
Distributed Management Task Force, Inc.

COMMON INFORMATION MODEL (CIM)
SPECIFICATION

Version 2.2

June 14, 1999



Technical inquiries and editorial comments should be directed in writing to:

Distributed Management Task Force, Inc. (DMTF)
c/o MacKenzie Kesselring, Inc.
200 SW Market Street, Suite 450
Portland, OR 97201
(503) 294-0739
(503) 225-0765 (fax)

email: dmtf-info@dmtf.org

Additional electronic copies of this specification can be obtained free of charge from the
Internet at:

ftp://ftp.dmtf.org

or

from the World Wide Web at:

http://www.dmtf.org

Additional hardcopies can be obtained for a fee by contacting the DMTF at the address
listed above.

IMPORTANT INFORMATION AND DISCLAIMERS

1. THIS SPECIFICATION (WHICH SHALL INCORPORATE ANY REVISIONS, UPDATES, AND MODIFICATIONS
HERETO) IS FURNISHED FOR INFORMATIONAL PURPOSES ONLY. INTEL CORPORATION, MICROSOFT
CORPORATION, DIGITAL EQUIPMENT CORPORATION, HEWLETT-PACKARD COMPANY, INTERNATIONAL
BUSINESS MACHINES CORPORATION, NOVELL INC., SUN MICROSYSTEMS, INC., COMPAQ COMPUTER
CORPORATION, DELL COMPUTER CORP., SYMANTEC, THE SANTA CRUZ OPERATION, NEC
TECHNOLOGIES, INC., OR ANY OTHER DMTF MEMBER MAKE NO WARRANTIES WITH REGARD
THERETO, AND IN PARTICULAR DO NOT WARRANT OR REPRESENT THAT THIS SPECIFICATION OR ANY
PRODUCTS MADE IN CONFORMANCE WITH IT WILL WORK IN THE INTENDED MANNER OR BE
COMPATIBLE WITH OTHER PRODUCTS IN NETWORK SYSTEMS. NOR DO THEY ASSUME RESPONSIBILITY
FOR ANY ERRORS THAT THE SPECIFICATION MAY CONTAIN OR HAVE ANY LIABILITIES OR
OBLIGATIONS FOR DAMAGES INCLUDING, BUT NOT LIMITED TO, SPECIAL, INCIDENTAL, INDIRECT,
PUNITIVE, OR CONSEQUENTIAL DAMAGES WHETHER ARISING FROM OR IN CONNECTION WITH THE
USE OF THIS SPECIFICATION IN ANY WAY. CORPORATIONS MAY FOLLOW OR DEVIATE FROM THIS
SPECIFICATION AT ANY TIME.

2. NO REPRESENTATIONS OR WARRANTIES ARE MADE THAT ANY PRODUCT BASED IN WHOLE OR IN
PART ON THE ABOVE SPECIFICATION WILL BE FREE FROM DEFECTS OR SAFE FOR USE FOR ITS
INTENDED PURPOSE. ANY PERSON MAKING, USING OR SELLING SUCH PRODUCT DOES SO AT HIS OWN
RISK.

3. THE USER OF THIS SPECIFICATION HEREBY EXPRESSLY ACKNOWLEDGES THAT THE SPECIFICATION
IS PROVIDED AS IS, AND THAT THE DMTF, NEITHER INDIVIDUALLY NOR COLLECTIVELY, MAKE ANY
REPRESENTATIONS, EXTEND ANY WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, ORAL OR
WRITTEN, INCLUDING ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE, OR WARRANTY OR REPRESENTATION THAT THE SPECIFICATION OR ANY PRODUCT OR
TECHNOLOGY UTILIZING ANY ASPECT OF THE SPECIFICATION WILL BE FREE FROM ANY CLAIMS OF
INFRINGEMENT OF INTELLECTUAL PROPERTY, INCLUDING PATENTS, COPYRIGHT AND TRADE
SECRETS OF ANY THIRD PARTY, OR ASSUMES ANY OTHER RESPONSIBILITIES WHATSOEVER WITH
RESPECT TO THE SPECIFICATION OR SUCH PRODUCTS. IN NO EVENT WILL DMTF MEMBERS BE LIABLE
FOR ANY LOSSES, DAMAGES INCLUDING, WITHOUT LIMITATION, THOSE DAMAGES DESCRIBED IN
SECTION 1 ABOVE, COSTS, JUDGMENTS, OR EXPENSES ARISING FROM THE USE OR LICENSING OF THE
SPECIFICATION HEREUNDER.

http://www.mkinc.com/


CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 I

Abstract

The DMTF Common Information Model (CIM) is an approach to the management of
systems and networks that applies the basic structuring and conceptualization techniques
of the object-oriented paradigm. The approach uses a uniform modeling formalism that—
together with the basic repertoire of object-oriented constructs—supports the cooperative
development of an object-oriented schema across multiple organizations.

A management schema is provided to establish a common conceptual framework at the
level of a fundamental typology—both with respect to classification and association, and
with respect to a basic set of classes intended to establish a common framework for a
description of the managed environment. The management schema is divided into these
conceptual layers:

• Core model—an information model that captures notions that are applicable to all
areas of management.

• Common model—an information model that captures notions that are common to
particular management areas, but independent of a particular technology or
implementation. The common areas are systems, applications, databases, networks
and devices. The information model is specific enough to provide a basis for the
development of management applications. This model provides a set of base classes
for extension into the area of technology-specific schemas. The Core and Common
models together are expressed as the CIM schema.

• Extension schemas—represent technology-specific extensions of the Common
model.  These schemas are specific to environments, such as operating systems (for
example, UNIX† or Microsoft Windows†).

PARTICIPANTS
This list shows the names of the companies that participated in the Distributed
Management Task Force - CIM Sub-Committee whose contributions made this document
possible.

• Compaq Computer Corporation
• Computer Associates Intl., Inc
• Hewlett-Packard Company
• Intel Corporation
• Microsoft Corporation
• Novell, Inc.
• Sun Microsystems, Inc.
• Tivoli Systems, Inc.

                                                          
†  Other product and corporate names may be trademarks of other companies and are used only for explanation and to

the owners’ benefit, without intent to infringe.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 II

Change History

Version 1 Wednesday, April 09, 1997 First Public Release

Version 1.1 Thursday, October 23, 1997 Output after Working Groups input

Version 1.2a Monday, November 03, 1997 Naming

Version 1.2b Monday, November 17, 1997 Remove reference qualifier

Version 2.0a Thursday, December 11, 1997 Apply pending changes and new metaschema

Version 2.0d Thursday, December 11, 1997 Output of 12/9/1997 TDC, Dallas

Version 2.0f Monday, February 16, 1998 Output of 2/3/1998 TDC, Austin

Version 2.0g Thursday, February 26, 1998 Apply approved change requests and final edits
submitted through 2/26/1998.

Version 2.2 Tuesday, June 14, 1999 Incorporate Errata and approved change requests
through 1999-06-08



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 III

Contents

1 INTRODUCTION AND OVERVIEW ................................................................1

1.1 CIM Management Schema....................................................................................................... .... 1
1.1.1 Core Model ................................................................................................................ ................. 2
1.1.2 Common Model .............................................................................................................. ............ 2
1.1.3 Extension Schema.......................................................................................................... ............. 2

1.2 CIM Implementations......................................................................................................... .......... 2
1.2.1 CIM Implementation Conformance ............................................................................................ 4

2 META SCHEMA ..............................................................................................5

2.1 Definition of the Meta Schema............................................................................................... ...... 5

2.2 Property Data Types......................................................................................................... .......... 11
2.2.1 Date, Time, and Interval Types................................................................................................. 12
2.2.2 Indicating Additional Type Semantics with Qualifiers............................................................. 12

2.3 Supported Schema Modifications.............................................................................................. 13
2.3.1 Schema Versions....................................................................................................................... 14

2.4 Class Names................................................................................................................................. 14

2.5 Qualifiers ..................................................................................................................................... 14
2.5.1 Meta Qualifiers ......................................................................................................................... 15
2.5.2 Standard Qualifiers ................................................................................................................... 15
2.5.3 Optional Qualifiers ................................................................................................................... 22
2.5.4 User-defined Qualifiers............................................................................................................. 25
2.5.5 Mapping MIF Attributes ........................................................................................................... 25
2.5.6 Mapping Generic Data to CIM Properties ................................................................................ 26

3 MANAGED OBJECT FORMAT ....................................................................28

3.1 MOF usage................................................................................................................................... 28

3.2 Class Declarations ....................................................................................................................... 28

3.3 Instance Declarations.................................................................................................................. 28

4 MOF COMPONENTS ....................................................................................30

4.1 Keywords ..................................................................................................................................... 30

4.2 Comments .................................................................................................................................... 30

4.3 Validation Context ...................................................................................................................... 30



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 IV

4.4 Naming of Schema Elements...................................................................................................... 30

4.5 Class Declarations ....................................................................................................................... 31
4.5.1 Declaring a Class ...................................................................................................................... 31
4.5.2 Subclasses ................................................................................................................................. 32
4.5.3 Default Property Values............................................................................................................ 32
4.5.4 Class and Property Qualifiers ................................................................................................... 32
4.5.5 Key Properties .......................................................................................................................... 35

4.6 Association Declarations............................................................................................................. 35
4.6.1 Declaring an Association .......................................................................................................... 36
4.6.2 Subassociations......................................................................................................................... 36
4.6.3 Key References and Properties ................................................................................................. 37
4.6.4 Object References ..................................................................................................................... 37

4.7 Qualifier Declarations................................................................................................................. 38

4.8 Instance Declarations.................................................................................................................. 38
4.8.1 Instance Aliasing....................................................................................................................... 39
4.8.2 Arrays ....................................................................................................................................... 40

4.9 Method Declarations................................................................................................................... 41

4.10 Compiler Directives .................................................................................................................... 42

4.11 Value Constants .......................................................................................................................... 43
4.11.1 String Constants........................................................................................................................ 43
4.11.2 Character Constants .................................................................................................................. 44
4.11.3 Integral Constants ..................................................................................................................... 44
4.11.4 Floating-Point Constants........................................................................................................... 44
4.11.5 Object Ref Constants ................................................................................................................ 45
4.11.6 NULL........................................................................................................................................ 45

4.12 Initializers .................................................................................................................................... 45
4.12.1 Initializing Arrays ..................................................................................................................... 45
4.12.2 Initializing References Using Aliases ....................................................................................... 46

5 NAMING ....................................................................................................47

5.1 Background ................................................................................................................................. 47
5.1.1 Management Tool Responsibility for an Export Operation ...................................................... 50
5.1.2 Management Tool Responsibility for an Import Operation ...................................................... 50

5.2 Weak Associations: Supporting Key Propagation ................................................................... 50
5.2.1 Referencing Weak Objects ....................................................................................................... 52

5.3 Naming CIM Objects.................................................................................................................. 52
5.3.1 Namespace Path........................................................................................................................ 53
5.3.2 Model Path................................................................................................................................ 54
5.3.3 Specifying the Object Name ..................................................................................................... 55

5.4 Specifying Object Names in MOF Files .................................................................................... 56
5.4.1 Synchronizing Namespaces ...................................................................................................... 56
5.4.2 Building References Between Management Systems............................................................... 59



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 V

6 MAPPING EXISTING MODELS INTO CIM...................................................62

6.1 Technique Mapping ........................................................................................................... ......... 62

6.2 Recast Mapping........................................................................................................................... 63

6.3 Domain Mapping ........................................................................................................................ 65

6.4 Mapping Scratch Pads................................................................................................................ 66

7 REPOSITORY PERSPECTIVE .....................................................................67

7.1 DMTF MIF Mapping Strategies................................................................................................ 68

7.2 Recording Mapping Decisions ................................................................................................... 69

APPENDIX A MOF SYNTAX GRAMMAR DESCRIPTION ...............................72

APPENDIX B CIM META SCHEMA..................................................................77

APPENDIX C VALUES FOR UNITS QUALIFIER.............................................86

APPENDIX D UML NOTATION.........................................................................87

APPENDIX E GLOSSARY................................................................................90

APPENDIX F UNICODE USAGE......................................................................93

F.1 MOF Text .................................................................................................................... ................ 93

F.2 Quoted Strings.............................................................................................................. ............... 93

APPENDIX G GUIDELINES ..............................................................................95

G.1 Mapping of Octet Strings .................................................................................................... ....... 95

G.2 SQL Reserved Words ................................................................................................................. 95

APPENDIX H REFERENCES ...........................................................................98



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 VI

Table of Figures
FIGURE 1-1 FOUR WAYS TO USE CIM .................................................................................................... 3

FIGURE 2-1 META SCHEMA STRUCTURE.............................................................................................. 6

FIGURE 2-2 REFERENCE NAMING........................................................................................................... 9

FIGURE 2-3 REFERENCES, RANGES, AND DOMAINS........................................................................ 10

FIGURE 2-4 REFERENCES, RANGES, DOMAINS AND INHERITANCE ............................................ 10

FIGURE 5-1 DEFINITIONS OF INSTANCES AND CLASSES ............................................................... 48

FIGURE 5-2 EXPORTING TO MOF .......................................................................................................... 49

FIGURE 5-3 INFORMATION EXCHANGE.............................................................................................. 50

FIGURE 5-4 EXAMPLE OF WEAK ASSOCIATION ............................................................................... 51

FIGURE 5-5 OBJECT NAMING................................................................................................................. 53

FIGURE 5-6 NAMESPACES ...................................................................................................................... 54

FIGURE 5-7 NAMESPACE PATH ............................................................................................................. 57

FIGURE 5-8 PRAGMA EXAMPLE............................................................................................................ 58

FIGURE 5-9 NAMESPACE PATH EXAMPLE ......................................................................................... 59

FIGURE 5-10 REFERENCES BETWEEN MANAGEMENT SYSTEMS ................................................. 60

FIGURE 5-11 EXAMPLE OF NONLOCAL QUALIFIER ......................................................................... 61

FIGURE 6-1 TECHNIQUE MAPPING EXAMPLE ................................................................................... 62

FIGURE 6-2 MIF TECHNIQUE MAPPING EXAMPLE ........................................................................... 63

FIGURE 6-3 RECAST MAPPING............................................................................................................... 63

FIGURE 7-1 REPOSITORY PARTITIONS................................................................................................ 67

FIGURE 7-2 HOMOGENEOUS AND HETEROGENEOUS EXPORT..................................................... 69

FIGURE 7-3 SCRATCH PADS AND MAPPING....................................................................................... 70



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 1

1 INTRODUCTION AND OVERVIEW

This section describes the many ways in which the Common Information Model (CIM) can be
used. It provides a context in which the details described in the later chapters can be understood.

Ideally, information used to perform tasks is organized or structured to allow disparate groups of
people to use it. This can be accomplished by developing a model or representation of the details
required by people working within a particular domain. Such an approach can be referred to as an
information model. An information model requires a set of legal statement types or syntax to
capture the representation, and a collection of actual expressions necessary to manage common
aspects of the domain (in this case, complex computer systems). Because of the focus on common
aspects, the DMTF refers to this information model as CIM, the Common Information Model.

This document describes an object-oriented meta model based on the Unified Modeling Language
(UML). This model includes expressions for common elements that must be clearly presented to
management applications (for example, object classes, properties, methods and associations).
This document does not describe specific CIM implementations, APIs, or communication
protocols – those topics will be addressed in a future version of the specification. For information
on the current core and common schemas developed using this meta model, contact the
Distributed Management Task Force.

