
mani pul ate objects. These APIswould typically support: (1) generating a MOF file for a
particular scope of classes and associations, (2) importing a MOF file and (3) manipulating
instances. A particular management platform may have a variety of ways to access management
information. Each of these ways must have a namespace type definition. Given thistype, there
would be an assumed set of mechanisms for exporting, importing and updating instances.

5.3.1.2 Namespace Handle

The Namespace handle identifies a particular instance of the type of implementation. This
handle must resolve to a namespace within an implementation.

The details of the handle are implementation-specific. It might be asimple string for an
implementation that supports one namespace, or it might be a hierarchical structureif an
implementation supports multiple namespaces. Either way, it resolves to a namespace.

06/14/99 53 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

It isimportant to note that some implementations can support multiple namespaces. In this case,
the implementation-specific reference must resolve to a particular namespace within that
implementation.

Implementation with
Multiple Namespaces

Implementation with

One Namespace Object M B2 g
Implementation
Object Manager \default

Implementation

\default\old

\local
Type: Mgmt_ABC
Type Handle: AllCoasts

Figure 5-6 Namespaces

There are two important observations to make:

1. Namespaces can overlap with respect to their contents.

2. An object in one name space, which has the same model path as an object in another
name, space does not guarantee that the objects are representing the same redlity.

5.3.2 Modd Path

The object name constructed as a scoping path through the CIM schemaiis referred to as a Model
Path.A model path is a combination of the key properties values qualified by the class name. Itis |
solely described by CIM elements and is absol utely implementati on-independent. It is used to
describe the path to a particular object or to identify a particular object within a namespace. The
name of any object is a concatenation of named key property values, including all key values of
its scoping objects.. When the classis weak with respect to another class, the model path includes
all key properties from the scoping objects.

The syntax of Model Pathis:

<Qualifyingclass>.<keyl>=<valuel>[,<keyx>=<valuex>]*

06/14/99 54 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

533

Specifying the Object Name

There are various mechanisms for specifying the object name details for any class instance or any
association reference in a MOF file.

The model path is specified for object and association differently. For objects (instances of
classes), the model path isthe combination of property value pairs that are marked with the KEY
qualifier. So the model path for the following is: "ex_sampleClass.|abel 1=9921,1abel 2=8821".
Since the order of the key propertiesis not significant, the model path could also be:
"ex_sampleClass.label 2=8821,|abel 1=9921".

Cl ass ex_sanpl ed ass

[key]
ui nt 32 | abell;
[key]
ui nt 32 | abel 2;
ui nt 32 size;
ui nt 32 wei ght ;
b

i nstance of ex_sanpl ed ass

{

| abel 1 = 9921;
| abel 2 = 8821;
size = 80;

wei ght = 45

b

For associations, amodel path is used to specify the value of areferencein an INSTANCE OF
statement for an association. In the following composedof-association example, the model path
"ex_sampleClass.label 1=9921,|abel 2=8821" is used to reference an instance of the
ex_sampleClassthat is playing the role of a composer.
[Association]
Cl ass ex_conposedof

{
conposer REF ex_sanpl ed ass;
conponent REF ex_sanpl ed ass;

b

i nstance of ex_conposedof

{
conposer = "ex_sanpl e ass. | abel 1=9921, | abel 2=8821";

}

A namespace path can be specified for al the INSTANCE OF statementsin afile with one of
several pragmas or it can be specified on each INSTANCE OF statement using one of severa
qualifiers. It is aso possible to use a combination of pragmas and qudiifiers. If qualifiers are used
with apragma, the qualifier overrides the detail s specified by the pragma.

There are two reasons there are several pragma or qualifiers for specifying a namespace path.
First, the namespace path information can be about the implementation hosting the CIM
information (SOURCE qualifier or pragma) or it can be about another implementation
(NONLOCAL quaifier or pragma). Second, for association references, the namespace type and
namespace handle can be specified together (using the SOURCE or NONLOCAL
qualifier/pragma) or separately (using the SOURCETY PE or NONLOCALTY PE

06/14/99 55

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

qualifier/pragma). When the namespace handle is separated from the namespace type, it is
specified as a part of the string for the reference value using the following syntax:

<namespacehandl| e>: <nodel pat h>

The following table summarizes these situations.

Qualifier / Pragma

Class | nstance

Association | nstance

Source(Allowed. When thisis used, the string value for
<namespacetype>://<namespace_handle>) the references contains the model
path.
NonL ocal (
<namespacetype>://<namespace_handle>) The complete object name is
calculated by concatenating the string
specified with the Source qualifier
with ":" followed by the value of the
model path specified by the reference.
SourceType(<namespacetype>) Not Permitted. | When SourceType or NonLoca Type
However, when | are used, the string value for a
NonL ocal Type(<namespacetype>) specified asa referenceisto have the form
pragma, any <namespace_handle>":"<model path>
INSTANCE
OF statements
for classes
must have a
Source or
NonLocal
qualifier.

5.4 Specifying Object Namesin MOF Files

The object name can be used as the value for object references and for object queries.

5.4.1 Synchronizing Namespaces

When a MOF isloaded into a system that is able to access and manipul ate the source
implementation, a higher level of integration is possible between two CIM-based
implementations. In particular, the receiving implementation can synchronize changes with the
sending implementation. This situation is shown in this figure and requires away to record
information about the namespace path of the source in the MOF. The arrow labeled "Dynamic
Accessto Loaded Information” implies that Mgmt_ ABC has the capability to access information
about an instance of Mgmt_X because it understands Mgmt_X's access protocol. All it must
know is the handle (namespace path) for the source.

06/14/99

56

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Thefollowing figure is a sample MOF file for the situation illustrated in the previous figure.
Notice the various uses of the SOURCE pragma and the SOURCE qualifier.

Type: Mgmt_X]
Handle: EastCoast Dynamic Access
- to Loaded
| nformation

/2
A © eastcoast.mof

Definition

NN Type: Mgmt_ABC
Export Handle: AllCoasts

Import

Figure 5-7 Namespace Path

The namespace path can be provided in one of two ways:. 1) aqualifier on each object and
association or 2) apragma. The value for the pragma and the qualifier is exactly the same:

Sour ce(<namespacet ype>: \\ <nanmespace_handl| e>)

When the information is provided as a pragma, it is assumed to be the same for al instancesin
the MOF file. This pragmais shown in this figure for the circle and triangle example:

06/14/99 57 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

#pragma source(" Myt _X: // East Coast")

class Figs_Crcle

{
[key]
ui nt 32 Nane;
string Col or;
b
class Figs_Triangle
[key]
ui nt 32 Label ;
string Col or;
ui nt 32 Area;
b

[Associ ati on]
class Figs_CircleToTriangl e

Figs_Circle REF AC rcle;
Figs_Triangl e REF ATri angl e;
H

[Associ ati on]

cl ass Figs_Covers

{
Figs_Triangl e REF Over;
Fi gs_Tri angl e REF Under;

i nstance of Figs_Triangle {Label =2; Col or="BIl ue"; Area=12},
i nstance of Figs_Triangle {Label =4; Col or="Bl ue"; Area=12};
i nstance of Figs_GCircle {Nane=1; Col or="Bl ue"};
i nstance of Figs_Circle {Nane=3; Col or="Bl ue"};
i nstance of Figs_GCircle {Nane=5; Col or="Bl ue"};

i nstance of Figs_CircleToTriangle

ACi rcl e="Fi gs_G rcl e. Name=1";
ATri angl e="Fi gs_Tri angl e. Label =2";
h

i nstance of Figs_CircleToTriangle

AC rcl e="Figs_Circl e. Nane=5";
ATri angl e="Fi gs_Tri angl e. Label =2";

[Sour ceType(" Mynt _X")]
i nstance of Figs_CircleToTriangle

ACi rcl e="East Coast : Fi gs_Circl e. Nane=5";
ATri angl e=" East Coast : Fi gs_Tri angl e. Label =4";

h
i nstance of Figs_Covers

[Sour ceType(" Mynt _X")]
Over ="East Coast: Fi gs_Tri angl e. Label =2";
Under ="Fi gs_Tri angl e. Label =4";
h

Figure 5-8 Pragma Example

The import operation must preserve namespace path information so if either this platform or
another platform understands how to manipulate an implementation of type <namespacetype>
and has access to the <namespace_handle>, it can manipulate one or more of the instances in the

source.

The namespace path can also be specified using the instance-based Source qualifier. This
qualifier marks a particular object or an association. Thisisillustrated in Note: When |
apragmais specified and a qudifier is specified, the qualifier overrides the pragma.