1.1 CIM Management Schema

Management schemas are the building blocks for management platforms and management
applications, such as device configuration, performance management, and change management.
CIM is structured in such a way that the managed environment can be seen as a collection of
interrelated systems, each of which is composed of a number of discrete elements.

CIM supplies a set of classes with properties and associations that provide a well-understood
conceptual framework within which it is possible to organize the available information about the
managed environment. It is assumed that CIM will be clearly understood by any programmer
required to write code that will operate against the object schema, or by any schema designer
intending to make new information available within the managed environment.

CIM itself is structured into these distinct layers:

• Core model—an information model that captures notions that are applicable to all areas of
management.

• Common model—an information model that captures notions that are common to particular
management areas, but independent of a particular technology or implementation. The
common areas are systems, applications, networks and devices. The information model is
specific enough to provide a basis for the development of management applications. This
schema provides a set of base classes for extension into the area of technology-specific
schemas. The Core and Common models together are referred to in this document as the CIM
schema.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 2

• Extension schemas—represent technology-specific extensions of the Common model. These
schemas are specific to environments, such as operating systems (for example, UNIX or
Microsoft Windows).

1.1.1 Core Model

The Core model is a small set of classes, associations and properties that provide a basic
vocabulary for analyzing and describing managed systems. The Core model represents a starting
point for the analyst in determining how to extend the common schema.  While it is possible that
additional classes will be added to the Core model over time, major re-interpretations of the Core
model classes are not anticipated.

1.1.2 Common Model

The Common model is a basic set of classes that define various technology-independent areas.
The areas are systems, applications, networks and devices. The classes, properties, associations
and methods in the Common model are intended to provide a view of the area that is detailed
enough to use as a basis for program design and, in some cases, implementation. Extensions are
added below the Common model in platform-specific additions that supply concrete classes and
implementations of the Common model classes. As the Common model is extended, it will offer
a broader range of information.

1.1.3 Extension Schema

The Extension schemas are technology-specific extensions to the Common model. It is expected
that the Common model will evolve as a result of the promotion of objects and properties defined
in the Extension schemas.

1.2 CIM Implementations

CIM is a conceptual model that is not bound to a particular implementation. This allows it to be
used to exchange management information in a variety of ways; four of these ways are illustrated
in Figure 1-1.  It is possible to use these ways in combination within a management application.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 3

CIM Meta Model Content of CIM Realization of CIM

Repository  –
store meta model
information for
program access.

Application DBMS –
transform conceptual
definition into a physical
schema for particular
database technology (for
example, relational).

Application Objects –
used to define a set of
data-oriented
application objects that
can be instantiated and
extended in the targeted
technology.

Has Instances

Exchange Parameter –
Content of CIM is used to
structure instances passed
between applications.

Realization

Class

Objects (instances of
classes)

Core Schema
Common Schema
Extension Schemas

Figure 1-1 Four Ways to Use CIM

As a repository (see the Repository Perspective section for more detail), the constructs defined in
the model are stored in a database. These constructs are not instances of the object, relationship,
and so on; but rather are definitions for someone to use in establishing objects and relationships.
The meta model used by CIM is stored in a repository that becomes a representation of the meta
model. This is accomplished by mapping the meta-model constructs into the physical schema of
the targeted repository, then populating the repository with the classes and properties expressed in
the Core model, Common model and Extension schemas.

For an application DBMS, the CIM is mapped into the physical schema of a targeted DBMS (for
example, relational). The information stored in the database consists of actual instances of the
constructs. Applications can exchange information when they have access to a common DBMS
and the mapping occurs in a predictable way.

For application objects, the CIM is used to create a set of application objects in a particular
language. Applications can exchange information when they can bind to the application objects.

For exchange parameters, the CIM—expressed in some agreed-to syntax—is a neutral form used
to exchange management information by way of a standard set of object APIs. The exchange can
be accomplished via a direct set of API calls, or it can be accomplished by exchange-oriented
APIs which can create the appropriate object in the local implementation technology.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 4

1.2.1 CIM Implementation Conformance

The ability to exchange information between management applications is fundamental to CIM.
The current mechanism for exchanging management information is the Management Object
Format (MOF).  At the present time,1 no programming interfaces or protocols are defined by (and
hence cannot be considered as) an exchange mechanism.  Therefore, a CIM-capable system must
be able to import and export properly formed MOF constructs.  How the import and export
operations are performed is an implementation detail for the CIM-capable system.

Objects instantiated in the MOF must, at a minimum, include all key properties and all properties
marked as required.  Required properties have the REQUIRED qualifier present and set to TRUE.

                                                          
1 The standard CIM application programming interface and/or communication protocol will be defined in a future version of the

CIM specification.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 5

2 META SCHEMA

The Meta Schema is a formal definition of the model. It defines the terms used to express the
model and its usage and semantics (see Appendix B).

The Unified Modeling Language (UML) is used to define the structure of the meta schema. In the
discussion that follows, italicized words refer to objects in the figure. The reader is expected to be
familiar with UML notation (see http://www.rational.com/uml) and with basic object-oriented
concepts in the form of classes, properties, methods, operations, inheritance, associations, objects,
cardinality and polymorphism.

2.1 Definition of the Meta Schema

The elements of the model are Schemas, Classes, Properties and Methods. The model also
supports Indications and Associations as types of Classes and References as types of Properties.

A Schema is a group of classes with a single owner. Schemas are used for administration and
class naming. Class names must be unique within their owning schemas.

A Class is a collection of instances that support the same type: that is, the same properties and
methods.

Classes can be arranged in a generalization hierarchy that represents subtype relationships
between Classes. The generalization hierarchy is a rooted, directed graph and does not support
multiple inheritance.

Classes can have Methods, which represent the behavior relevant for that Class. A Class may
participate in Associations by being the target of one of the References owned by the Association.
Classes also have instances (not represented in Figure 2-1).

A Property is a value used to characterize instances of a Class. A Property can be thought of as a
pair of Get and Set functions that, when applied to an object,2 return state and set state,
respectively.

A Method is a declaration of a signature (that is, the method name, return type and parameters),
and, in the case of a concrete Class, may imply an implementation.

A Trigger is a recognition of a state change (such as create, delete, update, or access) of a Class
instance, and update or access of a Property.

An Indication is an object created as a result of a Trigger. Because Indications are subtypes of
Class, they can have Properties and Methods, and be arranged in a type hierarchy.

An Association is a class that contains two or more References. It represents a relationship
between two or more objects. Because of the way Associations are defined, it is possible to

                                                          
2  Note the equivocation between “object” as instance and “object” as class. This is common usage in object-oriented literature

and reflects the fact that in many cases, operations and concepts may apply to or involve both classes and instances.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 6

establish a relationship between Classes without affecting any of the related Classes.  That is,
addition of an Association does not affect the interface of the related Classes. Associations have
no other significance. Only Associations can have References. An Association cannot be a
subclass of a non-association Class. Any subclass of an Association is an Association.

References define the role each object plays in an Association. The Reference represents the role
name of a Class in the context of an Association. Associations support the provision of multiple
relationship instances for a given object. For example, a system can be related to many system
components.

Properties and Methods have reflexive associations that represent Property and Method
overriding. A Method can override an inherited Method, which implies that any access to the
inherited Method will result in the invocation of the implementation of the overriding Method. A
similar interpretation implies the overriding of Properties.

Qualifiers are used to characterize Named Elements (for example, there are Qualifiers that define
the characteristics of a Property or the key of a Class). Qualifiers provide a mechanism that
makes the meta schema extensible in a limited and controlled fashion. It is possible to add new
types of Qualifiers by the introduction of a new Qualifier name, thereby providing new types of
meta data to processes that manage and manipulate classes, properties and other elements of the
meta schema. See below for details on the qualifiers provided.

Method
Override

1

0..*

0..*

0..*
0..1

0..*
0..1

1 1Class

MethodProperty

Reference
Association Indication

Trigger

Schema

Name: string

Named
Element

Value: Variant

Qualifier

Element Schema

ElementTrigger

Method
Domain

Property
Domain

Range

Property
Override

Characteristics

Subtype
Supertype

0..* 0..*

1

0..*

0..1

0..*

1..*

1
2..*

0..*

1

Figure 2-1 Meta Schema Structure

Figure 2-1 provides an overview of the structure of the meta schema.  The complete meta schema
is defined by the MOF found in Appendix B.  The rules defining the meta schema are:

1. Every meta construct is expressed as a descendent of a Named Element.

                                                          



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 7

2. A Named Element has zero or more Characteristics. A Characteristic is a Qualifier that
characterizes a Named Element.

3. A Named Element can trigger zero or more Indications.

4. A Schema is a Named Element and can contain zero or more classes. A Class must
belong to only one schema.

5. A Qualifier Type (not shown in Figure 2-1) is a Named Element and must be used to
supply a type for a Qualifier (that is, a Qualifier must have a Qualifier Type). A Qualifier
Type can be used to type zero or more Qualifiers.

6. A Qualifier is a Named Element and has a Name, a Type (intrinsic data type), a Value of
this type, a Scope, a Flavor and a default Value.  The type of the Qualifier Value must
agree with the type of the Qualifier Type.

7. A Property is a Named Element and has only one Domain: the Class that owns the
Property.

8. A Property can have an Override relationship with another Property from a different
class. The Domain of the overridden Property must be a supertype of the Domain of the
overriding Property.

9. The Class referenced by the Range association (Figure 2-4) of an overriding Reference
must be the same as, or a subtype of, the Class referenced by the Range associations of
the Reference being overridden.

10. The Domain of a Reference must be an Association.

11. A Class is a type of Named Element. A Class can have instances (not shown on the
diagram) and is the Domain for zero or more Properties. A Class is the Domain for zero
or more Methods.

12. A Class can have zero or one supertype, and zero or more subtypes.

13. An Association is a type of Class.  Associations are classes with an Association qualifier.

14. An Association must have two or more References.

15. An Association cannot inherit from a non-association Class.

16. Any subclass of an Association is an association.

17. A Method is a Named Element and has only one Domain: the Class that owns the
Method.

18. A Method can have an Override relationship with another Method from a different Class.
The Domain of the overridden Method must be a superclass of the Domain of the
overriding Method.

19. A Trigger is an operation that is invoked on any state change, such as object creation,
deletion, modification or access, or on property modification or access. Qualifiers,



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 8

Qualifier Types and Schemas may not have triggers. The changes that invoke a trigger
are specified as a Qualifier.

20. An Indication is a type of Class and has an association with zero or more Named Triggers
that can create instances of the Indication.

21. Every meta-schema object is a descendent of a Named Element and, as such, has a Name.
All names are case-insensitive. The rules applicable to Name vary, depending on the
creation type of the object.

A Fully-qualified Class Names (that is, the Class name prefixed by the schema
name) are unique within the schema. (See the discussion of schemas later in this
section).

B Fully-qualified Association and Indication Names are unique within the schema
(implied by the fact that Associations and Indications are subtypes of Class).

C Implicitly-defined Qualifier Names are unique within the scope of the
characterized object (that is, a Named Element may not have two Characteristics
with the same Name). Explicitly-defined Qualifier Names are unique within the
defining Schema. An implicitly-defined Qualifier must agree in type, scope and
flavor with any explicitly-defined Qualifier of the same name.

D Trigger names must be unique within the Property, Class or Method to which the
Trigger applies.

E Method and Property names must be unique within the Domain Class. A Class
can inherit more than one Property or Method with the same name. Property and
Method names can be qualified using the name of the declaring Class.

F Reference Names must be unique within the scope of their defining Association.
Reference Names obey the same rules as Property Names. Note that Reference
names are not required to be unique within the scope of the related Class. In such
a scope, the Reference provides the name of the Class within the context defined
by the Association.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 9

System

Service Service

System

Service

System

Service

DependencyHosted Services

Figure 2-2 Reference Naming

It is legal for the class System to be related to Service by two independent
Associations (Dependency and Hosted Services, each with roles System and
Service).  It would not be legal for Hosted Services to define another Reference
Service to the Service class, since a single association would then contain two
references called Service.

22. Qualifiers are Characteristics of Named Elements. A Qualifier has a Name (inherited
from Named Element) and a Value. The Value is used to define the characteristics of the
Named Element. For example, a Class might have a Qualifier with the Name
“Description,” the Value of which is the description for the Class. A Property might have
a Qualifier with the Name “Units,” which has Values such as “Bytes” or “KiloBytes.”
The Value can be thought of as a variant (that is, a value plus a type).

23. Association and Indication are types of Class; as such, they can be the Domain for
Methods, Properties and References (that is, Associations and Indications can have
Properties and Methods in the same way as a Class does).  Associations and Indications
can have instances. The instance of an Association has a set of references that relate one
or more objects. An instance of an Indication represents the occurrence of an event, and
is created because of that occurrence—usually a Trigger. Indications are not required to
have keys. Typically, Indications are very short-lived objects used to communicate
information to an event consumer.

24. A Reference has a range that represents the type of the Reference. For example, in the
model of PhysicalElements and PhysicalPackages, there are two References:
ContainedElement, which has PhysicalElement as its range and Container as its domain,
and ContainingElement, which has PhysicalPackage as its range and Container as its
domain.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 10

Physical
Element

Physical
Package

Container

Contained Element

Containing Element

Figure 2-3 References, Ranges, and Domains

25. A Class has a subtype-supertype association that represents substitutability relationships
between the Named Elements involved in the relationship. The association implies that
any instance of a subtype can be substituted for any instance of the supertype in an
expression, without invalidating the expression.

Revisiting the Container example: Card is a Subtype of PhysicalPackage. Therefore, Card
can be used as a value for the Reference ContainingElement (that is, an instance of Card
can be used as a substitute for an instance of PhysicalPackage).

CabinetCard

Physical
Element

Physical
Package

Container

Contained Element

Containing Element

Figure 2-4 References, Ranges, Domains and Inheritance

A similar relationship can exist between Properties. For example, given that
PhysicalPackage has a Name property (which is a simple alphanumeric string), Card
Overrides Name to a name of alpha-only characters.

The same idea applies to Methods. A Method that overrides another Method must support
the same signature as the original Method and, most importantly, must be substitutable
for the original Method in all cases.

26. The Override relationship is used to indicate the substitution relationship between a
property or method of a subclass and the overridden property or method inherited from
the superclass. This is the opposite of the C++ convention in which the superclass
property or method is specified as virtual, with overriding occurring thereafter as a side
effect of declaring a feature with the same signature as the inherited virtual feature.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 11

27. The number of references in an Association class defines the arity of the Association. An
Association containing two references is a binary Association.  An Association
containing three references is a ternary association. Unary Associations (Associations
containing one reference) are not meaningful. Arrays of references are not allowed.
When an association is sub-classed, its arity cannot change.

28. Schemas provide a mechanism that allows ownership of portions of the overall model by
individuals and organizations who are responsible for managing the evolution of the
schema. In any given installation, all classes are mutually visible, regardless of schema
ownership. Schemas have a universally unique name. The schema name is considered
part of the class name. The full class name (that is, class name plus owning schema
name) is unique within the namespace and is referred to as the fully-qualified name (see
Section 2.4).

2.2 Property Data Types

Property data types are limited to the intrinsic data types, or arrays of such.  Structured types are
constructed by designing new classes. If the Property is an array property, the corresponding
variant type is simply the array equivalent (fixed or variable length) of the variant for the
underlying intrinsic type.