06/14/99

58 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Class Figs_Crcle

[key]
ui nt 32 Nane;
string Col or;

H
class Figs_Triangle

[key]
ui nt 32 Label ;
string Col or;
uint 32 Area;

}s

[Associ ati on]
class Figs_CircleToTriangl e

Figs_Crcle REF ACircle;

Fi gs_Tri angl e REF ATri angl e;

[Associ ati on]
cl ass Figs_Covers

Fi gs_Tri angl e REF Over;
Fi gs_Triangl e REF Under;
H

[source("Mnt _X:// East Coast")]
i nstance of Figs_Triangle {Label =2; Col or="BIl ue"; Area=12};

[source("Mnt _X:// East Coast")]
i nstance of Figs_Triangle {Label =4; Col or="BIl ue"; Area=12},

[source("Mnt _X:// East Coast")]
i nstance of Figs_GCircle {Nane=1; Col or="Bl ue"};

[source("Mnt _X:// East Coast")]
i nstance of Figs_GCircle {Nane=3; Col or="Bl ue"};

[source("Mnt _X:// East Coast")]
i nstance of Figs_GCircle {Nane=5; Col or="Bl ue"};

[source("Mnt _X:// East Coast")]
i nstance of Figs_CircleToTriangle

ACi rcle="Figs_Crcl e. Nane=1";
ATri angl e="Fi gs_Tri angl e. Label =2";

[source("Mnt _X:// East Coast")]
i nstance of Figs_CircleToTriangle

ACi rcl e="Fi gs_Gi rcl e. Name=5";

ATri angl e="Fi gs_Tri angl e. Label =2";
h

[source("Mnt _X:// East Coast")]
i nstance of Figs_CircleToTriangle

AC rcl e="Fi gs_Gi rcl e. Name=5";
ATri angl e="Fi gs_Tri angl e. Label =4";
h

[source("Mnt _X:// East Coast")]
i nstance of Figs_Covers

{
[nonl ocal ("Mnt _X:// East Coast")]
Over="Fi gs_Triangl e. Label =2";
Under ="Fi gs_Tri angl e. Label =4";
h

Figure 5-9 Namespace Path Example

5.4.2 Building References Between Management Systems

The Nonlocal instance qualifier for references allows a targeted management system to
selectively import instances in a MOF file. Thisis used when a targeted management system
knows how to access a source management platform (in other words, it has verified, using the
source pragma or qualifer, that it knows how to access the source platform) and it does not want
to store some classinstances locally. Using the circle and triangle MOF as an example, the target
management system, Mgmt_ABC, only wantsto store circle information locally. When a
Mgmt_ABC user requests information about atriangle, the Mgmt_ABC implementation contacts
the source platform Mgmt_X to get the instance information:

06/14/99

59 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Type: Mgmt_X .
Type Handle: EastCoast Dynamic Access
- to Loaded
| nformation

QRN
@ A eastcoast.mof

Definition

NN Type: Mgmt_ABC
Export Type Handle: AllCoasts

Import Circles Only

Figure 5-10 References Between Management Systems

The Nonlocal qudlifier is similar to the Source qualifier sinceitsvalueisa

<namespacet ype>: \\ <namespacehandl| e>

string. The content of Mgmt_ ABC after importing only circle information looks like this:

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Class Figs_Crcle

[key]
ui nt 32 Nane;
string Col or;
H
class Figs_Triangle
{
[key]
ui nt 32 Label ;
string Col or;
uint 32 Area;
H

[Associ ati on]
class Figs_CircleToTriangl e

Figs_Crcle REF ACircle;

Fi gs_Tri angl e REF ATri angl e;

[Associ ati on]
cl ass Figs_Covers

Fi gs_Tri angl e REF Over;
Fi gs_Triangl e REF Under;
H

i nstance of Figs_Circle {Nane=1; Col or="Blue"};
instance of Figs_GCircle {Nane=3; Col or="Blue"};
instance of Figs_GCircle {Nane=5; Col or="Blue"};

i nstance of Figs_CircleToTriangle

AC rcle="Figs_Circl e. Nane=1";
[nonl ocal ("Mnt _X:// East Coast")]
ATri angl e="Fi gs_Tri angl e. Label =2";
h

i nstance of Figs_CircleToTriangle

AC rcl e="Figs_Circl e. Nane=5";
[nonl ocal ("Mnt _X:// East Coast")]
ATri angl e="Fi gs_Tri angl e. Label =2";
b

i nstance of Figs_CircleToTriangle

ACi rcl e="Fi gs_Gi rcl e. Name=5";
[nonl ocal type("Mnt _X")]
ATri angl e=" East Coast : Tri angl e. Label =4";

}s

[nonl ocal ("Mnt _X:// East Coast")]
I nst ance of Figs_Covers
{
[nonl ocal ("Mnt _X:// East Coast")]
Over="Fi gs_Triangl e. Label =2";
[nonl ocal ("Mynt _X:// East Coast")]
Under =" Fi gs_Tri angl e. Label =4";
b

Figure 5-11 Example of Nonlocal Qualifier

In particular, the two instances of triangle are not imported, and the references to triangle in the
associations are also marked with the nonlocal qualifier.

The above schema a so allows intelligent import operations to avoid importing all the objects if
there are associations between the objects.

06/14/99

61 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

6 MAPPING EXISTING MODELSINTO CIM

Existing models have their own meta model and model. There are three types of mapping that can
occur between meta schemas: technique, recast and domain. Each of these mappings can be
applied when converting from MIF syntax to MOF syntax.

6.1 Technique Mapping

A technique mapping provides a mapping that uses the CIM meta-model constructs to describe
the source modeling technique’s meta constructs (for example, MIF, GDMO and SMI).
Essentially, the CIM meta model is a meta meta-model for the source technique.

meta
constructs

expression

CIM Meta Model

Technique Specific Model

Figure 6-1 Technique Mapping Example

The DMTF uses the management information format (MIF) as the meta model to describe
distributedmanagement information in a common way. Therefore, it is meaningful to descrihe a
technique mapping in which the CIM meta model is used to describe the MIF syntax.

The mapping presented here takes the important types that can appear in a MIF file and then
creates classes for them. Thus, component, group, attribute, table and enum are expressed in the
CIM meta model as classes. In addition, associations are defined to document how these are

combined.Figure 6-Zillustrates the results:

06/14/99 62 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Group _
includes
describedBy :\‘Dame
Class Attribute
usesTemplate lNDame
Component Description
type
Table Vaue
Name
Description
Name
ID
Class
usesUnnamed
usesName
Enum

6.2 Recast Mapping

A recast mapping provides a mapping of the sources’ meta constructs into the targeted meta
constructs, so that a model expressed in the source can be translated into the target. The major
design work is to develop a mapping between the sources’ meta model and the CIM meta model.

Figure 6-2 MIF Technique Mapping Example

Once this is done, the source expressions are recast.

meta
constructs
expressions

P /

CIM Meta Model

Expression or Instances of CIM Meta Model

Figure 6-3 Recast mapping

This is an example of a recast mapping for MIF, assuming:

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

attributes -> CI M properties

key attributes -> Cl M key properties
groups -> ClMcl asses

conponents -> Cl M cl asses

2222

The standard DMI ComponentID group might be recast into a corresponding CIM class:

Start G oup

Nane = " Conponent| D"

Cl ass = "DMIF| Conponent | D 001"

ID=1

Description = "This group defines the attributes common to all
"conmponents. This group is required.”

Start Attribute

Name = "Manufacturer”
ID=1
Description = "Manufacturer of this system"”

Access = Read-Only
St orage = Common
Type = DisplayString(64)
Value = ""
End Attribute
Start Attribute
Name = "Product”
ID=2
Description = "Product nane for this system™
Access = Read-Only
St orage = Common
Type = DisplayString(64)
Value = ""
End Attribute
Start Attribute

Nanme = "Version"
ID=3
Description = "Version nunber of this system"”

Access = Read-Only
Storage = Specific
Type = DisplayString(64)
Value = ""

End Attribute

Start Attribute
Name = "Serial Nunber"
ID=4
Description = "Serial nunber for this system"”
Access = Read-Only
Storage = Specific
Type = DisplayString(64)
Value = ""

End Attribute

Start Attribute

Nane = "lInstallation”
ID=5
Description = "Conponent installation tinme and date."

Access = Read-Only
Storage = Specific
Type = Date
Val ue = ""
End Attribute
Start Attribute
Name = "Verify"
ID=26
Description = "A code that provides a |level of verification that the
"conponent is still installed and working."

06/14/99 64 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Access = Read-Only
St orage = Common
Type = Start ENUM

0 = "An error occurred; check status code."
1 = "This conponent does not exist."
2 = "Verification is not supported.”
3 = "Reserved."
4 = "This conponent exists, but the functionality is untested."
5 = "This conponent exists, but the functionality is unknown."
6 = "This conponent exists, and is not functioning correctly.”
7 = "This conponent exists, and is functioning correctly."”
End ENUM
Value =1
End Attribute
End Group

A corresponding CIM class might be the following. Note that properties in the example include
an ID qualifier to represent the corresponding DMI attribute’s ID. Here, a user-defined qualifier
may be necessary.

[Name (" Conponent|D'), 1D (1), Description (
"This group defines the attributes commobn to all conponents.
"This group is required.")]

cl ass DMIF| Conponent | D] 001 {
[ID (1), Description ("Manufacturer of this system"), maxlen (64)]
string Manufacturer;
[ID(2), Description ("Product nanme for this system"), maxlen (64)]
string Product;
[I1D (3), Description ("Version nunber of this system"), maxlen (64)]
string Version;
[ID (4), Description ("Serial nunmber for this system"), maxlen (64)]
string Serial _Nunber;
[I1D (5), Description("Conponent installation tinme and date.")]
datetime Installation;
[I1D (6), Description("A code that provides a |level of verification "
"that the conponent is still installed and working."),
Val ue (1)]
string Verify;
b

6.3 Domain Mapping

A domain mapping takes a source expressed in a particular technique and maps its content into
either the core or common models, or extension sub-schemas of the CIM. This mapping does not
rely heavily on a meta-to-meta mapping; it is primarily a content-to-content mapping. In one case,
the mapping is actually a re-expression of content in a more common way using a more
expressive technique.