This table contains the intrinsic data types and their interpretation:

INTRINSIC DATA TYPE INTERPRETATION

uint8 Unsigned 8-bit integer

sint8 Signed 8-bit integer

uint16 Unsigned 16-bit integer

sint16 Signed 16-bit integer

uint32 Unsigned 32-bit integer

sint32 Signed 32-bit integer

uint64 Unsigned 64-bit integer

sint64 Signed 64-bit integer

string UCS-2 string

boolean Boolean

real32 IEEE 4-byte floating-point

real64 IEEE 8-byte floating-point

datetime A string containing a date-time

<classname> ref Strongly typed reference

char16 16-bit UCS-2 character



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 12

2.2.1 Date, Time, and Interval Types

Date, datetime, interval and time property types are aliases for each other and use the same fixed
string-based format:

yyyymmddhhmmss.mmmmmmsutc

where

• yyyy is a 4 digit year

• mm is the month

• dd is the day

• hh is the hour (24-hour clock)

• mm is the minute

• ss is the second

• mmmmmm is the number of microseconds

• s is a "+" or "-", indicating the sign of the UTC (Universal Coordinated Time; for all
intents and purposes the same as Greenwich Mean Time) correction field, or a “:”.  In this
case, the value is interpreted as a time interval, and yyyymm are interpreted as days.

• utc is the offset from UTC in minutes (using the sign indicated by s). It is ignored for a
time interval.

For example, Monday, May 25, 1998, at 1:30:15 PM EST would be represented as:

19980525133015.0000000-300

Values must be zero-padded so that the entire string is always the same 25-character length.
Fields which are not significant must be replaced with asterisk characters.

Similarly, intervals use the same format, except that the interpretation of the fields is based on
elapsed time. For example, an elapsed time of 1 day, 13 hours, 23 minutes, and 12 seconds would
be:

00000001132312.000000:000

A UTC offset of zero is always used for interval properties.

The string-based interval format is:

ddddddddhhmmss.mmmmmm:000

2.2.2 Indicating Additional Type Semantics with Qualifiers

Since "counter" and "gauge" types (as well as many others) are actually simple integers with
specific semantics, they are not treated as separate intrinsic types. Instead, qualifiers must be used
to indicate such semantics when properties are being declared (note the example below merely
suggests how this may be done; the qualifier names chosen are not part of this standard):



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 13

class Acme_Example
{
        [counter]
    uint32 NumberOfCycles;
        [gauge]
    uint32 MaxTemperature;
        [octetstring, ArrayType("Indexed")]
    uint8 IPAddress[10];
};

Implementers are permitted, for documentation purposes, to introduce arbitrary qualifiers in this
manner. The semantics are not enforced.

2.3 Supported Schema Modifications

This is a list of supported schema modifications, some of which, when used, will result in
changes in application behavior. Changes are all subject to security restrictions; in particular, only
the owner of the schema, or someone authorized by the owner, can make modifications to the
schema.

1. A class can be added to or deleted from a schema.

2. A property can be added to or deleted from a class.

3. A class can be added as a subtype or supertype of an existing class.

4. A class can become an association as a result of the addition of an Association qualifier,
plus two or more references.

5. A qualifier can be added to or deleted from any Named Element.

6. The Override qualifier can be added to or removed from a property or reference.

7. A class can alias a property (or reference, if the class is a descendent of an association),
using the Alias qualifier. Both inherited and immediate properties of the class may be
aliased.

8. A method can be added to a class.

9. A method can override an inherited method.

10. Methods can be deleted, and the signature of a method can be changed.

11. A trigger may be added to or deleted from a class.

In defining an extension to a schema, the schema designer is expected to operate within the
constraints of the classes defined in the Core model. With respect to classification, it is
recommended that any added component of a system be defined as a subclass of an appropriate
Core model class. It is expected that the schema designer will address the following question to
each of the Core model classes: “Is the class being added a subtype of this class?” Having
identified the Core model class to be extended, the same question should be addressed with
respect to each of the subclasses of the identified class. This process, which defines the
superclasses of the class to be defined, should be continued until the most detailed class is
identified. The Core model is not a part of the meta schema, but is an important device for
introducing uniformity across schemas intended to represent aspects of the managed environment.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 14

2.3.1 Schema Versions

Certain modifications to a schema can cause failure in applications that operated against the
schema prior to the modification. These modifications are:

1. Deletion of classes, properties, or methods.

2. Movements of a class anywhere other than down a hierarchy.

3. Alteration of property type or method signature.

4. Altering a reference range to anything other than the original specification.

Other alterations are considered to be interface-preserving. Any use of the schema changes listed
above implies the generation of a new major version of the schema (as defined by the VERSION
qualifier described in Section 2.5.2).

2.4 Class Names

Fully-qualified class names are in the form <schema name>_<class name>.  An underscore is
used as a delimiter between the <schema name> and the <class name>. The delimiter is not
allowed to appear in the <schema name> although it is permitted in the <class name>.

The format of the fully-qualified name is intended to allow the scope of class names to be limited
to a schema: that is, the schema name is assumed to be unique, and the class name is only
required to be unique within the schema. The isolation of the schema name using the underscore
character allows user interfaces to conveniently strip off the schema when the schema is implied
by the context.

Examples of fully-qualified class names:

• CIM_ManagedSystemElement: the root of the CIM managed system element hierarchy.

• CIM_ComputerSystem: the object representing computer systems in the CIM schema.

• CIM_SystemComponent: the association relating systems to their components.

• Win32_ComputerSystem: the object representing computer systems in the Win32
schema.

2.5 Qualifiers

Qualifiers are values that provide additional information about classes, associations, indications,
methods, method parameters, triggers, instances, properties or references. All qualifiers have a
name, type, value, scope, flavor and default value. Qualifiers cannot be duplicated; there cannot
be more than one qualifier of the same name for any given class, instance, or property.

The following sections describe meta, standard, optional and user-defined qualifiers.  When any
of these qualifiers are used in a model, they must be declared in the MOF file before being used.
These declarations must abide by the details (name, applied to, type) specified in the tables
below.  It is not valid to change any of this information for the meta, standard and optional
qualifiers.  It is possible to change the default values.  A default value is the assumed value for a
qualifier when it is not explicitly specified for particular model elements.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 15

2.5.1 Meta Qualifiers

This table lists the qualifiers that are used to refine the definition of the meta constructs in the
model. These qualifiers are used to refine the actual usage of an object class or property
declaration within the MOF syntax. These qualifiers are all mutually exclusive.

QUALIFIER DEFAULT TYPE MEANING

ASSOCIATION FALSE BOOLEAN The object class is defining an association.

INDICATION FALSE BOOLEAN The object class is defining an indication.

2.5.2 Standard Qualifiers

This table is a list of standard qualifiers that all CIM-compliant implementations are required to
handle. Any given object will not have all of the qualifiers listed. It is expected that additional
qualifiers will be supplied by extension classes to facilitate the provision of instances of the class
and other operations on the class.

It is also important to recognize that not all of these qualifiers can be used together. First, as
indicated in the table, not all qualifiers can be applied to all meta-model constructs. These
limitations are identified in the “Applies To” column. Second, for a particular meta-model
construct like associations, the use of the legal qualifiers may be further constrained because
some qualifiers are mutually exclusive or the use of one qualifier implies some restrictions on the
value of another qualifier, and so on. These usage rules are documented in the “Meaning” column
of the table. Third, legal qualifiers are not inherited by meta-model constructs. For example, the
MAXLEN qualifier that applies to properties is not inherited by references.

The “Applies To” column in the table identifies the meta-model construct(s) that can use a
particular qualifier. For qualifiers like ASSOCIATION (discussed in the previous section), there
is an implied usage rule that the meta qualifier must also be present. For example, the implicit
usage rule for the AGGREGATION qualifiers is that the ASSOCIATION qualifier must also be
present.

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

ABSTRACT FALSE Class,
Association,
Indication

BOOLEAN Indicates that the class is abstract and
serves only as a base for new classes. It
is not possible to create instances of
such classes.

AGGREGATE FALSE Reference BOOLEAN Defines the "parent" component of an
Aggregation association.

Usage Rule: The Aggregation and
Aggregate qualifiers are used together –
Aggregation qualifying the association,
and Aggregate specifying the "parent"
reference.

AGGREGATION FALSE Association BOOLEAN Indicates that the association is an
aggregation.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 16

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

ALIAS NULL Property,
Reference,
Method

STRING Establishes an alternate name for a
property or method in the schema.

ARRAYTYPE "Bag" Property,
Parameter

STRING Indicates the type of the qualified array.
Valid values are "Bag", "Indexed" and
"Ordered".

Usage rule: The ArrayType qualifier
should only be applied to properties and
method parameters that are arrays
(defined using the square bracket syntax
specified in Appendix A).

BITMAP NULL Property,
Method,
Parameter

STRING
ARRAY

Indicates which bit positions are
significant in a bit map. The position of
a specific value in the BitMap array
defines an index that is used in selecting
a string literal from the BitValues array.

BITVALUES NULL Property,
Method,
Parameter

STRING
ARRAY

Provides translation between a bit
position value and an associated string.
See the description for the BitMap
qualifier.

COUNTER FALSE Property,
Method,
Parameter

BOOLEAN Applicable only to unsigned integer
types.

Represents a non-negative integer which
monotonically increases until it reaches
a maximum value of 2^n-1, when it
wraps around and starts increasing again
from zero. N can be 8, 16, 32 or 64
depending on the datatype of the object
to which the qualifier is applied.

Counters have no defined "initial"
value, and thus, a single value of a
Counter has (in general) no information
content

DESCRIPTION NULL Any STRING Provides a description of a Named
Element.

DISPLAYNAME NULL Any STRING Defines a name that will be displayed
on UI instead of the actual name of the
element.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 17

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

GAUGE FALSE Property,
Method,
Parameter

BOOLEAN Applicable only to unsigned integer
types.

Represents a non-negative integer,
which may increase or decrease, but
shall never exceed a maximum value.
The maximum value can not be greater
than 2^n - 1. N can be 8, 16, 32 or 64
depending on the datatype of the object
to which the qualifier is applied.

The value of a Gauge has its maximum
value whenever the information being
modeled is greater or equal to that
maximum value; if the information
being modeled subsequently decreases
below the maximum value, the Gauge
also decreases.

IN TRUE Parameter BOOLEAN Indicates that the associated parameter
is used to pass values to a method.

KEY FALSE Property,
Reference

BOOLEAN Indicates that the property is part of the
namespace handle (see Section 5.3.1.2
for information about namespace
handles).  If more than one property has
the KEY qualifier, then all such
properties collectively form the key (a
compound key).

Usage Rule: Keys are written once at
object instantiation and must not be
modified thereafter.  It does not make
sense to apply a default value to a KEY-
qualified property.

MAPPINGSTRINGS NULL Class,
Property,
Association,
Indication,
Reference

STRING
ARRAY

Mapping strings for one or more
management data providers or agents.
See Section 2.5.5 and 2.5.6 for more
details.

MAX NULL Reference INT Indicates the maximum cardinality of
the reference (i.e. the maximum number
of values a given reference can have for
each set of other reference values in the
association). For example, if an
association relates A instances to B
instances, and there must be at most one
A instance for each B instance, then the
reference to A should have a Max(1)
qualifier.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 18

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

MAXLEN NULL Property,
Method,
Parameter

INT Indicates the maximum length, in
characters, of a string data item. When
overriding the default value, any
unsigned integer value (uint32) can be
specified. A value of NULL implies
unlimited length.

MAXVALUE NULL Property,
Method,
Parameter

INT Maximum value of this object.

MIN 0 Reference INT Indicates the minimum cardinality of
the reference (i.e. the minimum number
of values a given reference can have for
each set of other reference values in the
association). For example, if an
association relates A instances to B
instances, and there must be at least one
A instance for each B instance, then the
reference to A should have a Min(1)
qualifier.

MINVALUE NULL Property,
Method,
Parameter

INT Minimum value of this object.

MODEL
CORRESPONDENCE

NULL Property STRING
ARRAY

Indicates a correspondence between an
object’s property and other properties in
the CIM Schema.  Object properties are
identified using the following syntax:

<schema name> "_" <class or
association name> "." <property name>

NONLOCAL NULL Reference STRING Indicates the location of an instance. Its
value is
<namespacetype>://<namespacehandle>
 
Usage Rule: Cannot be used with the
NonLocalType qualifier.

NONLOCALTYPE NULL  Reference STRING Indicates the type of location of an
instance. Its value is <namespacetype>  

Usage Rule: Cannot be used with the
NonLocal qualifier.  



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 19

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

NULLVALUE NULL Property STRING Defines a value the presence of which
indicates that the associated property is
NULL – that is that the property cannot
be considered as having a valid or
meaningful value.

The conventions and restrictions used
for defining null values are the same as
those applicable to the ValueMap
qualifier.

Note this qualifier cannot be overridden
as it seems unreasonable to permit a
subclass to return a different null value
to that of the superclass.

OUT FALSE Parameter BOOLEAN Indicates that the associated parameter
is used to return values from a method.

OVERRIDE NULL Property,
Method,
Reference

STRING Indicates that the property, method, or
reference in the derived class overrides
the similar construct (of the same name)
in the parent class in the inheritance
tree, or in the specified parent class. The
value of this qualifier MAY identify the
parent class whose subordinate
construct (property, method, or
reference) is overridden. The format of
the string to accomplish this is:

[<class>.]<subordinate construct>

If the class name is omitted, the
Override applies to the subordinate
construct in the parent class in the
inheritance tree.

Usage Rule: The Override qualifier can
only refer to constructs based on the
same meta model. Also, it is not
allowed to change a construct's name or
signature when overriding.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 20

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

PROPAGATED NULL Property STRING The propagated qualifier is a string-
valued qualifier that contains the name
of the key that is being propagated. Its
use assumes the existence of only one
weak qualifier on a reference that has
the containing class as its target. The
associated property must have the same
value as the property named by the
qualifier in the class on the other side of
the weak association. The format of the
string to accomplish this is:

 [<class>.]<subordinate construct>

Usage Rule: When the PROPAGATED
qualifier is used, the KEY qualifier must
be specified with a value of TRUE.

READ TRUE Property BOOLEAN Indicates that the property is readable.

REQUIRED FALSE Property BOOLEAN Indicates that a non-NULL value is
required for the property.

REVISION NULL Class,
Association,
Indication,
Schema

STRING Provides the minor revision number of
the schema object.

Usage Rule: The VERSION qualifier
must be present to supply the major
version number when the REVISION
qualifier is used.

SCHEMA NULL Property,
Method

STRING The name of the schema in which the
feature is defined.

SOURCE NULL Class,
Association,
Indication,
Reference

STRING Indicates the location of an instance. Its
value is
<namespacetype>://<namespacehandle>

Usage Rule: Cannot be used with the
SourceType  qualifier.

SOURCETYPE NULL Class,
Association,
Indication,
Reference

STRING
Indicates the type of location of an
instance. Its value is <namespacetype>  

Usage Rule: Cannot be used with the
Source qualifier.  

STATIC FALSE Property,
Method

BOOLEAN
For methods indicates that the method is
a class method that does not depend on
any per-instance data.

For properties, indicates that the
property is a class variable rather than
an instance variable.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 21

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

TERMINAL FALSE Class BOOLEAN
Indicate that the class can have no
subclasses. If such a subclass is declared
the compiler will generate an error.

Note this qualifier cannot coexist with
the Abstract qualifier. If both are
specified the compiler generates an
error.

UNITS NULL Property,
Method,
Parameter

STRING
Provides units in which the associated
data item is expressed. For example, a
Size data item might have Units
("bytes"). The complete set of standard
units is defined in Appendix C.

VALUEMAP NULL Property,
Method,
Parameter

STRING
ARRAY

Defines the set of permissible values for
this property, method return type or
method parameter. The ValueMap can
be used alone, or in combination with
the Values qualifier. When used in
combination with the Values qualifier,
the location of the value in the
ValueMap array provides the location of
the corresponding entry in the Values
array.

ValueMap may only be used with string
and integer values. The syntax for
representing an integer value in the
ValueMap array is:

[+|-]digit[*digit]

The content, maximum number of digits
and represented value are constrained by
the type of the associated property. For
example, uint8 may not be signed, must
be less than four digits, and must
represent a value less than 256.

VALUES NULL Property,
Method,
Parameter

STRING
ARRAY

Provides translation between an integer
value and an associated string. If a
ValueMap qualifier is not present, the
Values array is indexed (zero relative)
using the value in the associated
property, method return type or method
parameter. If a ValueMap qualifier is
present, the Values index is defined by
the location of the property value in the
ValueMap.

VERSION NULL Class, Schema,
Association,
Indication

STRING Provides the major version number of
the schema object. This is incremented
when changes are made to the schema
that alter the interface.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 22

QUALIFIER DEFAULT APPLIES TO TYPE MEANING

WEAK FALSE Reference BOOLEAN Indicates that the keys of the referenced
class include the keys of the other
participants in the association. This
qualifier is used when the identity of the
referenced class depends on the identity
of the other participants in the
association. No more than one reference
to any given class can be weak. The
other classes in the association must
define a key. The keys of the other
classes in the association are repeated in
the referenced class and tagged with a
propagated qualifier.

WRITE FALSE Property BOOLEAN Indicates whether write access is
allowed for a property by any
"consumers" of that property’s data.
This qualifier does not address the
initial assignment of a property value,
nor its maintenance by its "provider".

It describes the maximal level of access
that is allowed, and does not address
whether security and authorization
restrictions may actually prevent writing
of the data. A value of true indicates that
the property is readable and writable by
"consumers", given appropriate
administrative authorization. A value of
false indicates that the property is only
readable by "consumers", regardless of
authorization.

2.5.3 Optional Qualifiers

The optional qualifiers listed in this table address situations that are not common to all CIM-
compliant implementations.  Thus, CIM-compliant implementations can ignore optional
qualifiers since they are not required to interpret or understand these qualifiers. These are
provided in the specification to avoid random user-defined qualifiers for these recurring
situations.

QUALIFER DEFAULT APPLIES TO TYPE MEANING



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 23

QUALIFER DEFAULT APPLIES TO TYPE MEANING

DELETE FALSE Association,
Reference

BOOLEAN For associations: Indicates that the
qualified association must be deleted if
any of the objects referenced in the
association are deleted, AND the
respective object referenced in the
association is qualified with
IFDELETED.

For references: Indicates that the
referenced object must be deleted if the
association containing the reference is
deleted, AND qualified with
IFDELETED, or if any of the objects
referenced in the association are deleted
AND the respective object referenced in
the association is qualified with
IFDELETED.

Usage Rule: Applications must to chase
associations according to the modeled
semantic and delete objects
appropriately.  Note: This usage rule
must be verified when the CIM security
model is defined.

EXPENSIVE FALSE Property,
Reference,
Class,
Association,
Method

BOOLEAN Indicates the property or class is
expensive to compute.

IFDELETED FALSE Association,
Reference

BOOLEAN Indicates that all objects qualified by
DELETE within the association must be
deleted if the referenced object or the
association, respectively, is deleted.

INVISIBLE FALSE Association,
Property,
Method,
Reference,
Class

BOOLEAN Indicates that the association is defined
only for internal purposes (for example,
for definition of dependency semantics)
and should not be displayed (for
example, in maps).

LARGE FALSE Property,
Class

BOOLEAN Indicates the property or class requires a
large amount of storage space.

PROVIDER NULL Any STRING An implementation specific handle to
the instrumentation that populates those
elements in the schemas which refer to
dynamic data.

SYNTAX NULL Property,
Reference,
Method,
Parameter

STRING Specific type assigned to a data item.

Usage Rule: Must be used with the
SyntaxType qualifier.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 24

QUALIFER DEFAULT APPLIES TO TYPE MEANING

SYNTAXTYPE NULL Property,
Reference,
Method,
Parameter

STRING Defines the format of the SYNTAX
qualifier.

Usage Rule: Must be used with the
SYNTAX qualifier.

TRIGGERTYPE NULL Class,
Property,
Method,
Association,
Indication,
Reference

STRING Indicates the circumstances under which
a trigger is fired.

Usage Rule: The trigger types vary by
meta-model construct. For classes and
associations, the legal values are
CREATE, DELETE, UPDATE and
ACCESS. For properties and references,
the legal values are: UPDATE and
ACCESS. For methods, the legal values
are BEFORE and AFTER. For
indications, the legal values are
THROWN.

UNKNOWN
VALUES

NULL Property STRING
ARRAY

Defines a set of values the presence of
which indicates that the value of the
associated property is unknown – that is
that the property cannot be considered
as having a valid or meaningful value.

The conventions and restrictions used
for defining unknown values are the
same as those applicable to the
ValueMap qualifier.

Note this qualifier cannot be overridden
as it seems unreasonable to permit a
subclass to treat as a known value a
value that is treated as unknown by
some superclass.

UNSUPPORTED
VALUES

NULL Property STRING
ARRAY

Defines a set of values the presence of
which indicates that the value of the
associated property is unsupported –
that is that the property cannot be
considered as having a valid or
meaningful value.

The conventions and restrictions used
for defining unsupported values are the
same as those applicable to the
ValueMap qualifier.

Note this qualifier cannot be overridden
as it seems unreasonable to permit a
subclass to treat as a supported value a
value that is treated as unknown by
some superclass.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 25

2.5.4 User-defined Qualifiers

The user can define any additional arbitrary named qualifiers. However, it is recommended that
only defined qualifiers be used, and that the list of qualifiers be extended only if there is no other
way to accomplish a particular objective.

2.5.5 Mapping MIF Attributes

Mapping Management Information Format (MIF) attributes to CIM Properties can be
accomplished using the MAPPINGSTRINGS qualifier. This qualifier provides a mechanism to
specify the mapping from DMTF and vendor-defined MIF groups to specific properties. This
allows for mapping using either Domain or Recast Mapping.

Every MIF group contains a unique identification that is defined using the class string, which is
defined as follows:

defining body|specific name|version

where defining body is the creator and owner of the group, specific name is the unique name of
the group and version is a three-digit number that identifies the version of the group definition. In
addition, each attribute has a unique numeric identifier, starting with the number one.

Therefore, the mapping qualifier can be represented as a string that is formatted as follows:

MIF.defining body|specific name|version.attributeid

where MIF is a constant defining this as a MIF mapping followed by a dot. This is then followed
by the class string for the group this defines, and optionally followed by a dot and the identifier of
a unique attribute.

In the case of a Domain Mapping, all of the above information is required, and provides a way to
map an individual MIF attribute to a particular CIM Property. In the case of the recast mapping, a
CIM class can be recast from a MIF group and only the MIF constant, followed by the dot
separator followed by the class string, is required.

For example, a Domain Mapping of a DMTF MIF attribute to a CIM property would be as
follows:

 [MAPPINGSTRINGS{"MIF.DMTF|ComponentID|001.4"},READ]
    SerialNumber = "";

The above declaration defines a mapping to the SerialNumber property from the DMTF Standard
Component ID group’s serial number attribute. Because the qualifiers of CIM are a superset of
those found in MIF syntax, any qualifier may be overridden in the CIM definition.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 26

To recast an entire MIF group into a CIM Object, the mapping string can be used to define an
entire Class. For example:

    [MAPPINGSTRINGS {"MIF.DMTF|Software Signature|002"}]
class MicroSoftWord : SoftwareSignature
{
   ...
}

2.5.6 Mapping Generic Data to CIM Properties

In addition to mapping MIF attributes, the MAPPINGSTRINGS qualifier can be used to map
SNMP variables to CIM properties. Every standard SNMP variable has associated with it a
variable name and a unique object identifier (OID) that is defined by a unique naming authority.
This naming authority is a string. This string can either be a name

standards body (e.g., "IETF"), a company name (e.g., "Acme") for defining the mappings to a
company?s private MIB, and/or an appropriate management protocol (e.g., "SNMP"). For the
IETF case, the ASN.1 module name, not the RFC number, should be used as the MIB name (e.g.,
instead of saying RFC1493, the string "BRIDGE-MIB" should be used). This is also true for the
case of a company name being used as the naming authority. For the case of using a management
protocol like SNMP, the SNMP OID can be used to identify the appropriate SNMP variable. This
latter is especially important for mapping variables in private MIBs.

It should be noted that the concept of a naming authority for mapping data other than SNMP data
into CIM properties could be derived from this requirement. As an example, this can be used to
map attributes of other data stores (e.g., directories) using an application-specific protocol (e.g.,
LDAP).

The syntax for mapping MIF attributes as defined in Section 2.5.5 is as follows:

" MIF.<defining_body | specific_name | version>.attributeid"

The above MIF format can be reconciled with the more general syntax needed to map generic
data to CIM properties by realizing that both forms can be represented as follows:

" <Format>.<Scoping_Name>.<Content> "

where:

"Format" defines the format of the entry. It has the following values:

"MIF" means that the rest of the string is interpreted as MIF data

"MIB" means that the rest of the string is interpreted as a variable name of a MIB

"OID" means that the rest of the string is interpreted as an OID that is defined by a
particular protocol to represent a variable name

"Scoping_Name" defines the format used to uniquely identify the entry. It has the following
values:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 27

"defining_body | specific_name | version" is used for MIF mappings

"Naming_Authority | MIB_Name" is used for MIB mappings

"Naming_Authority | Protocol_Name" is used for protocol mappings that use OIDs to
represent a variable name

"Content" defines the value of the entry. It has the following values:

"attributeid" is used for MIF mappings

"Variable_Name" is used for MIB mappings

"OID" is used for protocol mappings

Here are two examples of the syntax. The first uses the MIB format and looks as follows:

    [Description(
    "OperatingSystem’s notion of the local date and time of day"),
    MappingStrings {"MIB.IETF | HOST-RESOURCES-MIB.hrSystemDate"}]
datetime LocalDateTime;

The second example uses the OID format and looks as follows:

    [Description(
    "OperatingSystem’s notion of the local date and time of day"),
    MappingStrings {"OID.IETF | SNMP.1.3.6.1.2.1.25.1.2"}]
datetime LocalDateTime;



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 28

3 MANAGED OBJECT FORMAT

The management information is described in a language based on Interface Definition Language
(IDL) [3] called the Managed Object Format (MOF). This document uses the term MOF
specification to refer to a collection of management information described in a manner
conformant to the MOF syntax.

Elements of MOF syntax are introduced on a case-by-case basis with examples. In addition, a
complete description of the MOF syntax is provided in Appendix A.

Note: All grammars defined in this specification use the notation defined in [7]; any exceptions
are stated with the grammar.

The MOF syntax is a way to describe object definitions in textual form. It establishes the syntax
for writing definitions. The main components of a MOF specification are textual descriptions of
classes, associations, properties, references, methods and instance declarations and their
associated qualifiers. Comments are permitted.

In addition to serving the need for specifying the managed objects, a MOF specification can be
processed using a compiler. To assist the process of compilation, a MOF specification consists of
a series of compiler directives.

A MOF file can be encoded in either Unicode or UTF-8.

3.1 MOF usage

The managed object descriptions in a MOF specification can be validated against an active
namespace (See Section 5). Such validation is typically implemented in an entity acting in the
role of a Server. This section describes the behavior of an implementation when introducing a
MOF specification into a namespace. Typically, such a process validates both the syntactic
correctness of a MOF specification, as well as the semantic correctness of such a specification
against a particular Implementation. A MOF specification can be validated for the syntactic
correctness alone, in a component such as a MOF compiler.

3.2 Class Declarations

A class declaration is treated as an instruction to create a new class. It is a local matter as to
whether the process of introducing a MOF specification into a namespace is allowed to add
classes or modify classes.

Any class referenced in the specification of a class or reference specification must exist at the
time of the specification (that is, forward references are not allowed).

3.3 Instance Declarations

Classes must be defined before they are used to declare instances. However, if a class definition
is already resident within the namespace, that class declaration need not appear in a MOF
specification that introduces the instances of that class.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 29

Any instance declaration is treated as an instruction to create a new instance where the object’s
key values do not already exist, or an instruction to modify an existing instance where an object
with identical key values already exists.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 30

4 MOF COMPONENTS

4.1 Keywords

All keywords in the MOF syntax are case-insensitive.

4.2 Comments

Comments can appear anywhere in MOF syntax and are indicated by either a leading double
slash "//", or a pair of matching "/*" and "*/" sequences.

A "//" comment is terminated by carriage return, line feed or by the end of the MOF specification
(whichever comes first).

For example:

  // This is a comment

A "/*" comment is terminated by the next "*/" sequence or by the end of the MOF specification
(whichever comes first). Comments are not recognized by the meta model and as such, will not be
preserved across compilations.  In other words, the output of a MOF compilation is not required
to include any comments.

4.3 Validation Context

Semantic validation of a MOF specification involves an explicit or implied namespace context.
This is defined as the namespace against which the objects in the MOF specification are validated
and the namespace in which they are created. Multiple namespaces typically indicate the presence
of multiple management spaces or multiple devices.

4.4 Naming of Schema Elements

This section describes the rules for naming of schema elements; this applies to classes, properties,
qualifiers, methods and namespaces.

CIM is a conceptual model that is not bound to a particular implementation. This allows it to be
used to exchange management information in a variety of ways, examples of which are described
in Section 1. Some implementations may use case-sensitive technologies, while others may use
case-insensitive technologies. The naming rules defined in this section are chosen to allow
efficient implementation in either environment, and to enable the effective exchange of
management information between all compliant implementations.

All names are case-insensitive, in that two schema item names are identical if they differ only in
case. This is mandated so that scripting technologies that are case-insensitive can leverage CIM
technology. (Note, however, that string values assigned to properties and qualifiers are not
covered by this rule, and must be treated in a case-sensitive manner).



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 31

The case of a name is set by its defining occurrence and must be preserved by all
implementations. This is mandated so that implementations can be built using case-sensitive
technologies such as Java and object databases. (This also allows names to be consistently
displayed using the same user-friendly mixed-case format).

For example, an implementation, if asked to create class ’Disk’, must reject the request if there is
already a class ’DISK’ in the current schema. Otherwise, when returning the name of the class
’Disk’, it must return the name in mixed case as it was originally specified.

CIM does not currently require support for any particular query language. It is assumed that
implementations will specify which query languages are supported by the implementation and
will adhere to the case conventions that prevail in the specified language. That is, if the query
language is case-insensitive, statements in the language will behave in a case-insensitive manner.

For the full rules for schema names see Appendix F, Unicode Usage.

4.5 Class Declarations

A class is an object describing a grouping of data items that are conceptually related and thought
of as modeling an object. Class definitions provide a type system for instance construction.