This is an example of how CIM properties can be supplied by DMI, using information from the
DMI disks group ("DMTF|Disks|002"). For a hypothetical CIM disk class, the CIM properties are
expressed as:

06/14/99 65 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

CI M "Di sk" property Can be sourced fromDM group/attribute
St or ageType "M F. DMTF| Di sks| 002. 1"
St oragel nterface M F. DMTF| Di sks| 002. 3"
Renovabl eDri ve "M F. DMTF| Di sks| 002. 6"
"M F.
M F.

Renmovabl eMedi a DMTF| bDi sks| 002. 7"
Di skSi ze DMTF| Di sks| 002. 16"

6.4 Mapping Scratch Pads

In general, when the content of models are mapped between different meta schemas, information

gets lost or is missing. To fill this gap, “scratch pads” are expressed in the CIM meta model using
qualifiers, which are actually extensions to the meta model (for example, seeon 255
Mapping MIF Attribute$ and sectign 2.5.6 Mapping Generic Data to CIM Properties). These
scratch pads are critical to the exchange of core, common and extension model content with the
various technologies used to build management applications.

06/14/99 66 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

7/ REPOSITORY PERSPECTIVE

This section provides a basic description of arepository and a complete picture of the potential
exploitation of it. A repository stores definitional and/or structural information, and includes the
capability to extract the definitionsin aform that is useful to application devel opers. Some
repositories allow the definitions to be imported into and exported from the repository in multiple
forms. The notions of importing and exporting definition can be refined so that they distinguish

between three types of mappings.
Using the mapping definitionsin Secti on|§| the repository can be organized into the four
partitions (meta, technique, recast and domain).

CIM Meta Model Content of CIM Realization of CIM
/\‘/1\‘ Has Instances @ realized in >§@

/ core schema
common schema

/
/ extension schemas

I
I
I
I /7
/
] , /
I 4
,' it sub-partitions
| , Repository
/
! /
I
Import
! Syntax Definition
. Expressions

Repository
store meta model
information for
program access.

Export

Figure 7-1 Repository Partitions

The repository partitions have the following characteristics:

» Each partition is discrete. The meta partition refers to the definitions of the CIM meta
model. The technique partition refers to definitions that are loaded using technique
mappings. The recast partition refersto definitions that are loaded using recast mappings

67 |

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

The domain partition refers to the definitions that are associated with the core and
common models, and Extension schemas.

The technique and recast partitions can be organized into multiple sub-partitionsin order
to capture each source uniquely. For example, there would be a technique sub-partition
for each unique meta language encountered (that is, one for MIF, GDMO, SMI, and so
on). In the re-cast partition, there would be a sub-partition for each meta language.

The act of importing the content of an existing source can result in entries in the recast or
domain partition.

71 DMTFMIF Mapping Srategies

Assume the meta-model definition and the baseline for the CIM schema are complete. The next
step isto map another source of management information (such as standard groups) into the
repository. The primary objective isto do the work required to import one or more of the
standard group(s).

The possible import scenarios for a DMTF standard group are:

1.

Any combination of these five scenarios can be initiated by a team that is responsible for mapping
an existing source into the CIM repository. There are many other details that must be addressed
as the content of any of the sources changes and/or when the core or common model changes.

Assuming numerous existing sources have been imported using all the import scenarios, now

To Technique Partition: Create a technique mapping for the MIF syntax. This mapping
would be the same for all standard groups and would only need to be updated if the MIF
syntax changed.

To Recast Partition: Create a recast mapping from a particular standard group into a sub-
partition of the recast partition. This mapping would allow the entire contents of the
selected group to be loaded into a sub-partition of the recast partition. The same
algorithm can be used to map additional standard groups into that same sub-partition.

To Domain Partition: Create a Domain Mapping for the content of a particular standard
group that overlaps with the content of the CIM schema.

To Domain Partition: Create a Domain Mapping for the content of a particular standard
group that does not overlap with CIM’s schema into an extension sub-schema.

To Domain Partition: Propose extensions to the content of the CIM schema and then

perform Steps 3 and/or 4.

look at the export side. Ignoring the technique partition, the possible scenarios are:

1. FromRecast Partition: Create a recast mapping for a sub-partition in the recast partition
to a standard group (that is, inverse of import 2). The desired method would be to use the
recast mapping to translate a standard group into a GDMO definition.
2. FromRecast Partition: Create a Domain Mapping for one of the recast sub-partitions to a
known management model that was not the original source for the content that overlaps.
06/14/99 68 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

3. From Domain Partition: Create a recast mapping for the complete content of the CIM to
a selected technique (for MIF, thisresultsin a non-standard group).

4. From Domain Partition: Create a Domain Mapping for the content of the CIM schema
that overlaps with the content of an existing management model

5. From Domain Partition: Create a Domain Mapping for the entire content of the CIM
schema to an existing management model with the necessary extensions.

7.2 Recording Mapping Decisions

In order to understand the role of the scratch pad (see Secti on in therepository, itis
necessary to look at the import and export scenarios for the different partitions in the repository
(technigue, recast and application). These mappings can be organized into two categories:
homogeneous and heterogeneous. The homogeneous category includes the mapping where the
imported syntax and expressions are the same as the exported (for example, software MIF in and
software MIF out). The heterogeneous category addresses the mappings where the imported
syntax and expressions are different from the exported (for example, MIF in and GDMO out). For
the homogenous category, the information can be recorded by creating qualifiers during an import
operation so the content can be exported properly. For the heterogeneous category, the qualifiers
must be added after the content isloaded into a partition of the repository. showsthe |
X schema imported into the Y schema, and then being homogeneously exported into X or
heterogeneously exported into Z. Each of the export arrows works with a different scratch pad.

Repository

Homogeneous

Xl Import > Y

Heterogenous

Figure 7-2 Homogeneous and Heterogeneous Export

The definition of the heterogeneous category is actually based on knowing how a schema was
loaded into the repository. A more general way of looking at thisisto think of the export process
using one of multiple scratch pads. One of the scratch pads was created when the schema was
loaded, and the others were added to handle mappings to schema techniques other than the import

source (Figure 7-3). |

06/14/99 69 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Reposu tory

X | import . Y g I export >X

I
export > A
Add mapping details /
after the import or
definition L
a export > B

[] Scratch Pads

Figure 7-3 Scratch Pads and Mapping

Figure 7-3]shows how the scratch pads of qualifiers are used without factoring in the unique
aspects of each of the partitions (technique, recast, applications) within the CIM repository. The
next step isto put this discussion in the context of these partitions.

For the technique partition, there is no need for a scratch pad since the CIM meta model is used to
describe the constructs used in the source meta schema. Therefore, by definition, thereis one
homogeneous mapping for each meta schema covered by the technique partition. These mappings
create CIM objects for the syntactical constructs of the schema and create associations for the
ways they can be combined (for example, MIF groups include attributes).

For the recast partition, there are multiple scratch pads for each of the sub-partitions, since oneis
required for each export target and there can be multiple mapping algorithms for each target. The
latter occurs because part of creating a recast mapping involves mapping the constructs of the
source into CIM meta-model constructs. Therefore, for the MIF syntax, a mapping must be
created for component, group, attribute, and so on, into appropriate CIM meta-model constructs
like abject, assaciation, property, and so on. These mappings can be arbitrary. As a specific
example, one of the decisions that must be made is whether a group or a component maps into an
object. It would be possible to have two different recast mapping agorithms, one that mapped
groups into objects with qualifiers that preserved the component, and one that mapped
components into objects with qualifiers that preserved the group name for the properties.
Therefore, the scratch pads in the recast partition are organized by target technique and employed
agorithm.

For the domain partitions, there are two types of mappings. Thefirst is similar to the recast
partition in that some portion of the domain partition is mapped into the syntax of another meta
schema. These mappings can use the same qualifier scratch pads and associated algorithms that
are developed for the recast partition. The second type of mapping facilitates documenting the
content overlap between the domain partition and some other model (for example, software

06/14/99 70

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

groups). These mappings cannot be determined in a generic way at import time; therefore, itis
best to consider them in the context of exporting. The mapping uses filters to determine the
overlaps and then performs the necessary conversions. Thefiltering can be done using qualifiers
that indicate a particular set of domain partition constructs map into some combination of
constructsin the target/source model. The conversions would be documented in the repository
using a complex set of qualifiers that capture how to write or insert the overlapped content into
the target model. The mapping qualifiers for the domain partition would be organized like the
recasting partition for the syntax conversions, and there would be scratch pads for each of the
models for documenting overlapping content.

In summary, pick the partition, develop a mapping, and identify the qualifiers necessary to
capture potentialy lost information when devel oping mapping details for a particular source. On
the export side, the mapping algorithm checks to see if the content to be exported includes the
necessary qualifiersfor the logic to work.

06/14/99 71 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix A MOF SYNTAX GRAMMAR DESCRIPTION

This section contains the grammar for MOF syntax. The grammar is described in the notation
defined in [7], with this deviation: each token may be separated by an arbitrary number of white
space characters, except where stated otherwise (at least one tab, carriage return, line feed, form
feed or space).

However, while this notation is convenient for describing the MOF syntax clearly, it should be
noted that the MOF syntax has been defined to be expressiblein an LL (1)-parseable grammar.
This has been done to allow low-footprint implementations of MOF compilers.

In addition, note these paints:

1. Anempty property list isequivalent to "*".
2. All keywords are case-insengitive.

3. ThelDENTIFIER typeis used for names of classes, properties, qualifiers, methods and
namespaces; the rules governing the naming of classes and properties are to be found in
section 1 of

4. A string Vaue may contain quote (") characters, provided that each isimmediately
preceded by a backslash (\) character.

06/14/99 79 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

nmof Speci fication

nmof Pr oducti on

* mof Pr oduct i on

conpi lerDirective

I
cl assDecl arati on |
assocDecl arati on [
i ndi cDecl aration |
qual i fierDeclaration |
i nst anceDecl ar ati on

conpilerDirective = PRAGVA pragnaNane " (" pragmaParaneter ")"
pr agnaName = | DENTI FI ER
pr agnaPar anmet er = stringVal ue
cl assDecl arati on = [qualifierList]
CLASS classNane [alias] [superd ass]
"{" *classFeature "}" ";"
assocDecl arati on = "[" ASSOCIATION *("," qualifier) "]"
CLASS classNane [alias] [superd ass]
"{" *associ ati onFeature "}" ";"
/1 Context:
/1 The remamining qualifier list must not include
/'l the ASSOCI ATION qualifier again. If the
/1 association has no super association, then at

/1 least two references nust be specified! The
/1 ASSCCI ATI ON qualifier may be omtted in

/1 sub associ ations.

“[" INDICATION *("," qualifier)
CLASS cl assNane [alias]

"{" *classFeature "}" ";

i ndi cDecl arati on =

oK

[superd ass]

cl assNane = schemaNane "_" IDENTIFIER // NO whitespace !
/1 Context:
/1 Schema name nust not include "_" !

al i as = AS aliasldentifer

aliasldentifer = "$" IDENTIFIER // NO whitespace !

super d ass = ":" classNane

cl assFeature = propertyDeclaration | methodDecl aration

ref erenceDecl arati on

ok

associ ati onFeature = classFeature |

qualifierlList = "[" qualifier *("," qualifier)

qualifier = qualifierName [qualifierParaneter] [":" 1*flavor]
qual i fierParamneter = "(" constantValue ")" | arraylnitializer
fl avor = ENABLEOVERRI DE | DI SABLEOVERRI DE | RESTRI CTED |

TOSUBCLASS | TRANSLATABLE

propertyDecl aration [qualifierList] dataType propertyNane

[array] [defaultValue] ";

r ef er enceNane

ref erenceDecl arati on [qualifierList] objectRef

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

[defaultvalue] ";"

met hodDecl ar ati on [qualifierList] dataType met hodNane

"(" [paranmeterList] ")" ";"

pr oper t yName = | DENTI FI ER
r ef erenceNane = | DENTI FI ER
met hodNane = | DENTI FI ER
dat aType = DT_UINT8 | DT_SINT8 | DT_UINT16 | DT_SINT16 |

DT_UINT32 | DT_SINT32 | DT_UINT64 | DT_SINT64 |
DT_REAL32 | DT_REAL64 | DT_CHARIL6 |
DT_STR | DT_BOOL | DT_DATETI ME

obj ect Ref = cl assNane REF

par anet er Li st = paraneter *("," paraneter)

par anet er = [qualifierList] (dataType| objectRef) paraneterNane
[array]

par anet er Nanme = | DENTI FI ER

array = "[" [positiveDecinal Value] "]"

posi ti veDeci mal Val ue posi tiveDecinal Digit *decinal Digit

def aul t Val ue = "="initializer

initializer = ConstantValue | arraylnitializer | referencelnitializer |
arraylnitializer = "{" constantValue*("," constantValue)"}" |
const ant Val ue = integerValue | real Value | charValue | stringValue |

bool eanVal ue | nul | Val ue |

i nt eger Val ue = binaryVal ue | octal Value | decimal Val ue | hexVal ue

referencelnitializer obj ectHandl e | aliasldentifier

obj ect Handl e = [namespaceHandl e ":"] nodel Path

nanespaceHandl e = *ucs2Character
/1 Note: structure depends on type of nanespace

nodel Pat h = classNane "." keyVal uePairLi st
keyVal uePai r Li st = keyValuePair *("," keyVal uePair)
keyVal uePai r = (propertynane | referenceNanme) "=" initializer

qual i fierDecl aration QUALI FI ER qualifierNanme qualifierType scope

[defaul tFlavor] ";

qual i fi er Nanme = | DENTI FI ER

qual i fierType = ":" dataType [array] [defaultValue]

scope = "," SCOPE "(" metaElement *("," metaElement) ")"

met aEl ement = SCHEMA | CLASS | ASSOCI ATI ON | | NDI CATION | QUALI FI ER

06/14/99 74 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

PROPERTY | REFERENCE | METHOD | PARAMETER | ANY

def aul t Fl avor = "," FLAVOR "(" flavor *("," flavor) ")"
i nstanceDecl arati on = [qualifierList] INSTANCE OF classNanme [alias]

"{" 1*valuelnitializer "}" ";" |
val uelnitializer = [qualifierList]

(propertyNane | referenceNane) "=" initializer ";"

These productions do not allow whitespace between the terms:

schemaName = | DENTI FI ER
/'l Context:
/1 Schema name nust not include "_" !
fil eName = stringVal ue
bi naryVal ue = ["+ | "-" 1 1*binaryDigit ("b" | "B")
bi naryDi gi t = "o" | "1"
oct al Val ue = ["+ | "-"1 "0" 1*octalDigit
octalDigit = "o" | "1 | 2" | "3" | “4" | "5" | “6" | "7"
deci mal Val ue = ["+" | "-"] (positiveDecimalDigit *decimalDigit | "0")
decimal Digit = "0" | positiveDecinalDigit
positiveDecimal Digit = | 2" | "3 | "4" | "5" | 6" | "7 | "8 | "9"
hexVal ue = ["+] "-"71 ("0x" | "OX") 1l*hexDigit
hexDi gi t = decimalDigit | "a" | "A" | "b" | "B" | "c¢" | "C |
“d* | "D | "e" | "E" | "“f" | “"F
real Val ue = ["+" | "-"] *decimalDigit "." 1*decimal Digit
[¢ "e" | "E") ["+" | "-"] 1*decimal Digit]
char Val ue = // any single-quoted Unicode-character, except

/1 single quotes

stringVal ue = 1*(""" *ucs2Character """)
ucs2Char act er = // any valid UCS-2-character
bool eanVal ue = TRUE | FALSE

nul | Val ue = NULL

The remaining productions are case-insensitive keywords:

ANY = "any"

AS = "as"

ASSQOCI ATI ON = "association"
CLASS = "class"

DI SABLEOVERRI DE = "disabl eCverride"
DT_BOCOL = "bool ean"
DT_CHARL6 = "char16"

DT_DATETI ME = "datetine"
DT_REAL32 = "real 32"

06/14/99 75 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

DT_REAL64 = "real 64"
DT_SI NT16 = "sintle"
DT_SI NT32 = "sint32"
DT_SI NT64 = "sint64"
DT_SI NT8 = "sint8"
DT_STR = "string"
DT_UI NT16 = "uintle"
DT_UI NT32 = "uint32"
DT_Ul NT64 = "uint64"
DT_UI NT8 = "uint8"
ENABLEOVERRI DE = "enabl eoverri de"
FALSE = "fal se"
FLAVOR = "flavor"
| NDI CATI ON = "indication"
| NSTANCE = "instance"
METHOD = "met hod"
NULL = "null"
OF = "of"
PARANVETER = "paraneter"
PRAGVA = "#pragm"
PROPERTY = "property"
QUALI FI ER = "qualifier"
REF = "ref"
REFERENCE = "reference"
RESTRI CTED = "restricted"
SCHEMA = "schem"
SCOPE = "scope"
TOSUBCLASS = "tosubcl ass”
TRANSLATABLE = "transl atable"
TRUE = "true"
06/14/99

76 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix B CIM META SCHEMA

/1l version 2.2

Qualifier Abstract : boolean = fal se, Scope(class, association, indication),

Fl avor (di sabl eoverride, restricted);

Qualifier Aggregate : boolean = fal se, Scope(reference),
Fl avor (di sabl eoverride, tosubclass);

Qualifier Aggregation : boolean = fal se, Scope(association),
Fl avor (di sabl eoverride, tosubclass);

Qualifier Alias : string = null, Scope(property, reference, nethod),
Fl avor (transl at abl e) ;

Qualifier ArrayType : string = "Bag", Scope(property, paraneter);