4.5.1 Declaring a Class

A class is declared by specifying these components:

1. The qualifiers of the class. This may be empty, or a list of qualifier name/value bindings
separated by commas "," and enclosed with square brackets ("[" and "]").

2. The class name.

3. The name of the class from which this class is derived (if any).

4. The class properties, which define the data members of the class. A property may also
have an optional qualifier list, expressed in the same way as the class qualifier list. In
addition, a property has a data type, and (optionally) a default (initializer) value.

5. The methods supported by the class. A method may have an optional qualifier list. A
method has a signature consisting of its return type, plus its parameters and their type and
usage.

This sample shows how to declare a class:

 [abstract]
class Win32_LogicalDisk
{

[read]
    string DriveLetter;

[read, Units("KiloBytes")]
    sint32 RawCapacity = 0;
 [write]
    string VolumeLabel;

[Dangerous]
    boolean Format([in] boolean FastFormat);
};



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 32

4.5.2 Subclasses

To indicate that a class is a subclass of another class, the derived class is declared by using a
colon followed by the superclass name.

For example, if the class Acme_Disk_v1 is derived from the class CIM_Media:

class Acme_Disk_v1 : CIM_Media
{
    // Body of class definition here ...
};

The terms Base class, superclass and supertype are used interchangeably, as are Derived class,
subclass and subtype.

The superclass declaration must appear at a prior point in the MOF specification or already be a
registered class definition in the namespace in which the derived class is defined.

4.5.3 Default Property Values

Any properties in a class definition can have default initializers. For example:

class Acme_Disk_v1 : CIM_Media
{
    string Manufacturer = "Acme";
    string ModelNumber  = "123-AAL";
};

When new instances of the class are declared, then any such property is automatically assigned its
default value unless the instance declaration explicitly assigns a value to the property.

4.5.4 Class and Property Qualifiers

Qualifiers are meta data about a property, method, method parameter, class, or instance and are
not part of the definition itself.  For example, a qualifier is used to indicate whether a property
value is modifiable (using the WRITE qualifier). Qualifiers always precede the declaration to
which they apply.

Certain qualifiers are well known and cannot be redefined (see the description of the meta
schema). Apart from these, arbitrary qualifiers may be used.

Qualifier declarations include an explicit type indicator, which must be one of the intrinsic types.
A qualifier with an array-based parameter is assumed to have a type, which is a variable-length
homogeneous array of one of the intrinsic types. Note that in the case of boolean arrays, each
element in the array is either TRUE or FALSE.

Examples:

Write(true) // boolean
profile { true, false, true }       // boolean []
description("A string")             // string
info { "this", "a", "bag", "is" } // string []
id(12)                              // uint32
idlist { 21, 22, 40, 43 }           // uint32 []
apple(3.14)                         // real32
oranges { -1.23E+02, 2.1 }          // real32 []



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 33

Qualifiers are applied to a class by preceding the class declaration with a qualifier list, comma-
separated, and enclosed within square brackets. Qualifiers are applied to a property or method in
a similar fashion.

For example:

class CIM_Process:CIM_LogicalElement
{
     uint32 Priority;
 [Write(true)]
     string Handle;
};

When specifying a boolean qualifier in a class or property declaration, the name of the qualifier
can be used without also specifying a value. From the previous example:

class CIM_Process:CIM_LogicalElement
{

uint32 Priority;
[Write] // Equivalent declaration to Write (True)

string Handle;
};

If only the qualifier name is listed for a boolean qualifier, it is implicitly set to TRUE.

In contrast, when a qualifier is not specified at all for a class or property, the default value for the
qualifier is assumed. Using another example:

    [Association,
    Aggregation]    // Specifies the Aggregation qualifier to be True
class CIM_SystemDevice: CIM_SystemComponent
{
        [Override ("GroupComponent"),
        Aggregate]  // Specifies the Aggregate qualifier to be True
    CIM_ComputerSystem Ref GroupComponent;
        [Override ("PartComponent"),
        Weak] // Defines the Weak qualifier to be True
    CIM_LogicalDevice Ref PartComponent;
};

[Association]    // Since the Aggregation qualifier is not specified,
                 // its default value, False, is set
class Acme_Dependency: CIM_Dependency
{
        [Override ("Antecedent")]    // Since the Aggregate and Weak
                                     // qualifiers are not used, their
                                     // default values, False, are assumed
    Acme_SpecialSoftware Ref Antecedent;
        [Override ("Dependent")]
    Acme_Device Ref Dependent;
};

Qualifiers can be transmitted automatically from classes to derived classes, or from classes to
instances, subject to certain rules. The rules behind how the transmission occurs are attached to
each qualifier and encapsulated in the concept of the qualifier flavor. For example, a qualifier
may be designated in the base class as automatically transmitted to all of its derived classes, or it
may be designated as belonging specifically to that class and not transmittable. In addition, the
qualifier flavor can be used to control whether or not derived classes can override the qualifier



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 34

value, or whether it must be fixed for an entire class hierarchy. This aspect of qualifier flavor is
referred to as override permissions.

Qualifier flavors are indicated by an optional clause after the qualifier and preceded by a colon.
They consist of some combination of the key words EnableOverride, DisableOverride,
ToSubclass and Restricted, indicating the applicable propagation and override rules. For example:

class CIM_Process:CIM_LogicalElement
{
    uint32 Priority;
        [Write(true):DisableOverride ToSubclass]
    string Handle;
};

In this example, Handle is designated as writable for the Process class and for every subclass of
this class.

The recognized flavor types are:

PARAMETER INTERPRETATION DEFAULT

EnableOverride The qualifier is overridable. yes

DisableOverride The qualifier cannot be overriden. no

ToSubclass The qualifier is inherited by any subclass. yes

Restricted The qualifier applies only to the class in which it is declared. no

Translatable Indicates the value of the qualifier can be specified in multiple
locales (language and country combination).  When
Translatable(yes) is specified for a qualifier, it is legal to create
implicit qualifiers of the form :

label_ll_cc

where ” label” is the name of the qualifier with
Translatable(yes), and ll and cc are the language code and
country code designation, respectively, for the translated
string.  In other words, a label_ll_cc  qualifier is a clone, or
derivative, of the “label” qualifier with a postfix to capture the
translated value's locale. The locale of the original value (that
is, the value specified using the qualifier with a name of
“label”) is determined by the locale pragma.

When a label_ll_cc qualifier is implicitly defined, the values
for the other flavor parameters are assumed to be the same as
for the “label” qualifier. When a label_ll_cc qualifier is
defined explicitly, the values for the other flavor parameters
must also be the same.  A “yes” for this parameter is only valid
for string-type qualifiers.

Example: if an English description is translated into Mexican
Spanish the actual name of the qualifier is:
DESCRIPTION_es_MX.

no



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 35

4.5.5 Key Properties

Instances of a class require some mechanism through which the instances can be distinguished
within a single namespace. Designating one or more properties with the reserved qualifier "key"
provides instance identification.

For example, this class has one property (Volume) which serves as its’ key:

class Acme_Drive
{

[key]
 string Volume;
 string FileSystem;
 sint32 Capacity;
};

In this example, instances of Drive are distinguished using the Volume property, which acts as
the key for the class.

Compound keys are supported and are designated by marking each of the required properties with
the key qualifier.

If a new subclass is defined from a superclass, and the superclass has key properties (including
those inherited from other classes), the new subclass cannot define any additional key properties.
New key properties in the subclass can be introduced only if all classes in the inheritance chain of
the new subclass are keyless.

If any reference to the class has the Weak qualifier, the properties that are qualified as Key in the
other classes in the association are propagated to the referenced class. The key properties are
duplicated in the referenced class using the name of the property, prefixed by the name of the
original declaring class. For example:

class CIM_System:CIM_LogicalElement
{
        [Key]
    string Name;
};

class CIM_LogicalDevice: CIM_LogicalElement
{
     [Key]
    string DeviceID;
        [Key, Propagated("CIM_System.Name")]
    string SystemName;
};

    [Association]
class CIM_SystemDevice: CIM_SystemComponent
{
        [Override ("GroupComponent"), Aggregate, Min(1), Max(1)]
    CIM_System Ref GroupComponent;
        [Override ("PartComponent"), Weak]
    CIM_LogicalDevice Ref PartComponent;
};

4.6 Association Declarations



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 36

An association is a special kind of a class describing a link between other classes. As such, they
also provide a type system for instance constructions. Associations are just like other classes with
a few additional semantics explained below.

4.6.1 Declaring an Association

An association is declared by specifying these components:

1. The qualifiers of the association (at least the ASSOCIATION qualifier, if it doesn’t have
a supertype). Further qualifiers may be specified as a list of qualifier/name bindings
separated by commas ",". The entire qualifier list is enclosed in square brackets ("[" and
"]").

2. . The association name.

3.  The name of the association from which this association is derived (if any).

4. The association references which define pointers to other objects linked by this
association. References may also have qualifier lists, expressed in the same way as the
association qualifier list. Especially the qualifiers to specify cardinalities of references are
important to be mentioned (see2.5.2. "Standard Qualifiers"). In addition, a reference has a
data type, and (optionally) a default (initializer) value.

5. Additional association properties which define further data members of this association.
They are defined in the same way as for ordinary classes.

6. The methods supported by the association. They are defined in the same way as for
ordinary classes.

The following example shows how to declare an association (assuming given classes CIM_A and
CIM_B):

    [Association]
class CIM_LinkBetweenAandB : CIM_Dependency
{
        [Override ("Antecedent")]
    CIM_A Ref Antecedent;
        [Override ("Dependent")]
    CIM_B Ref Dependent;
};

4.6.2 Subassociations

To indicate that an association is a subassociation of another association, the same notation as for
ordinary classes is used, i.e. the derived association is declared by using a colon followed by the
superassociation name. (An example is provided above.)



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 37

4.6.3 Key References and Properties

Instances of an association also require some mechanism through which the instances can be
distinguished, implied by the fact that they are just a special kind of a class. Designating one ore
more references/properties with the reserved KEY qualifier provides instance identification.

A reference/property of an association is (part of) the association key if the KEY qualifier is
applied.

    [Association, Aggregation]
class CIM_Component
{
        [Aggregate, Key]
    CIM_ManagedSystemElement Ref GroupComponent;
        [Key]
    CIM_ManagedSystemElement Ref PartComponent;
};

In principle, the key definition of association follows the same rules as for ordinary classes.
Compound keys are supported in the same way. Also a new subassociation cannot define any
additional key properties/references.

If any reference to a class has the WEAK qualifier, the KEY-qualified properties of the other
class, whose reference is not WEAK-qualified are propagated to the class. (see subchapter 4.5.5
"Key Properties").

4.6.4 Object References

Object references are properties which are links or pointers to other objects (classes or instances).
The value of an object reference is a string, which represents a path to another object. The path
includes:

1. The namespace in which the object resides.

2. The class name of the object.

3. If the object represents an instance, the values of all key properties for that instance.

Object reference properties are declared by "XXX ref", indicating a strongly typed reference to
objects of the class with name "XXX" (or a derived class thereof). For example:

    [Association]
class Acme_ExampleAssoc
{
    Acme_AnotherClass ref Inst1;
    Acme_Aclass       ref Inst2;
};

In the above declaration, Inst1 can only be set to point to objects of type Acme_AnotherClass.
Also see Section 4.12.2on Initializing References Using Aliases.

In associations, object references have cardinalities - denoted using Min and Max qualifiers. Here
are examples of UML cardinality notations and their respective combinations of Min and Max
values:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 38

UML MIN MAX Required MOF Text* Description

* 0 NULL Many

1..* 1 NULL Min(1) At least one

1 1 1 Min(1), Max(1) One

0,1 (or 0..1) 0 1 Max(1) At most one

4.7 Qualifier Declarations

Qualifiers may be declared using the keyword “qualifier”. The declaration of a qualifier allows
the definition of types, default values, propagation rules (also known as Flavors), and restrictions
on use.

The default value for a declared qualifier is used when the qualifier is not explicitly specified for
a given schema element (explicit specification includes when the qualifier specification is
inherited).

The MOF syntax allows specifying a qualifier without an explicit value.  In this case, the assumed
value depends on the qualifier type:  booleans are true, numeric types are null, strings are null and
arrays are empty.

For example, the alias qualifier is declared as follows:

qualifier alias :string = null, scope (property, reference, method);

This declaration establishes a qualifier called alias. The type of the qualifier is string. It has a
default value of null and may only be used with properties, references and methods.

  The meta qualifiers are declared as:

Qualifier Association : boolean = false,
    Scope(class, association), Flavor(DisableOverride);

Qualifier Indication : boolean = false,
    Scope( class, indication), Flavor(DisableOverride);

See Appendix B for the complete list of standard qualifiers.

4.8 Instance Declarations

Instances are declared using the keyword sequence "instance of" and the class name. The
properties of the instance may be initialized within an initialization block.

Property initialization consists of an optional list of preceding qualifiers (which must be
compatible with the qualifiers declared in the class definition), the name of the property and an
optional value. Any properties not initialized will have default values as specified in the class



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 39

definition, or (if no default value has been specified) the special value NULL to indicate "absence
of value". For example, given the class definition:

class Acme_LogicalDisk: CIM_Partition
{
 [key]
    string DriveLetter;
  [Units(“kilo bytes”)]
    sint32 RawCapacity = 128000;
  [write]
    string VolumeLabel;
  [Units(“kilo bytes”)]
    sint32 FreeSpace;
};

an instance of the above class might be declared as:

instance of Acme_LogicalDisk
{
    DriveLetter = "C";
    VolumeLabel = "myvol";
};

The resulting instance would take these property values:

1. DriveLetter would be assigned the value "C".

2. RawCapacity would be assigned the default value 128000.

3. VolumeLabel would be assigned the value "myvol".

4. FreeSpace would be assigned the value NULL.

For subclasses, all of the properties in the superclass must be initialized along with the properties
in the subclass. Any properties not specifically assigned in the instance block will have either the
default value for the property (if there is one), or else the value NULL (if there is not one).

The values of all key properties must be specified in order for an instance to be identified and
created. There is no requirement to explicitly initialize other properties. See Section 4.11.6 on
behavior when there is no property initialization.

Instances of Associations may also be defined. For example:

instance of CIM_Service SAPDependency
{
    Dependent = "CIM_Service.Name = \"mail\"";
    Antecedent = "CIM_ServiceAccessPoint.Name  = \"PostOffice\"";
} ;

4.8.1 Instance Aliasing

An alias can be assigned to an instance using this syntax:

instance of Acme_LogicalDisk as $Disk
{
  // Body of instance definition here ...
};

Such an alias can later be used within the same MOF specification as a value for an object
reference property. For more information, see Section4.12.2 Initializing References using Aliases.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 40

4.8.2 Arrays

Arrays of any of the basic data types can be declared in the MOF specification by using square
brackets after the property identifier. Fixed-length arrays indicate their length as an unsigned
integer constant within the square brackets; otherwise, the array is assumed to be variable length.
Arrays can be bags, ordered lists or indexed arrays.  An array’s type is defined by the
ARRAYTYPE qualifier, whose values are "Bag", "Ordered" or "Indexed". The default array type
is "Bag". Regarding each of the array types:

• An array of type "Bag" is unordered and multi-valued, allowing duplicate entries.

• An ordered list ("Ordered") is a special case of a bag, which is multi-valued and allows
duplicate entries. It returns the property values in an implementation dependent, but fixed
order.