Qualifier Association : boolean = fal se, Scope(class, association),
Fl avor (di sabl eoverri de);

Qualifier BitMap : string[], Scope(property, nethod, paraneter);

Qualifier BitValues : string[], Scope(property, nethod, paraneter),
Fl avor (Transl at abl e) ;

Qualifier Counter : boolean = fal se, Scope(property, nethod, paraneter);
Qualifier Delete : boolean = fal se, Scope(association, reference);

Qualifier Description : string = null, Scope(any), Flavor(translatable);
Qualifier DisplayNane : string = null, Scope(any), Flavor(translatable);

Qualifier Expensive : boolean = fal se

Scope(property, reference, nethod, class, association);

Qualifier Gauge : boolean = fal se, Scope(property, nethod, paraneter);
Qualifier Ifdeleted : boolean = fal se, Scope(association, reference)
Qualifier In : boolean = true, Scope(paraneter), Flavor(di sabl eoverride)

Qualifier Indication : boolean = fal se, Scope(class, indication)
FI avor (di sabl eoverri de);

Qualifier Invisible : boolean = fal se,

Scope(reference, association, class,property, method);

Qualifier Key : boolean = fal se, Scope(property, reference),
Fl avor (di sabl eoverri de);

Qualifier Large : boolean = fal se, Scope(property, class);

Qualifier MappingStrings : string[],
Scope(cl ass, property, association, indication,

Qualifier Max : uint32 = null, Scope(reference);
Qualifier MaxLen : uint32 = null, Scope(property, nethod, paraneter);

Qualifier MaxValue : sint64 = null, Scope(property, method, paraneter);

ref erence);

06/14/99

77

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Qualifier Mn : uint32 = 0, Scope(reference);

Qualifier MnvValue : sint64 = null, Scope(property, nethod, paraneter);

Qual i fi er Model Correspondence : string[], Scope(property);
Qualifier NonLocal : string = null, Scope(reference);
Qual i fier NonLocal Type : string = null, Scope(reference);

Qualifier NullValue : string = null, Scope(property),
Fl avor (t osubcl ass, di sabl eoverride);

Qualifier Qut : boolean = fal se, Scope(paraneter), Flavor(disableoverride);

Qualifier Override : string = null, Scope(property, nethod, reference),

Fl avor (di sabl eoverri de);

Qualifier Propagated : string = null, Scope(property, reference)
FI avor (di sabl eoverri de);

Qualifier Provider : string = null, Scope(any);
Qualifier Read : boolean = true, Scope(property);

Qualifier Required : bool ean = fal se, Scope(property);

Qualifier Revision : string = null, Scope(schema, class, association
Fl avor (transl at abl e) ;
Qualifier Schema : string = null, Scope(property, nethod),
Fl avor (di sabl eoverride, transl atable);
Qualifier Source : string = null, Scope(class, association, indication);

Qual i fier SourceType : string = null

Scope(cl ass, association, indication,reference);

i ndi cation),

Qualifier Static : boolean = fal se, Scope(property, nethod), Flavor(disabl eoverride);

Qualifier Syntax : string = null, Scope(property, reference, nethod, paraneter);
Qualifier SyntaxType : string = null, Scope(property, reference, method, paraneter);
Qualifier Terminal : boolean = fal se, Scope(cl ass);

Qualifier TriggerType : string = null

Scope(cl ass, property, reference, nethod, association,

Qualifier Units : string = null, Scope(property, nethod, paraneter),

Fl avor (transl at abl e) ;

Qual i fier UnknownValues : string[], Scope(property),
Fl avor (di sabl eoverride, tosubclass);

Qualifier UnsupportedValues : string[], Scope(property),
Fl avor (di sabl eoverride, tosubclass);

Qualifier ValueMap : string[], Scope(property, method, paraneter);

Qualifier Values : string[], Scope(property, method, paraneter),
Fl avor (transl at abl e) ;

i ndi cation);

06/14/99

/8

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Qualifier Version : string = null,
Scope(schema, class, association, indication),
Fl avor (transl at abl e) ;

Qualifier Weak : boolean = fal se, Scope(reference),
Fl avor (di sabl eoverri de, tosubclass);

Qualifier Wite : boolean = fal se, Scope(property);

[Version("2"), Revision("2"), Description(
"The Meta_NanedEl ement class represents the root class for the
"Metaschema. It has one property: Nane, which is inherited by all the "
"non-associ ation classes in the Metaschema. Every netaconstruct is "
"expressed as a descendent of the class Meta_Nanmed Elenment.")]

cl ass Met a_NanedEl enent

{

[Description (
"The Nane property indicates the name of the current Metaschenma el enent.
"The following rules apply to the Name property, depending on the "
"creation type of the object:Fully-qualified class names, such "
"as those prefixed by the schenma name, are unique within the schema."
"Ful ly-qualified association and indication nanmes are unique within "
"the schema (inplied by the fact that association and indication classes
"are subtypes of Meta_Cass).Inplicitly-defined qualifier nanmes are
"uni que within the scope of the characterized object; that is, a named "
"el emrent may not have two characteristics with the sanme nane."
"Explicitly-defined qualifier names are unique within the defining "
"schema. An inplicitly-defined qualifier nust agree in type, scope and "
"flavor with any explicitly-defined qualifier of the sane nane."
"Tri gger names nust be unique within the property, class or nethod "
"to which the trigger applies.Method and property nanes nust be "
"uni que within the domain class. A class can inherit nore than one "
"property or nethod with the same name. Property and met hod nanes can be
"qualified using the nane of the declaring class. <Ll >Reference nanes "
"must be unique within the scope of their defining association class.
"Reference nanes obey the same rul es as property nanes. </ UL>Not e: </ B>
"Reference nanes are not required to be unique within the scope of the "
"related class. Wthin such a scope, the reference provides the nane of
"the class within the context defined by the association.”)]

string Nane;

[Version("2"), Revision("2"), Description (
"The Meta_QualifierFlavor class encapsul ates extra semantics attached "
"to a qualifier such as the rules for transm ssion from superd ass "
"to subC ass and whether or not the qualifier value may be translated "
"into other |anguages")]

class Meta_QualifierFlavor: Met a_NanedEl enent

{

b

06/14/99

79 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

— A

Il
Il
/1

— A

Il
/1
Il

cl

cl

[Version("2"), Revision("2"), Description (

"The Meta_Schemm cl ass represents a group of classes with a single owner."
" Schemas are used for administration and class nami ng. C ass nanes nust "
"be unique within their owning schemas.")]

ass Met a_Schema: Met a_NanedEl ement

[Version("2"), Revision("2"), Description (

"A Trigger is a recognition of a state change (such as create, delete,
"update, or access) of a Cass instance, and update or access of a "
"Property.")]

ass Meta_Trigger: Met a_NanedEl ement

[Version("2"), Revision("2"), Description (

"The Meta_Qualifier class represents characteristics of named el enents.
"For exanple, there are qualifiers that define the characteristics of a "
"property or the key of a class. Qualifiers provide a nmechanismthat "
"makes the Metaschenma extensible in a limted and controlled fashion.”
"<P>It is possible to add new types of qualifiers by the introduction of
"a new qualifier name, thereby providing new types of netadata to "
"processes that nanage and nanipul ate cl asses, properties, and other
"el ements of the Metaschema.") |

ass Meta_Qualifier: Meta_NanedEl enent

[Description ("The Value property indicates the value of the qualifier.")]

string Val ue;

[Version("2"), Revision("2"), Description (

"The Meta_Method cl ass represents a declaration of a signature; that is,
"the nethod name, return type and paraneters, and (in the case of a "
"concrete class) may inply an inplementation.")]

ass Met a_Met hod: Met a_NanedEl enment

[Version("2"), Revision("2"), Description (

"The Meta_Property class represents a value used to characterize
"instances of a class. A property can be thought of as a pair of Get and "
"Set functions that, when applied to an object, return state and set "
"state, respectively.")]

ass Meta_Property: Met a_NanmedEl enent

06/14/99

80

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

[Version("2"), Revision("2"), Description (
"The Meta_Reference class represents (and defines) the role each object "
"plays in an association. The reference represents the role nanme of a "
"class in the context of an association, which supports the provision of "
"multiple relationship instances for a given object. For exanple, a "
"system can be related to many system conponents.")]

cl ass Meta_Reference: Meta_Property

[Version("2"), Revision("2"), Description (
"The Meta_Class class is a collection of instances that support the sane "
"type; that is, the same properties and nethods. C asses can be arranged "
"in a generalization hierarchy that represents subtype rel ationships "
"bet ween cl asses. <P>The generalization hierarchy is a rooted, directed "
"graph and does not support multiple inheritance. C asses can have "
"met hods, which represent the behavior relevant for that class. A Cass "
"may participate in associations by being the target of one of the "
"references owned by the association.")]

class Meta_C ass: Met a_NanedEl enent

[Version("2"), Revision("2"), Description (
"The Meta_lndication class represents an object created as a result of a "
"trigger. Because |ndications are subtypes of Meta_C ass, they can have "
"properties and nethods, and be arranged in a type hierarchy. ")]

class Meta_l ndication: Meta_dC ass

[Version("2"), Revision("2"), Description (
"The Meta_Association class represents a class that contains two or nore "
"references and represents a relationship between two or nore objects. "
"Because of how associations are defined, it is possible to establish a "
"rel ati onship between classes without affecting any of the related "
"cl asses. <P>For exanple, the addition of an association does not affect "
"the interface of the related classes; associations have no other "
"significance. Only associations can have references. Associations can "
"be a subclass of a non-association class . Any subclass of "
"Meta_Association is an association.")]

cl ass Meta_Associ ation: Meta_Cl ass

{

3

06/14/99

81 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

[Association, Version("2"), Revision("2"), Aggregation, Description (
"The Meta_Characteristics class relates a Meta_NanedEl enent to a "
"qualifier that characterizes the nanmed el ement. Meta_NanedEl enent may "
"have zero or nore characteristics.")]

cl ass Meta_Characteristics

{
[Description (
"The Characteristic reference represents the qualifier that "
"characterizes the named el enent.")]
Meta_Qual i fier REF Characteristic;
[Aggregate, Description (
"The Characterized reference represents the nanmed el enent that is being "
"characterized.")]
Met a_NanedEl enent REF Characteri zed;
b
// S S o . . . o o . . . S o . . o o . o o o . o o o oo
I Propert yDomai n
// S S o . . . o o . . . S o . . o o . o o o . o o o oo

[Association, Version("2"), Revision("2"), Aggregation, Description (
"The Meta_PropertyDomain class represents an associ ati on between a class "
"and a property.<P>A property has only one domain: the class that owns "
"the property. A property can have an override relationship with another "
"property froma different class. The donain of the overridden property "
"must be a supertype of the domain of the overriding property. The "
"domai n of a reference nust be an association.")]

cl ass Meta_PropertyDonain

{
[Description (
"The Property reference represents the property that is owned by the "
"class referenced by Domain.")]
Met a_Property REF Property,;
[Aggregate, Description (
"The Domain reference represents the class that owns the property "
"referenced by Property.")]
Met a_Cl ass REF Donmai n;
b
// s s s s s s gy
11 Met hodDomai n
// s s s s s s gy

[Association, Version("2"), Revision("2"), Aggregation, Description (
"The Meta_Met hodDonai n cl ass represents an associ ati on between a class "
"and a net hod. <P>A nethod has only one domain: the class that owns the "
"met hod, which can have an override relationship with another method "
"froma different class. The domain of the overridden nmethod nust be a "
"supertype of the domain of the overriding nmethod. The signature of the
"method (that is, the nanme, paraneters and return type) nust be "
"identical.")]

cl ass Met a_Met hodDomai n

{
[Description (
"The Method reference represents the method that is owned by the class "
"referenced by Domain.")]
Met a_Met hod REF Met hod;
[Aggregate, Description (
"The Domain reference represents the class that owns the nethod "
"referenced by Method.")]
Met a_Cl ass REF Donai n;
b

06/14/99

82

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

[Association, Version("2"), Revision("2"), Description (
"The Meta_ReferenceRange cl ass defines the type of the reference.")]
cl ass Met a_Ref erenceRange

[Description (
"The Reference reference represents the reference whose type is defined "
"by Range.")]

Met a_Ref erence REF Ref erence;
[Description (
"The Range reference represents the class that defines the type of
"reference.")]

Met a_Cl ass REF Range;

[Association, Version("2"), Revision("2"), Aggregation, Description (
"The Meta_QualifiersFlavor class represents an associ ation between a "
"flavor and a qualifier.")]

class Meta_QualifiersFl avor

{
[Description (
"The Fl avor reference represents the qualifier flavor to "
"be applied to Qualifier.")]
Met a_Qual i fierFl avor REF Fl avor;
[Aggregate, Description (
"The Qualifier reference represents the qualifier to which "
"Fl avor applies.")]
Meta_Qualifier REF Qualifier;
3
// s s s s s s gy
/1 Subt ypeSupertype
// S S o . . . o o . . . S o . . o o . o o o . o o o oo

[Associ ation, Version("2"), Revision("2"), Description (
"The Meta_SubtypeSupertype class represents subtype/supertype "
"rel ati onshi ps between classes arranged in a generalization hierarchy.
"This generalization hierarchy is a rooted, directed graph and does not
"support nultiple inheritance.")]

cl ass Meta_Subt ypeSupertype

{
[Description (
"The SuperC ass reference represents the class that is hierarchically "
"i mredi atel y above the class referenced by SubC ass.")]
Met a_Cl ass REF Super d ass;
[Description (
"The Subd ass reference represents the class that is the imediate "
"descendent of the class referenced by Superdass.")]
Met a_Cl ass REF Subd ass;
b

06/14/99 33 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

[Associ ation, Version("2"), Revision("2"), Description (
"The Meta_PropertyOverride class represents an associ ati on between two "
"properties where one overrides the other.<P>Properties have reflexive "
"associations that represent property overriding. A property can "
"override an inherited property, which inplies that any access to the "
"inherited property will result in the invocation of the inplenentation "
"of the overriding property. A Property can have an override "
"relationship with another property froma different class.<P>The donmain "
"of the overridden property must be a supertype of the domain of the "
"overriding property. The class referenced by the Meta_ReferenceRange "
"association of an overriding reference nust be the sane as, or a "
"subtype of, the class referenced by the Mta_ReferenceRange "
"associ ations of the reference being overridden.")]

cl ass Meta_PropertyQverride

{
[Description (
"The OverridingProperty reference represents the property that overrides "
"the property referenced by OverriddenProperty.")]
Met a_Property REF Overridi ngProperty;
[Description (
"The OverriddenProperty reference represents the property that is "
"overridden by the property reference by OverridingProperty.")]
Met a_Property REF Overri ddenProperty;
3
// s ————————————————————————————————————
11 Met hodOverri de
// s ————————————————————————————————————
[Association, Version("2"), Revision("2"), Description (
"The Meta_Met hodOverri de cl ass represents an associ ati on between two "
"met hods, where one overrides the other. Methods have reflexive "
"associ ations that represent method overriding. A nmethod can override an "
"inherited nmethod, which inplies that any access to the inherited nethod "
"Will result in the invocation of the inplenmentation of the overriding "
"method. ")]
cl ass Meta_Met hodOverri de
{
[Description (
"The Overridi ngMet hod reference represents the nmethod that overrides the "
"method referenced by OverriddenMethod.")]
Met a_Met hod REF Overri di ngMet hod;
[Description (
"The OverriddenMet hod reference represents the nethod that is overridden "
"by the nmethod reference by Overridi ngMet hod. ")]
Met a_Met hod REF Overri ddenMet hod;
}s

06/14/99

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

[Association, Version("2"), Revision("2"), Aggregation, Description (

"The Meta_El enent Schema cl ass represents the elenents (typically classes "

"and qualifiers) that make up a schema.")]

cl ass Met a_El enment Schenma

{

[Description (
"The El ement reference represents the naned el ement that belongs to the "
"schema referenced by Schema.")]

Met a_NanmedEl enent REF El enment ;
[Aggregate, Description (
"The Schenma reference represents the schema to which the naned el enent
"referenced by Elenent belongs.")]

Met a_Schema REF Schens;

06/14/99

85 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix C VALUESFOR UNITS QUALIFIER

The UNITS qualifier specifies the unit of measure in which the associated property is expressed.
For example, a Size property might have Units ("bytes'). Currently recognized values are: ‘

* Bits, KiloBits, MegaBits, GigaBits
e Bitsper Second
* Bytes, KiloBytes, MegaBytes, GigaBytes, Words, DoubleWords, QuadwWords ‘

» Degrees C, Tenths of Degrees C, Hundredths of Degrees C, Degrees F, Tenths of
Degrees F, Hundredths of Degrees F, Degrees K, Tenths of Degrees K, Hundredths of
DegreesK, Color Temperature

e Volts, MilliVolts, Tenths of MilliVolts, Amps, MilliAmps, Tenths of MilliAmps, Watts,
MilliWattHours

e Joules, Coulombs, Newtons

¢ Lumen, Lux, Candelas

e Pounds, Pounds per Square Inch

e Cycles, Revolutions, Revolutions per Minute, Revolutions per Second

* Minutes, Seconds, Tenths of Seconds, Hundredths of Seconds, MicroSeconds,
MilliSeconds, NanoSeconds

e Hours, Days, Weeks

* Hertz, MegaHertz

* Pixels, Pixelsper Inch

e Counts per Inch

e Percent, Tenths of Percent, Hundredths of Percent

* Meters, Centimeters, Millimeters, Cubic Meters, Cubic Centimeters, Cubic Millimeters
e Inches, Feet, Cubic Inches, Cubic Feet Ounces, Liters, Fluid Ounces

» Radians, Steradians, Degrees

* Gravities, Pounds, Foot-Pounds

e Gauss, Gilberts, Henrys, MilliHenrys, Farads, MilliFarads, MicroFarads, PicoFarads
¢ Ohms, Siemens

e Moles, Becquerels, Parts per Million

e Decibels, Tenths of Decibels

e Grays, Sieverts

06/14/99 36 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix D UML NOTATION

The CIM meta-schema notation is based directly on the notation used in Unified Modeling
Language (UML). There are distinct symbols for al of the major constructs in the schema, with
the exception of qualifiers (as opposed to properties, which are directly represented in the
diagrams).