• An indexed array ("Indexed") maintains the order of the elements, and could be
implemented based on an integer index for each of the array values.

Note that for the "Bag" array type, no significance is defined for the array index other than a
convenience for accessing the elements of the array. For example, there can be no assumption
that the same index will return the same value for every access to the array. The only assumption
is that a complete enumeration of the indices will return a complete set of values.

For the "Ordered" array type, the array index is significant as long as no array elements are
added, deleted or changed. In this case the same index will return the same value for every access
to the array. If an element is added, deleted or changed, the index of the elements might change
according to the implementation-specific ordering algorithm.

The "Indexed" array maintains the correspondence between element position and value. Array
elements can be overwritten, but not deleted. Indexes start at 0 and have no gaps.

The current release of CIM does not support n-dimensional arrays.

Arrays of any basic data type are legal. Arrays of references are not legal.  Arrays must be
homogeneous. Arrays of mixed types are not supported. In MOF, the data type of an array
precedes the array name. Array size, if fixed length, is declared within square brackets, following
the array name. If a variable length array is to be defined, empty square brackets follow the array
name.

Arrays are declared using this MOF syntax:

class A
{
    [Description("An indexed array of variable length"), ArrayType("Indexed")]
    uint8 MyIndexedArray[];

    [Description("A bag array of fixed length")]
    uint8 MyBagArray[17];
};

If default values are to be provided for the array elements, this syntax is used:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 41

class A
{
    [Description("A bag array property of fixed length")]
    uint8 MyBagArray[17] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17};
};

This MOF presents further examples of "Bag", "Ordered" and "Indexed" array declarations:

class Acme_Example
{
    char16 Prop1[];         // Bag (default) array of chars, Variable length

    [ArrayType ("Ordered")] // Ordered array of double-precision reals,
    real64 Prop2[];         // Variable length

    [ArrayType ("Bag")]     // Bag array containing 4 32-bit signed integers
    sint32 Prop3[4];

    [ArrayType ("Ordered")] // Ordered array of strings, Variable length
    string Prop4[] = {"an", "ordered", "list"};

        // Prop4 is variable length with default values defined at the
        // first three positions in the array

    [ArrayType ("Indexed")] // Indexed array of 64-bit unsigned integers
    uint64 Prop5[];
};

4.9 Method Declarations

A method is defined as an operation together with its signature. The signature consists of a
possibly empty list of parameters and a return type.  There are no restrictions on the type of
parameters other than they must be one of the data types described in Section 2.2, a fixed or
variable length array of one of those types, or be an object reference.  Return types must be one
of the data types described in Section 2.2.  Return types cannot be arrays, but otherwise are
unrestricted. Syntactically, the only thing that distinguishes a method from a property is the
parameter list. The fact that methods are expected to have side-effects is outside the scope of this
specification.

In this example, Start and Stop methods are defined on the Service class.  Each method returns an
integer value:

class CIM_Service:CIM_LogicalElement
{
      [Key]
    string Name;
    string StartMode;
    boolean Started;
    uint32 StartService();
    uint32 StopService();
};

In this example, a Configure method is defined on the Physical DiskDrive class. It takes a
DiskPartitionConfiguration object reference as a parameter, and returns a boolean value.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 42

class Acme_DiskDrive:CIM_Media
{

sint32 BytesPerSector;
sint32 Partitions;
sint32 TracksPerCylinder;
sint32 SectorsPerTrack;
string TotalCylinders;
string TotalTracks;
string TotalSectors;
string InterfaceType;
boolean Configure([IN] DiskPartitionConfiguration REF config);

};

4.10 Compiler Directives

Compiler directives are provided as the keyword "pragma", preceded by a hash (’#’) character,
and followed by a string parameter.

The current standard compiler directives are:

COMPILER DIRECTIVE INTERPRETATION

#pragma include() Has a file name as a parameter. The file is assumed to be a MOF
file. The pragma has the effect of textually inserting the contents
of the include file at the point where the include pragma is
encountered.

#pragma instancelocale() Declares the locale used for instances described in a MOF file.
This pragma specifies the locale when "INSTANCE OF" MOF
statements include string or char16 properties, and the locale is not
the same as the locale specified by a #pragma locale() statement.
The locale is specified as a parameter of the form ll_cc where ll is
the language code based on ISO/IEC 639, and cc is the country
code based on ISO/IEC 3166.

#pragma locale() Declares the locale used for a particular MOF file. The locale is
specified as a parameter of the form ll_cc, where ll is the language
code based on ISO/IEC 639, and cc is the country code based on
ISO/IEC 3166. When the pragma is not specified, the assumed
locale is "en_US".

It is important to note that this pragma does not apply to the
syntax structures of MOF.  Keywords, such as "class" and
"instance", are always in en_US.

#pragma namespace( ) This pragma is used to specify a Namespace path.  The syntax
needs to conform to the following:
<namespacetype>://<namespacehandle>

#pragma nonlocal() See the description of the NonLocal qualifier for an explanation of
this pragma.

Usage Rule: Cannot be used with NonLocalType pragma.

#pragma nonlocaltype() See the description of the NonLocalType qualifier for an
explanation of this pragma. 

Usage Rule: Cannot be used with NonLocal pragma



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 43

COMPILER DIRECTIVE INTERPRETATION

#pragma source() See the description of the Source qualifier for an explanation of
this pragma. 

Usage Rule: Cannot be used with sourcetype pragma

#pragma sourcetype() See the description of the SourceType qualifier for an explanation
of this pragma.
Usage Rule: Cannot be used with source pragma.

Additional pragma directives may be added as a MOF extension mechanism.  Unless
standardized in a future CIM specification, such new pragma definitions must be considered
vendor-specific.  Use of non-standard pragmas will affect interoperability of MOF import and
export functions.

When a qualifier value is derived from either a qualifier or a pragma, the qualifier overrides the
pragma.

4.11 Value Constants

The constant types supported in the MOF syntax are described in the subsections that follow.
These are used in initializers for classes and instances, and in the parameters to named qualifiers.

A formal specification of the representation is found in Appendix A, MOF Syntax Grammar
Description.

4.11.1 String Constants

A string constant is a sequence of zero or more UCS-2 characters enclosed in double-quotes (").
A double-quote is allowed within the value, as long as it is preceded immediately by a  backslash
(\).

For example:

"This is a string"

Successive quoted strings are concatenated, as long as only white space or a comment intervenes:

"This"  " becomes a long string"
"This" /* comment */ " becomes a long string"

The escape sequences such as \n, \t and \r are recognized as legal characters within a string.
The complete set is:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 44

\b // \x0008: backspace BS
\t // \x0009: horizontal tab HT
\n // \x000A: linefeed LF
\f // \x000C: form feed FF
\r // \x000D: carriage return CR
\" // \x0022: double quote "
\’ // \x0027: single quote ’
\\ // \x005C: backslash \
\x<hex> // where <hex> is one to four hex digits
\X<hex> // where <hex> is one to four hex digits

The character set of the string depends on the character set supported by the local installation.
While the MOF specification may be submitted in UCS-2 form [10], the local implementation
may only support ANSI and vice-versa. Therefore, the string type is unspecified and dependent
on the character set of the MOF specification itself. If a MOF specification is submitted using
UCS-2 characters outside of the normal ASCII range, then the implementation may have to
convert these characters to the locally-equivalent character set.

4.11.2 Character Constants

Character and wide-character constants are specified as.

’a’
’\n’
’1’
’\x32’

Note: Forms such as octal escape sequences (e.g. ‘\020’) are not supported.

Integer values can also be used as character constants, as long as they are within the numeric
range of the character type. For example, wide-character constants must fall within the range 0 to
0xFFFF.

4.11.3 Integral Constants

Integer constants may be decimal, binary, octal or hexadecimal.

For example, these are all legal:

1000
-12310
0x100
01236
100101B

Note that binary constants have a series of 1 and 0 digits, with a "b" or "B" suffix to indicate that
the value is binary.

The number of digits permitted depends on the current type of the expression. For example, it is
not legal to assign the constant 0xFFFF to a property of type uint8.

4.11.4 Floating-Point Constants

Floating point constants are declared as specified by IEEE in Ref. [6].



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 45

For example, these are legal:

3.14
-3.14
-1.2778E+02

The range for floating point constants depends on whether float or double properties are used and
must fit within the range specified for IEEE 4-byte and 8-byte floating point values, respectively.

4.11.5 Object Ref Constants

Object references are simple URL-style links to other objects (which may be classes or
instances). They take the form of a quoted string containing an object path. The object path is a
combination of a namespace path and the model path.

For example:

"//./root/default:LogicalDisk.SystemName=\"acme\",LogicalDisk.Drive=\"C\""
"//./root/default:NetworkCard=2"

An object reference can also be an alias. See Section 4.12.2 for more details.

4.11.6 NULL

All types can be initialized to the predefined constant NULL, which indicates no value has been
provided. The details of the internal implementation of the NULL value are not mandated by this
document.

4.12 Initializers

Initializers are used both in class declarations for default values and instance declarations to
initialize a property to a value. The format of initializer values is specified in Section 2 and its
subsections.

The initializer value must match the property data type.  The only exceptions are the NULL
value, which may be used for any data type, and integral values, used for characters.

4.12.1 Initializing Arrays

Arrays can be defined to be of type, "Bag", "Ordered" or "Indexed", and can be initialized by
specifying their values in a comma-separated list (as in the C programming language).  The list of
array elements is delimited with curly brackets.

For example, given this class definition:

class Acme_ExampleClass
{
    [ArrayType ("Indexed")]
    string ip_addresses [];    // Indexed array of variable length
    sint32 sint32_values [10]; // Bag array of fixed length = 10
};

this is a valid instance declaration:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 46

instance of Acme_ExampleClass
{
    ip_addresses = { "1.2.3.4", "1.2.3.5", "1.2.3.7" };

        // ip_address is an indexed array of at least 3 elements, where
        // values have been assigned to the first three elements of the
        // array

    sint32_values = { 1, 2, 3, 5, 6 };
};

Refer to Section 4.8.2 for additional information on declaring arrays, and the distinctions between
bags, ordered arrays and indexed arrays.

4.12.2 Initializing References Using Aliases

Aliases are symbolic references to an object located elsewhere in the MOF specification. They
only have significance within the MOF specification in which they are defined, and are only used
at compile time to facilitate establishment of references. They are not available outside of the
MOF specification.

Classes and instances may be assigned an alias as described in Section 4.8.1.  Aliases are
identifiers which begin with the $ symbol. When a subsequent reference to that instance is
required for an object reference property, the identifier is used in place of an explicit initializer.

Assuming that $Alias1 and $Alias2 have been declared as aliases for instances, and the obref1
and obref2 properties are object references, this example shows how the object references could
be assigned to point to the aliased instances:

instance of Acme_AnAssociation
{
    strVal = "ABC";
    obref1 = $Alias1;
    obref2 = $Alias2;
};

Forward-referencing and circular aliases are permitted.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 47

5 NAMING

Because CIM is not bound to a particular technology or implementation, it promises to facilitate
sharing management information between a variety of management platforms.  The CIM Naming
mechanism was defined to address enterprise-wide identification of objects, as well as the sharing
of management information.

CIM Naming addresses these requirements:

1. Ability to locate and uniquely identify any object in an enterprise

• Unambiguous enumeration of all objects

• Ability to determine when two object names reference the same entity

• Location transparency (no need to understand which management platforms proxy other
platforms’ instrumentation)

2. Allow sharing of objects and instance data among management platforms

• Allow creation of different scoping hierarchies  which vary by “time” (for example, a
“current” vs. “proposed”  scoping  hierarchy)

3. Facilitate move operations between object trees (including within a single management
platform)

• Hide underlying management technology/provide technology transparency for the
domain-mapping environment

• Object name identifiable regardless of instrumentation technology

• Allowing different names for DMI vs. SNMP objects requires the management platform
to understand how the underlying objects are implemented

The KEY qualifier is the CIM Meta-Model mechanism used to identify the properties that
uniquely identify an instance of a class (and indirectly an instance of an association). CIM
Naming enhances this base capability by:

• introducing the WEAK and PROPOGATED qualifiers to express situations in which the
keys of one object are to be propagated to another object.

• introducing the SOURCE pragma and qualifier (“namespacetype://namespace_handle”)
to allow details about the implementation source to be recorded in a MOF file.

• introducing the NONLOCAL qualifier (“namespacetype://namespace_handle”) to
reference an object instance kept in another implementation.

5.1 Background

CIM MOF files can contain definitions of instances, classes or both, as illustrated in this diagram:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 48

O bject M anager
or 

D atabase 
Im plem entation

D efinition

Instance Of

D efinition

Instance Of

Com pile

Im port

C om pile 
and Im port

m odel.m of

m odelw ithinst.m of

instanceonly.m of

N am espace

Figure 5-1 Definitions of instances and classes

MOF files can be used to populate a technology that understands the semantics and structure of
CIM. When a MOF file is consumed by a particular implementation, there are two operations that
are actually being performed, depending on the file’s content. First, a compile or definition
operation is performed to establish the structure of the model. Second, an import operation is
performed to insert instances into the platform or tool.

Once the compile and import are completed, the actual instances are manipulated using the native
capabilities of the platform or tool. In other words, in order to manipulate an object (for example,
change the value of a property), one must know the type of platform the information was
imported into, the APIs or operations used to access the imported information, and the name of
the platform instance that was actually imported. For example, the semantics become:

Set the Version property of the Logical Element object with Name=”Cool” in the relational
database named LastWeeksData to “1.4.0”.

The contents of a MOF file are loaded into a namespace that provides a domain (in other words, a
container), in which the instances of the classes are guaranteed to be unique per the KEY qualifier
definitions.  The term namespace is used to refer to an implementation that provides such a
domain.

Namespaces can be used to:

• Define chunks of management information (objects and associations) to limit
implementation resource requirements, such as database size.

• Define views on the model for applications managing only specific objects, such as hubs.

• Pre-structure groups of objects for optimized query speed.

Another viable operation is exporting from a particular management platform. Essentially, this
operation creates a MOF file for all or some portion of the information content of a platform.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 49

Instance Of

Definition

Type: Mgmt_X
Type Handle: EastCoast

Export

eastcoast.mof

[ ]
class Figs_Circle
{
   [ key ] uint32  Name;
             string   Color;   };

class Figs_Triangle
{
   [ key ] uint32  Label;
             string   Color ;
             uint32  Area;
};

[Association]  class Figs_CircleToTriangle
{
   Figs_Circle REF ACircle;
   Figs_Triangle REF ATriangle;
};

[Association]  class Figs_Covers
{
   Figs_Triangle REF Over;
   Figs_Triangle  REF Under;
};

instance of Figs_Triangle {Label=2 ; Color=”Blue”;Area=12 };
instance of Figs_Triangle {Label=4 ; Color=”Blue”;Area=12 };
instance of Figs_Circle { Name=1 ; Color=”Blue” };
instance of Figs_Circle { Name=3 ; Color=”Blue” };
instance of Figs_Circle { Name=5 ; Color=”Blue” };

instance of Figs_CircleToTriangle
{   ACircle =  "Circle.Name=1";
    ATriangle =  "Triangle.Label=2";  };

instance of Figs_ CircleToTriangle
{   ACircle =  "Circle.Name=5";
    ATriangle =  "Triangle.Label=2";  };

instance of Figs_ CircleToTriangle
{   ACircle =  "Circle.Name=5";
    ATriangle =  "Triangle.Label=4";  };

instance of Figs_ Covers
{   Over =  "Triangle.Label=2";
    Under =  "Triangle.Label=4";  };

Object Manager
Implementation

1 2

3

5

4

Figure 5-2 Exporting to MOF

For example, information is exchanged when the source system is of type Mgmt_X and its name
is EastCoast. The export produces a MOF file with the circle and triangle definitions and
instances 1, 3, 5 of the circle class and instances 2, 4 of the triangle class. This MOF file is then
compiled and imported into the management platform of type Mgmt_ABC with the name
AllCoasts.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 50

Figure 5-3 Information Exchange

The import operation involves storing the information in a local or native format of  Mgmt_ABC
so its native operations can be used to manipulate the instances. The transformation to a native
format is shown in the figure by wrapping the five instances in hexagons. The transformation
process must maintain the original keys.