In UML, aclassisrepresented by arectangle. The class name either stands alone in the rectangle
or isin the uppermost segment of the rectangle. If present, the segment below the segment

contai ning the name contains the properties of the class. If present, athird region indicates the
presence of methods.

A line decorated with atriangle indicates an inheritance relationship; the lower rectangle
represents a subtype of the upper rectangle. The triangle points to the superclass.

Other solid lines represent relationships. The cardinality of the references on either side of the
relationship isindicated by a decoration on either end. The following character combinations are
commonly used:

“1” indicates a single-valued, required reference

“0...1” indicates an optional single-valued reference

o indicates an optional many-valued reference (as does “0..*”)

“1..*” indicates a required many-valued reference

A line connected to a rectangle by a dotted line represents a subclass relationship between two
associations.

The diagramming notation and its interpretation are summarized in this table:

META ELEMENT INTERPRETATION DIAGRAMMING NOTATION

@
Key Value
Object y

Property Name
= Property Value

Primitive type Text to theright of the colon in the
center portion of the classicon

06/14/99 87 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

META ELEMENT

INTERPRETATION

DIAGRAMMING NOTATION

Class name
Class Property
Method
Subclass
11 l__1
_ll *
. :
Association 1:Many 1
- 1..0.1
l:izeroor 1l
Aggregation

Association with
properties

link-class with the link-class having

the same name as the association, and
using normal conventions for

representing properties and methods.

—

Association
Name

Property

Association with
subclass

A dashed line running from the sub
association to the super class.

06/14/99

88 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

META ELEMENT INTERPRETATION DIAGRAMMING NOTATION
Class name
Property Middle section of theclassiconisa Propert
list of the properties of the class. pery
Method
Reference One end of the association line Reference
labeled with the name of the Name
reference. — 1
Class name
Method Lower section of the classiconisa Propert
list of the methods of the class. pery
Method
Overriding No direct equivaent.
Note: Use of the same name does not
imply overriding.
Indication Message trace diagram in which
vertical bars represent objects and
horizontal lines represent messages.
Trigger State transition diagrams.
Quadlifier No direct equivalent.
06/14/99

89 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix E GLOSSARY

Aggregation

A strong form of an association. For example, the containment relationship between a
system and the components that make up the system can be called an aggregation. An
aggregation is expressed as a Qualifier on the association class. Aggregation often
implies, but does not require, that the aggregated objects have mutual dependencies.

Association

A class that expresses the rel ationship between two other classes. The relationship is
established by the presence of two or more references in the association class pointing to
therelated classes.

Cardinality

A relationship between two classes that allows more than one object to berelated to a
single object. For example, Microsoft Office* is made up of the software elements Word,
Excel, Access and PowerPoint.

CIM

Common Information Model is the schema of the overall managed environment. It is
divided into a Core model, Common model and extended schemas.

CIM Schema

The schema representing the Core and Common models. Versions of this schemawill be
released by the DM TF over time as the schema evolves.

Class

A collection of instances, al of which support acommon type; that is, a set of properties
and methods. The common properties and methods are defined as features of the class.
For example, the class called Modem represents al the modems present in a system.

Common model

A collection of models specific to aparticular area, derived from the Core model.
Included are the system model, the application model, the network model and the device
model.

Core model A subset of CIM, not specific to any platform. The Core model is set of classes and
associations that establish a conceptual framework for the schema of the rest of the
managed environment. Systems, applications, networks and related information are
model ed as extensions to the Core model.

Domain A virtual room for object names that establishes the range in which the names of objects

are unique.

Explicit Qualifier

A qualifier defined separately from the definition of a class, property or other schema
element (see implicit qualifier). Explicit qualifier names must be unique across the entire
schema. Implicit qualifier names must be unique within the defining schema element;
that is, a given schema element may not have two qualifiers with the same name.

Extended schema

A platform specific schema derived from the Common model. An example isthe Win32
schema.

Feature

A property or method belonging to aclass.

Flavor

Part of aqualifier spcification indicating overriding and inheritance rules. For example,
the qualifier KEY has Flavor(DisableOverride ToSubclass), meaning that every subclass
must inherit it and cannot override it.

Implicit Qualifier

A qualifier defined as apart of the definition of a class, property or other schema
element (see explicit qualifier).

06/14/99

90 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Indication A type of class usually created as aresult of the occurrence of atrigger.

Inheritance A relationship between two classes in which all the members of the subclass are required
to be members of the superclass. Any member of the subclass must also support any
method or property supported by the superclass. For example, Modem is a subclass of
Device.

Instance A unit of data. An instanceis a set of property values that can be uniquely identified by a
key.

Key One or more qualified class properties that can be used to construct a name.

One or more qualified object properties which uniquely identify instances of this object
in a namespace.

Managed Object

The actual item in the system environment that is accessed by the provider. For example,
aNetwork Interface Card.

M eta model

A set of classes, associations and properties that expresses the types of things that can be
defined in a Schema. For example, the meta model includes a class called property which
defines the properties known to the system, a class called method which defines the
methods known to the system, and a class called class which defines the classes known
to the system.

M eta schema

The schema of the meta model.

M ethod

A declaration of asignature; that is, the method name, return type and parameters, and, in
the case of a concrete class, may imply an implementation.

M odel

A set of classes, properties and associations that allows the expression of information
about a specific domain. For example, a Network may consist of Network Devices and
Logica Networks. The Network Devices may have attachment associations to each
other, and may have member associations to Logical Networks.

Model Path

A reference to an object within a namespace.

Namespace

An object that defines a scope within which object keys must be unique.

Namespath Path

A reference to a namespace within an implementation that is capable of hosting CIM
objects.

Name

Combination of a Namespace path and aModel path that identifies a unique object.

Trigger

The occurrence of some action such as the creation, modification or deletion of an object,
access to an object, or modification or access to a property. Triggers may also befired as
aresult of the passage of a specified period of time. A trigger typicaly resultsin an
Indication.

Polymor phism

A subclass may redefine the implementation of amethod or property inherited from its
superclass. The property or method is thereby redefined, even if the superclassis used to
access the object. For example, Device may define availability as a string, and may
return the values “powersave”, "on" or "off." The Modsuhclass of Device may
redefine (override) availability by returning "on," "off," but not "powersave". If all
Devices are enumerated, any Device that happens to be a modem will not return th

value "powersave" for the availabilipyoperty.

Property

A value used to characterize an instance @éss. For example, a Device may have a

06/14/99

o1 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

property called status.

Provider An executable that can return or set information about a given managed object.

Qualifier A value used to characterize a method, property, or classin the meta schema. For
example, if aproperty has the qualifier KEY with the value TRUE, the property is akey
for the class.

Reference Specia property types that are references or "pointers' to other instances.

Schema A namespace and unit of ownership for a set of classes. Schemas may come in forms
such as atext file, information in arepository, or diagramsin a CASE tool.

Scope Part of aQualifier specification indicating with which meta constructs the Qualifier can

be used. For example, the Qualifier ABSTRACT has Scope(Class Association
Indication), meaning that it can only be used with Classes, Associations and Indications.

Scoping Object

Objects which represent areal-world managed element, which in turn propagate keys to
other objects.

Signature The return type and parameters supported by amethod.
Subclass See Inheritance.
Super class See Inheritance.

Top Level Object

A class or object that has no scoping object.

06/14/99

92 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix F UNICODE USAGE

All punctuation symbols associated with object path or MOF Syntax occur within the Basic Latin
range U+0000 to U+007F. These include normal punctuators, such as sashes, colons, commeas,
and so on. No important syntactic punctuation character occurs outside of this range.

All characters above U+007F are treated as parts of names, even though there are several reserved
characters such as U+2028 and U+2029 which are logically whitespace.

Therefore, all namespace, class and property names are identifiers composed as follows:

1. [Initia identifier characters must bein set S1, where S1 = { U+005F, U+0041...U+005A, ‘
U+0061...U+007A, U+0080...U+FFEF) [Thisis dphabetic, plus underscore] ‘

2. All following characters must bein set S2 where S2 = S1 union { U+0030...U+0039} [Thisis ‘
aphabetic, underscore, plus Arabic numerals 0 through 9.]

Note that the Unicode specials range (U+FFFO...U+FFFF) are not legal for identifiers. While the
above sub-range of U+0080...U+FFEF includes many diacritical characterswhich would not be |
useful in an identifier, as well as the Unicode reserved sub-range which has not been allocated, it
seems advisable for simplicity of parsersto simply treat this entire sub-range as 'legal’ for
identifiers.

Refer to RFC2279, published by the Internet Engineering Task Force (IETF), as an example of a ‘

Universal Transformation Format that has specific characteristics for dealing with multi-octet
characters on an application-specific basis.

F.1 MOF Text

MOF files using Unicode must contain a signature as the first two bytes of the text file, either
U+FFFE or U+FEFF, depending on the byte ordering of the text file (as suggested in Section 2.4
of the Unicode specification).

U+FFFE islittle endian.
All MOF keywords and punctuation symbols are as described in the MOF Syntax document and

are not locale-specific. They are composed of charactersfalling in the range U+0000...U+007F,
regardless of the locale of origin for the MOF or itsidentifiers.

F.2 Quoted Strings
In all cases where non-identifier string values are required, delimiters must surround them.

The supported delimiter for strings is U+0027. Once a quoted string is started using the delimiter,
the same delimiter, U+0027, is used to terminate it.

In addition, the digraph U+005C ("\") followed by U+0027 """ constitutes an embedded
quotation mark, not atermination of the quoted string.

06/14/99 93 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

The characters permitted within the quotation mark delimiters just described may fall within the
range U+0001 through U+FFEF.

06/14/99 94 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix G GUIDELINES

Method descriptions are recommended and must, at a minimum, indicate that method'’s side-
effects (pre- and post-conditions).

Associations must not be declared as subtypes of classes that are not associations.

Leading underscores in identifiers are to be discouraged and not be used at all in the stanJard
schemas.

As a general rule, it is recommended that class names not be reused as part of property or method
names. Property and method names are already unigue within their defining class.

To enable information sharing between different CIM implementations, the MAXLEN qualifier
should be used to specify the maximum length of string properties. This qualifiesl maist be
present for string properties used as keys.

A class that has no ABSTRACT qualifier must define, or inherit, key properties.

G.1 Mapping of Octet Strings

Most management models, including SNMP and DMI, support octet strings as data types. The
octet string data type represents arbitrary numeric or textual data. This data is stored as an
indexed byte array of unlimited, but fixed size. Typically, the first N bytes indicate the actual
string length. Since some environments only reserve the first byte, they do not support octet
strings larger than 255 bytes.

In the current release, CIM does not support octet strings as a separate data type. To map octet
strings, it is recommended that the equivalent CIM property be defined as an array of unsigned 8-
bit integers (uint8). The first four bytes of the array contain the length of the octet data: byte 0 is
the most significant byte of the length; byte 3 is the least significant byte of the length. The octet
data starts at byte 4.

G.2 SQL Reserved Words

It is recommended that SQL reserved words be avoided in the selection of class and property
names. This particularly applies to property hames, since class names are prefixed by the schema
name, making a clash with a reserved word unlikely. The current set of SQL reserved words are:

From sql1992.txt:

AFTER ALIAS ASYNC BEFORE
BOOLEAN BREADTH COMPLETION CALL
CYCLE DATA DEPTH DICTIONARY
EACH ELSEIF EQUALS GENERAL

IF IGNORE LEAVE LESS

06/14/99 o5 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

LIMIT LOOP MODIFY NEW
NONE OBJECT OFF oID
OLD OPERATION OPERATORS OTHERS
PARAMETERS PENDANT PREORDER PRIVATE
PROTECTED RECURSIVE REF REFERENCING
REPLACE RESIGNAL RETURN RETURNS
ROLE ROUTINE ROW SAVEPOINT
SEARCH SENSITIVE SEQUENCE SIGNAL
SIMILAR SOLEXCEPTION SOLWARNING STRUCTURE
TEST THERE TRIGGER TYPE
UNDER VARIABLE VIRTUAL VISIBLE
WAIT WHILE WITHOUT

From sgl11992.txt (Annex E):

ABSOLUTE ACTION ADD ALLOCATE
ALTER ARE ASSERTION AT
BETWEEN BIT BIT LENGTH BOTH
CASCADE CASCADED CASE CAST
CATALOG CHAR LENGTH CHARACTER LENGTH COALESCE
COLLATE COLLATION COLUMN CONNECT
CONNECTION CONSTRAINT CONSTRAINTS CONVERT
CORRESPONDING CROSS CURRENT DATE CURRENT TIME
CURRENT TIMESTAMP ~ CURRENT USER DATE DAY
DEALLOCATE DEFERRABLE DEFERRED DESCRIBE
DESCRIPTOR DIAGNOSTICS DISCONNECT DOMAIN
DROP ELSE END-EXEC EXCEPT
EXCEPTION EXECUTE EXTERNAL EXTRACT
FALSE FIRST FULL GET
GLOBAL HOUR IDENTITY IMMEDIATE
INITIALLY INNER INPUT INSENSITIVE
INTERSECT INTERVAL ISOLATION JOIN
LAST LEADING LEFT LEVEL
LOCAL LOWER MATCH MINUTE
MONTH NAMES NATIONAL NATURAL
NCHAR NEXT NO NULLIF
OCTET LENGTH ONLY OUTER OUTPUT
OVERLAPS PAD PARTIAL POSITION
PREPARE PRESERVE PRIOR READ
RELATIVE RESTRICT REVOKE RIGHT
ROWS SCROLL SECOND SESSION
SESSION USER SIZE SPACE SOLSTATE
SUBSTRING SYSTEM USER TEMPORARY THEN

06/14/99

96 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

TIME TIMESTAMP TIMEZONE HOUR TIMEZONE MINUTE
TRAILING TRANSACTION TRANSLATE TRANSLATION
TRIM TRUE UNKNOWN UPPER
USAGE USING VALUE VARCHAR
VARYING WHEN WRITE YEAR
ZONE
From sgl3part2.txt (Annex E):
ACTION ACTOR AFTER ALIAS
ASYNC ATTRIBUTES BEFORE BOOLEAN
BREADTH COMPLETION CURRENT PATH CYCLE
DATA DEPTH DESTROY DICTIONARY
EACH ELEMENT ELSEIF EQUALS
FACTOR GENERAL HOLD IGNORE
INSTEAD LESS LIMIT LIST
MODIFY NEW NEW TABLE NO
NONE OFF oID OLD
OLD TABLE OPERATION OPERATOR OPERATORS
PARAMETERS PATH PENDANT POSTFIX
PREFIX PREORDER PRIVATE PROTECTED
RECURSIVE REFERENCING REPLACE ROLE
ROUTINE ROW SAVEPOINT SEARCH
SENSITIVE SEQUENCE SESSION SIMILAR
SPACE SOLEXCEPTION SOLWARNING START
STATE STRUCTURE SYMBOL TERM
TEST THERE TRIGGER TYPE
UNDER VARIABLE VIRTUAL VISIBLE
WAIT WITHOUT

sgl3part4.txt (ANNEX E):

CALL DO ELSEIF EXCEPTION
IF LEAVE LOOP OTHERS
RESIGNAL RETURN RETURNS SIGNAL
TUPLE WHILE

06/14/99

97 |

COMMON INFORMATION MODEL (CIM) SPECIFICATION VERSION 2.2

Appendix H REFERENCES

[1] Grady Booch and James Rumbaugh, Unified Method for Object-Oriented Devel opment
Document Set, Rational Software Corporation, 1996, http://www.rational .com/uml

[2] HyperMedia Management Protocol, Pratocol Encoding, draft-hmmp-encoding-03.txt,
February, 1997

[3] Interface Definition Language, DCE/RPC, The Open Group.

[4] Georges Gardarin and Patrick Valduriez, Relational Databases and Knowledge Bases,
Addison Wedey, 1989

[5] Coplein, James O., Schmidt, Douglas C (eds). Pattern Languages of Program Design,
Addison-Wesley, Reading Mass., 1995

[6] IEEE Standard for Binary Floating-Point Arithmetic, ANSI//IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

[7] Augmented BNF for Syntax Specifications: ABNF, RFC 2234, Nov 1997

[8] G. Weinberger, General Systems Theory

[9] The Unicode Sandard, Version 2.0, by The Unicode Consortium, Addison-Wesley, 1996.
[10] Universal Multiple-Octet Coded Character Set, |SO/IEC 10646

[11] UCS Transformation Format 8 (UTF-8), ISO/IEC 10646-1:1993 Amendment 2 (1996)
[12] Code for the Representation of Names of Languages, |SO/IEC 639:1988 (E/F)

[13] Code for the Representation of Names of Territory, ISO/IEC 3166:1988 (E/F)

06/14/99 08 |

	Introduction and Overview
	CIM Management Schema
	Core Model
	Common Model
	Extension Schema

	CIM Implementations
	CIM Implementation Conformance

	Meta Schema
	Definition of the Meta Schema
	Property Data Types
	Date, Time, and Interval Types
	Indicating Additional Type Semantics with Qualifiers

	Supported Schema Modifications
	Schema Versions

	Class Names
	Qualifiers
	Meta Qualifiers
	Standard Qualifiers
	Optional Qualifiers
	User-defined Qualifiers
	Mapping MIF Attributes

	Managed Object Format
	MOF usage
	Class Declarations
	Instance Declarations

	MOF Components
	Keywords
	Comments
	Validation Context
	Naming of Schema Elements
	Class Declarations
	Association Declarations
	Qualifier Declarations
	Instance Declarations
	Method Declarations
	Compiler Directives
	Value Constants
	Initializers

	Naming
	Background
	Weak Associations: Supporting Key Propagation
	Naming CIM Objects
	
	Namespace Type
	Namespace Handle

	Specifying Object Names in MOF Files

	Mapping Existing Models Into CIM
	Technique Mapping
	Recast Mapping
	Domain Mapping
	Mapping Scratch Pads

	Repository Perspective
	DMTF MIF Mapping Strategies

	Recording Mapping Decisions