5.1.1 Management Tool Responsibility for an Export Operation

The management tool must be able to create unique key values for each distinct object it places in
the MOF file.

For each instance placed in the MOF file, the management tool must maintain a mapping from
the MOF file keys to the native key mechanism.

5.1.2 Management Tool Responsibility for an Import Operation

The management tool must be able to map the unique keys found in the MOF file to a set of
locally-understood keys.

5.2 Weak Associations: Supporting Key Propagation

CIM provides a mechanism to name instances within the context of other object instances. For
example, if a management tool is handling a local system, then it can refer to the C drive or the D
drive. However, if a management tool is handling multiple machines, it must refer to the C drive
on machine X and the C drive on machine Y. In other words, the name of the drive must include



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 51

the name of the hosting machine. CIM supports the notion of weak associations to specify this
type of key propagation.

A weak association is defined using a qualifier.  For example:

Qualifier Weak: boolean = false, Scope(reference), Flavor(DisableOverride);

The key(s) of the referenced class includes the key(s) of the other participants in the WEAK
association. This situation occurs when the referenced class identity depends on the identity of
other participants in the association.

Usage Rule: This qualifier can only be specified on one of the references defined for an
association.  The Weak referenced object is the one that depends on the other object for identity.

This figure shows an example. There are three classes: ComputerSystem, OperatingSystem and
Local User. The Operating System class is weak with respect to the Computer System class, since
the runs association is marked weak. Similarly, the Local User class is weak with respect to the
Operating System class, since the association is marked weak.

Computer
System

Operating
System

Local
User

runs

has
weak

weak

CS_Name=UnixHost

CS_Nname=UnixHost
OS_Name=acmeunix

CS_Name=UnixHost
OS_Name=acmeunix
uid=33

CS_Name=UnixHost
OS_Name=acmeunit
uid=44

Model... Instances...

Propagated Keys

Figure 5-4 Example of Weak Association

In the context of a weak association definition, the Computer System class is a scoping class for
the Operating System class, since its keys are propagated to the Operating System class. The
Computer System and the Operating System classes are both scoping classes for the Local User
class, since the Local User class gets keys from both. Finally, the Computer System is referred to
as a Top Level Object  (TLO) because it is not weak with respect to any other class. The fact that
a particular class is a top-level object is inferred because no references to that class are marked
with the WEAK qualifier. In addition, Top Level Objects must have the possibility of an
enterprise-wide, unique key. An example may be a computer’s IP address in a company’s
enterprise-wide IP network. The goal of the TLO concept is to achieve uniqueness of keys in the



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 52

model path portion of the object name. In order to come as close as possible to this goal, TLO
must have relevance in an enterprise context.

Objects in the scope of another object can in turn be a scope for other objects; hence, all model
object instances are arranged in directed graphs with the Top Level Object’s (TLO’s) as peer
roots. The structure of this graph – in other words, which classes are in the scope of another given
class – is defined as part of CIM by means of associations qualified with the WEAK qualifier.

5.2.1 Referencing Weak Objects

A reference to an instance of an association includes the propagated keys. The properties must
have the propagated qualifier that identifies which class the property originates in and what the
name of the property is in that class – for example

instance of Acme_has
{
    anOS = "Acme_OS.Name=\"acmeunit\",SystemName=\"UnixHost\"";
    aUser = "Acme_User.uid=33,OSName=\"acmeunit\",SystemName=\"UnixHost\"";
};

The operating system being weak to system would be declared as:

Class Acme_OS
{
        [key]
    String Name;
        [key, Propagated("CIM_System.Name")]
    String SystemName;
};

The user class being weak to operating system would be declared as:

Class Acme_User
{
        [key]
    String uid;
        [key, Propagated("Acme_OS.Name")]
    String OSName;
        [key, Propagated("Acme_OS.SystemName")]
    String SystemName;
};

5.3 Naming CIM Objects

Since CIM allows for multiple implementations, it is not sufficient to think of the name of an
object as just the combination of properties that have the KEY qualifier. The name must also
identify the implementation that actually hosts the objects. The object name consists of the
Namespace Path, which provides access to a CIM implementation, plus the Model Path, which
provides full navigation within the CIM schema. The namespace path is used to locate a
particular name space. The details of the namespace path are dependent on a particular
implementation. The model path is the concatenation of the properties of a class that are qualified
with the KEY qualifier. When the class is weak with respect to another class, the model path
includes all key properties from the scoping objects. The following figure shows the various
components of an object name. These are described in more details in the following sections.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 53

HTTP://CIMOM_host/root/CIMV2 : CIM_Disk.key1=value1

Object Name

Namespace Path

Namespace
Type

Namespace
Handle

Model Path

Figure 5-5 Object Naming

5.3.1 Namespace Path

A Namespace path references a namespace within an implementation that is capable of hosting
CIM objects.

A Namespace path resolves to a namespace hosted by a CIM-Capable implementation (in other
words, a CIM Object Manager). Unlike the Model Path, the details of the Namespace path are
implementation-specific. Therefore, the Namespace path provides two pieces of information: it
identifies the type of implementation or namespace type, and it provides a handle that references
a particular implementation or namespace handle.

5.3.1.1 Namespace Type

The namespace type classifies or identifies the type of implementation. The provider of such an
implementation is responsible for describing the access protocol for that implementation. This is
analogous to specifying http or ftp in a browser.

Fundamentally, a namespace type implies an access protocol or API set that can be used to
manipulate objects. These APIs would typically support:  (1) generating a MOF file for a
particular scope of classes and associations,  (2) importing a MOF file and (3) manipulating
instances. A particular management platform may have a variety of ways to access management
information. Each of these ways must have a namespace type definition. Given this type, there
would be an assumed set of mechanisms for exporting, importing and updating instances.

5.3.1.2 Namespace Handle

The Namespace handle identifies a particular instance of the type of implementation. This
handle must resolve to a namespace within an implementation.

The details of the handle are implementation-specific. It might be a simple string for an
implementation that supports one namespace, or it might be a hierarchical structure if an
implementation supports multiple namespaces. Either way, it resolves to a namespace.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 54

It is important to note that some implementations can support multiple namespaces. In this case,
the implementation-specific reference must resolve to a particular namespace within that
implementation.

Type: Mgmt_ABC
Type Handle: AllCoasts

Object Manager
Implementation

\default

\default\old

\local

Object Manager
Implementation

Implementation with
One Namespace

Implementation with
Multiple Namespaces

Figure 5-6 Namespaces

There are two important observations to make:

1. Namespaces can overlap with respect to their contents.

2. An object in one name space, which has the same model path as an object in another
name, space does not guarantee that the objects are representing the same reality.

5.3.2 Model Path

The object name constructed as a scoping path through the CIM schema is referred to as a Model
Path.A model path is a combination of the key properties values qualified by the class name. It is
solely described by CIM elements and is absolutely implementation-independent. It is used to
describe the path to a particular object or to identify a particular object within a namespace. The
name of any object is a concatenation of named key property values, including all key values of
its scoping objects.. When the class is weak with respect to another class, the model path includes
all key properties from the scoping objects. 

The syntax of Model Path is:

<Qualifyingclass>.<key1>=<value1>[,<keyx>=<valuex>]*



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 55

5.3.3 Specifying the Object Name

There are various mechanisms for specifying the object name details for any class instance or any
association reference in a MOF file.

The model path is specified for object and association differently. For objects (instances of
classes), the model path is the combination of property value pairs that are marked with the KEY
qualifier. So the model path for the following is: "ex_sampleClass.label1=9921,label2=8821".
Since the order of the key properties is not significant, the model path could also be:
"ex_sampleClass.label2=8821,label1=9921".

Class ex_sampleClass
{
        [key]
    uint32 labe11;
        [key]
    uint32 label2;
    uint32 size;
    uint32 weight;
};

instance of ex_sampleClass
{
    label1 = 9921;
    label2 = 8821;
    size = 80;
    weight = 45
};

For associations, a model path is used to specify the value of a reference in an INSTANCE OF
statement for an association. In the following composedof-association example, the model path
"ex_sampleClass.label1=9921,label2=8821" is used to reference an instance of the
ex_sampleClass that is playing the role of a composer.

    [Association ]
Class ex_composedof
{
    composer REF ex_sampleClass;
    component REF ex_sampleClass;
};

instance of ex_composedof
{
    composer = "ex_sampleClass.label1=9921,label2=8821";
    . . .
}

A namespace path can be specified for all the INSTANCE OF statements in a file with one of
several pragmas or it can be specified on each INSTANCE OF statement using one of several
qualifiers. It is also possible to use a combination of pragmas and qualifiers. If qualifiers are used
with a pragma, the qualifier overrides the details specified by the pragma.

There are two reasons there are several pragma or qualifiers for specifying a namespace path.
First, the namespace path information can be about the implementation hosting the CIM
information (SOURCE qualifier or pragma) or it can be about another implementation
(NONLOCAL qualifier or pragma). Second, for association references, the namespace type and
namespace handle can be specified together (using the SOURCE or NONLOCAL
qualifier/pragma) or separately (using the SOURCETYPE or NONLOCALTYPE



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 56

qualifier/pragma). When the namespace handle is separated from the namespace type, it is
specified as a part of the string for the reference value using the following syntax:

<namespacehandle>:<modelpath>

The following table summarizes these situations.

Qualifier / Pragma Class Instance Association Instance

Source(
<namespacetype>://<namespace_handle>)

NonLocal(
<namespacetype>://<namespace_handle>)

Allowed. When this is used, the string value for
the references contains the model
path.  

The complete object name is
calculated by concatenating the string
specified with the Source qualifier
with ":" followed by the value of the
model path specified by the reference.

SourceType(<namespacetype>) 

NonLocalType(<namespacetype>)

Not Permitted.
However, when
specified as a
pragma, any
INSTANCE
OF statements
for classes
must have a
Source or
NonLocal
qualifier. 

When SourceType or NonLocalType
are used, the string value for a
reference is to have the form
<namespace_handle>":"<modelpath>

5.4 Specifying Object Names in MOF Files

The object name can be used as the value for object references and for object queries.

5.4.1 Synchronizing Namespaces

When a MOF is loaded into a system that is able to access and manipulate the source
implementation, a higher level of integration is possible between two CIM-based
implementations. In particular, the receiving implementation can synchronize changes with the
sending implementation. This situation is shown in this figure and requires a way to record
information about the namespace path of the source in the MOF. The arrow labeled "Dynamic
Access to Loaded Information" implies that Mgmt_ABC has the capability to access information
about an instance of Mgmt_X because it understands Mgmt_X’s access protocol. All it must
know is the handle (namespace path) for the source.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 57

The following figure is a sample MOF file for the situation illustrated in the previous figure.
Notice the various uses of the SOURCE pragma and the SOURCE qualifier.

Instance Of

Definition

Type: Mgmt_X
Handle: EastCoast

Export

eastcoast.mof

Type: Mgmt_ABC
Handle: AllCoasts

Import

Dynamic Access
to Loaded
Information

1 2

3

5

4

1 2

3

5

4

Figure 5-7 Namespace Path

 The namespace path can be provided in one of two ways: 1) a qualifier on each object and
association or 2) a pragma. The value for the pragma and the qualifier is exactly the same:

Source(<namespacetype>:\\<namespace_handle>)

When the information is provided as a pragma, it is assumed to be the same for all instances in
the MOF file. This pragma is shown in this figure for the circle and triangle example:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 58

#pragma source("Mgmt_X://EastCoast")

class Figs_Circle
{
        [key]
    uint32 Name;
    string Color;
};

class Figs_Triangle
{
        [key]
    uint32 Label;
    string Color;
    uint32 Area;
};

    [Association]
class Figs_CircleToTriangle
{
    Figs_Circle REF ACircle;
    Figs_Triangle REF ATriangle;
};

    [Association]
class Figs_Covers
{
    Figs_Triangle REF Over;
    Figs_Triangle REF Under;
};

instance of Figs_Triangle {Label=2;Color="Blue";Area=12};
instance of Figs_Triangle {Label=4;Color="Blue";Area=12};
instance of Figs_Circle {Name=1;Color="Blue"};
instance of Figs_Circle {Name=3;Color="Blue"};
instance of Figs_Circle {Name=5;Color="Blue"};

instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=1";
    ATriangle="Figs_Triangle.Label=2";
};

instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=5";
    ATriangle="Figs_Triangle.Label=2";
};

    [SourceType("Mgmt_X") ]
instance of Figs_CircleToTriangle
{
    ACircle="EastCoast:Figs_Circle.Name=5";
    ATriangle="EastCoast:Figs_Triangle.Label=4";
};

instance of Figs_Covers
{
        [SourceType("Mgmt_X") ]
    Over="EastCoast:Figs_Triangle.Label=2";
    Under="Figs_Triangle.Label=4";
};

Figure 5-8 Pragma Example

The import operation must preserve namespace path information so if either this platform or
another platform understands how to manipulate an implementation of type <namespacetype>
and has access to the <namespace_handle>, it can manipulate one or more of the instances in the
source.

The namespace path can also be specified using the instance-based Source qualifier. This
qualifier marks a particular object or an association. This is illustrated in Figure 5-9. Note: When
a pragma is specified and a qualifier is specified, the qualifier overrides the pragma.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 59

Class Figs_Circle
{
        [key]
    uint32 Name;
    string Color;
};

class Figs_Triangle
{
        [key]
    uint32 Label;
    string Color;
    uint32 Area;
};

    [Association]
class Figs_CircleToTriangle
{
    Figs_Circle REF ACircle;
    Figs_Triangle REF ATriangle;
};

    [Association]
class Figs_Covers
{
    Figs_Triangle REF Over;
    Figs_Triangle REF Under;
};

    [source("Mgmt_X://EastCoast")]
instance of Figs_Triangle {Label=2;Color="Blue";Area=12};

    [source("Mgmt_X://EastCoast")]
instance of Figs_Triangle {Label=4;Color="Blue";Area=12};

    [source("Mgmt_X://EastCoast")]
instance of Figs_Circle {Name=1;Color="Blue"};

    [source("Mgmt_X://EastCoast")]
instance of Figs_Circle {Name=3;Color="Blue"};

    [source("Mgmt_X://EastCoast")]
instance of Figs_Circle {Name=5;Color="Blue"};

    [source("Mgmt_X://EastCoast")]
instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=1";
    ATriangle="Figs_Triangle.Label=2";
};

    [source("Mgmt_X://EastCoast")]
instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=5";
    ATriangle="Figs_Triangle.Label=2";
};

    [source("Mgmt_X://EastCoast")]
instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=5";
    ATriangle="Figs_Triangle.Label=4";
};

    [source("Mgmt_X://EastCoast")]
instance of Figs_Covers
{
        [nonlocal("Mgmt_X://EastCoast")]
    Over="Figs_Triangle.Label=2";
    Under="Figs_Triangle.Label=4";
}; 

Figure 5-9 Namespace Path Example

5.4.2 Building References Between Management Systems

The Nonlocal instance qualifier for references allows a targeted management system to
selectively import instances in a MOF file. This is used when a targeted management system
knows how to access a source management platform (in other words, it has verified, using the
source pragma or qualifer, that it knows how to access the source platform) and it does not want
to store some class instances locally. Using the circle and triangle MOF as an example, the target
management system, Mgmt_ABC, only wants to store circle information locally. When a
Mgmt_ABC user requests information about a triangle, the Mgmt_ABC implementation contacts
the source platform Mgmt_X to get the instance information:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 60

Instance Of

Definition

Type: Mgmt_X
Type Handle: EastCoast

Export

eastcoast.mof

Type: Mgmt_ABC
Type Handle: AllCoasts

Import Circles Only

Dynamic Access
to Loaded
Information

1 2

3

5

4

1

3

5

Figure 5-10 References Between Management Systems

The Nonlocal qualifier is similar to the Source qualifier since its value is a

<namespacetype>:\\<namespacehandle>

string. The content of Mgmt_ABC after importing only circle information looks like this:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 61

Class Figs_Circle
{
        [key]
    uint32 Name;
    string Color;
};

class Figs_Triangle
{
        [key]
    uint32 Label;
    string Color;
    uint32 Area;
};

    [Association]
class Figs_CircleToTriangle
{
    Figs_Circle REF ACircle;
    Figs_Triangle REF ATriangle;
};

    [Association]
class Figs_Covers
{
    Figs_Triangle REF Over;
    Figs_Triangle REF Under;
};

instance of Figs_Circle {Name=1; Color="Blue"};
instance of Figs_Circle {Name=3; Color="Blue"};
instance of Figs_Circle {Name=5; Color="Blue"};

instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=1";
        [nonlocal("Mgmt_X://EastCoast")]
    ATriangle="Figs_Triangle.Label=2";
};

instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=5";
        [nonlocal("Mgmt_X://EastCoast")]
    ATriangle="Figs_Triangle.Label=2";
};

instance of Figs_CircleToTriangle
{
    ACircle="Figs_Circle.Name=5";
        [nonlocaltype("Mgmt_X")]
    ATriangle="EastCoast:Triangle.Label=4";
};

    [nonlocal("Mgmt_X://EastCoast")]
Instance of Figs_Covers
{
        [nonlocal("Mgmt_X://EastCoast")]
    Over="Figs_Triangle.Label=2";
        [nonlocal("Mgmt_X://EastCoast")]
    Under="Figs_Triangle.Label=4";
};

Figure 5-11 Example of Nonlocal Qualifier

In particular, the two instances of triangle are not imported, and the references to triangle in the
associations are also marked with the nonlocal qualifier.

The above schema also allows intelligent import operations to avoid importing all the objects if
there are associations between the objects.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 62

6 MAPPING EXISTING MODELS INTO CIM

Existing models have their own meta model and model. There are three types of mapping that can
occur between meta schemas: technique, recast and domain. Each of these mappings can be
applied when converting from MIF syntax to MOF syntax.

6.1 Technique Mapping

A technique mapping provides a mapping that uses the CIM meta-model constructs to describe
the source modeling technique’s meta constructs (for example, MIF, GDMO and SMI).
Essentially, the CIM meta model is a meta meta-model for the source technique.

meta
constructs

expression

Technique Specific Model

CIM Meta Model

Figure 6-1 Technique Mapping Example

The DMTF uses the management information format (MIF) as the meta model to describe
distributed management information in a common way. Therefore, it is meaningful to describe a
technique mapping in which the CIM meta model is used to describe the MIF syntax.

The mapping presented here takes the important types that can appear in a MIF file and then
creates classes for them. Thus, component, group, attribute, table and enum are expressed in the
CIM meta model as classes. In addition, associations are defined to document how these are
combined.  Figure 6-2 illustrates the results:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 63

Group

Attribute

Table

Component

Enum

describedBy

includes

usesTemplate

usesName

usesUnnamed

Name
ID
Description
type
Value

Name
Description

Name
ID
Class

Name
ID
Class

Figure 6-2 MIF Technique Mapping Example

6.2 Recast Mapping

A recast mapping provides a mapping of the sources’ meta constructs into the targeted meta
constructs, so that a model expressed in the source can be translated into the target. The major
design work is to develop a mapping between the sources’ meta model and the CIM meta model.
Once this is done, the source expressions are recast.

meta
constructs

expressions

Expression or Instances of CIM Meta Model

CIM Meta Model

Figure 6-3 Recast mapping

This is an example of a recast mapping for MIF, assuming:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 64

DMI attributes -> CIM properties
DMI key attributes -> CIM key properties
DMI groups -> CIM classes
DMI components -> CIM classes

The standard DMI ComponentID group might be recast into a corresponding CIM class:

Start Group
Name = "ComponentID"
Class = "DMTF|ComponentID|001"
ID = 1
Description = "This group defines the attributes common to all "

      "components.  This group is required."
Start Attribute

Name = "Manufacturer"
ID = 1
Description = "Manufacturer of this system."
Access = Read-Only
Storage = Common
Type = DisplayString(64)
Value = ""

End Attribute
Start Attribute

Name = "Product"
ID = 2
Description = "Product name for this system."
Access = Read-Only
Storage = Common
Type = DisplayString(64)
Value = ""

End Attribute
Start Attribute

Name = "Version"
ID = 3
Description = "Version number of this system."
Access = Read-Only
Storage = Specific
Type = DisplayString(64)
Value = ""

End Attribute
Start Attribute

Name = "Serial Number"
ID = 4
Description = "Serial number for this system."
Access = Read-Only
Storage = Specific
Type = DisplayString(64)
Value = ""

End Attribute
Start Attribute

Name = "Installation"
ID = 5
Description = "Component installation time and date."
Access = Read-Only
Storage = Specific
Type = Date
Value = ""

End Attribute
Start Attribute

Name = "Verify"
ID = 6
Description = "A code that provides a level of verification that the "

        "component is still installed and working."



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 65

Access = Read-Only
Storage = Common
Type = Start ENUM

0 = "An error occurred; check status code."
1 = "This component does not exist."
2 = "Verification is not supported."
3 = "Reserved."
4 = "This component exists, but the functionality is untested."
5 = "This component exists, but the functionality is unknown."
6 = "This component exists, and is not functioning correctly."
7 = "This component exists, and is functioning correctly."

End ENUM
Value = 1

End Attribute
End Group

A corresponding CIM class might be the following.  Note that properties in the example include
an ID qualifier to represent the corresponding DMI attribute’s ID.  Here, a user-defined qualifier
may be necessary.

[Name ("ComponentID"), ID (1), Description (
    "This group defines the attributes common to all components.  "
    "This group is required.")]

class DMTF|ComponentID|001 {
    [ID (1), Description ("Manufacturer of this system."), maxlen (64)]
    string Manufacturer;
    [ID (2), Description ("Product name for this system."), maxlen (64)]
    string Product;
    [ID (3), Description ("Version number of this system."), maxlen (64)]
    string Version;
    [ID (4), Description ("Serial number for this system."), maxlen (64)]
    string Serial_Number;
    [ID (5), Description("Component installation time and date.")]
    datetime Installation;
    [ID (6), Description("A code that provides a level of verification "
             "that the component is still installed and working."),
             Value (1)]
    string Verify;
};

6.3 Domain Mapping

A domain mapping takes a source expressed in a particular technique and maps its content into
either the core or common models, or extension sub-schemas of the CIM. This mapping does not
rely heavily on a meta-to-meta mapping; it is primarily a content-to-content mapping. In one case,
the mapping is actually a re-expression of content in a more common way using a more
expressive technique.

This is an example of how CIM properties can be supplied by DMI, using information from the
DMI disks group ("DMTF|Disks|002"). For a hypothetical CIM disk class, the CIM properties are
expressed as:



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 66

CIM "Disk" property Can be sourced from DMI group/attribute
StorageType
StorageInterface
RemovableDrive
RemovableMedia
DiskSize

"MIF.DMTF|Disks|002.1"
"MIF.DMTF|Disks|002.3"
"MIF.DMTF|Disks|002.6"
"MIF.DMTF|Disks|002.7"
"MIF.DMTF|Disks|002.16"

6.4 Mapping Scratch Pads

In general, when the content of models are mapped between different meta schemas, information
gets lost or is missing. To fill this gap, “scratch pads” are expressed in the CIM meta model using
qualifiers, which are actually extensions to the meta model (for example, see section 2.5.5
Mapping MIF Attributes and section 2.5.6 Mapping Generic Data to CIM Properties). These
scratch pads are critical to the exchange of core, common and extension model content with the
various technologies used to build management applications.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 67

7 REPOSITORY PERSPECTIVE

This section provides a basic description of a repository and a complete picture of the potential
exploitation of it. A repository stores definitional and/or structural information, and includes the
capability to extract the definitions in a form that is useful to application developers. Some
repositories allow the definitions to be imported into and exported from the repository in multiple
forms. The notions of importing and exporting definition can be refined so that they distinguish
between three types of mappings.

Using the mapping definitions in Section 6, the repository can be organized into the four
partitions (meta, technique, recast and domain).

Repository–
store meta model
information for
program access.

CIM Meta Model Content of CIM

core schema
common schema
extension schemas

Has Instances

Realization of CIM

realized in

Repository

Meta

Domain

RecastTechniqueImport
  Syntax Definition
  Expressions

Export

sub-partitions

Figure 7-1 Repository Partitions

The repository partitions have the following characteristics:

• Each partition is discrete. The meta partition refers to the definitions of the CIM meta
model. The technique partition refers to definitions that are loaded using technique
mappings. The recast partition refers to definitions that are loaded using recast mappings.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 68

The domain partition refers to the definitions that are associated with the core and
common models, and Extension schemas.

• The technique and recast partitions can be organized into multiple sub-partitions in order
to capture each source uniquely. For example, there would be a technique sub-partition
for each unique meta language encountered (that is, one for MIF, GDMO, SMI, and so
on). In the re-cast partition, there would be a sub-partition for each meta language.

• The act of importing the content of an existing source can result in entries in the recast or
domain partition.

7.1 DMTF MIF Mapping Strategies

Assume the meta-model definition and the baseline for the CIM schema are complete.  The next
step is to map another source of management information (such as standard groups) into the
repository.  The primary objective is to do the work required to import one or more of the
standard group(s).

The possible import scenarios for a DMTF standard group are:

1. To Technique Partition: Create a technique mapping for the MIF syntax. This mapping
would be the same for all standard groups and would only need to be updated if the MIF
syntax changed.

2. To Recast Partition: Create a recast mapping from a particular standard group into a sub-
partition of the recast partition. This mapping would allow the entire contents of the
selected group to be loaded into a sub-partition of the recast partition. The same
algorithm can be used to map additional standard groups into that same sub-partition.

3. To Domain Partition: Create a Domain Mapping for the content of a particular standard
group that overlaps with the content of the CIM schema.

4. To Domain Partition: Create a Domain Mapping for the content of a particular standard
group that does not overlap with CIM’s schema into an extension sub-schema.

5. To Domain Partition: Propose extensions to the content of the CIM schema and then
perform Steps 3 and/or 4.

Any combination of these five scenarios can be initiated by a team that is responsible for mapping
an existing source into the CIM repository. There are many other details that must be addressed
as the content of any of the sources changes and/or when the core or common model changes.

Assuming numerous existing sources have been imported using all the import scenarios, now
look at the export side. Ignoring the technique partition, the possible scenarios are:

1. From Recast Partition: Create a recast mapping for a sub-partition in the recast partition
to a standard group (that is, inverse of import 2). The desired method would be to use the
recast mapping to translate a standard group into a GDMO definition.

2. From Recast Partition: Create a Domain Mapping for one of the recast sub-partitions to a
known management model that was not the original source for the content that overlaps.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 69

3. From Domain Partition: Create a recast mapping for the complete content of the CIM to
a selected technique (for MIF, this results in a non-standard group).

4. From Domain Partition: Create a Domain Mapping for the content of the CIM schema
that overlaps with the content of an existing management model

5. From Domain Partition: Create a Domain Mapping for the entire content of the CIM
schema to an existing management model with the necessary extensions.

7.2 Recording Mapping Decisions

In order to understand the role of the scratch pad (see Section 6.4) in the repository, it is
necessary to look at the import and export scenarios for the different partitions in the repository
(technique, recast and application). These mappings can be organized into two categories:
homogeneous and heterogeneous. The homogeneous category includes the mapping where the
imported syntax and expressions are the same as the exported (for example, software MIF in and
software MIF out). The heterogeneous category addresses the mappings where the imported
syntax and expressions are different from the exported (for example, MIF in and GDMO out). For
the homogenous category, the information can be recorded by creating qualifiers during an import
operation so the content can be exported properly. For the heterogeneous category, the qualifiers
must be added after the content is loaded into a partition of the repository. Figure 7-2, shows the
X schema imported into the Y schema, and then being homogeneously exported into X or
heterogeneously exported into Z. Each of the export arrows works with a different scratch pad.

Repository

X Y X

Z

Homogeneous

Heterogenous

import export

export

Figure 7-2 Homogeneous and Heterogeneous Export

The definition of the heterogeneous category is actually based on knowing how a schema was
loaded into the repository. A more general way of looking at this is to think of the export process
using one of multiple scratch pads. One of the scratch pads was created when the schema was
loaded, and the others were added to handle mappings to schema techniques other than the import
source (Figure 7-3).



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 70

Repository

X Y Xexport
---
---
---

Aexport
---
---
---

Bexport
---
---
---

import

Add mapping details
after the import or
definition

Scratch Pads

Figure 7-3 Scratch Pads and Mapping

Figure 7-3 shows how the scratch pads of qualifiers are used without factoring in the unique
aspects of each of the partitions (technique, recast, applications) within the CIM repository. The
next step is to put this discussion in the context of these partitions.

For the technique partition, there is no need for a scratch pad since the CIM meta model is used to
describe the constructs used in the source meta schema. Therefore, by definition, there is one
homogeneous mapping for each meta schema covered by the technique partition. These mappings
create CIM objects for the syntactical constructs of the schema and create associations for the
ways they can be combined (for example, MIF groups include attributes).

For the recast partition, there are multiple scratch pads for each of the sub-partitions, since one is
required for each export target and there can be multiple mapping algorithms for each target. The
latter occurs because part of creating a recast mapping involves mapping the constructs of the
source into CIM meta-model constructs. Therefore, for the MIF syntax, a mapping must be
created for component, group, attribute, and so on, into appropriate CIM meta-model constructs
like object, association, property, and so on.  These mappings can be arbitrary. As a specific
example, one of the decisions that must be made is whether a group or a component maps into an
object. It would be possible to have two different recast mapping algorithms, one that mapped
groups into objects with qualifiers that preserved the component, and one that mapped
components into objects with qualifiers that preserved the group name for the properties.
Therefore, the scratch pads in the recast partition are organized by target technique and employed
algorithm.

For the domain partitions, there are two types of mappings. The first is similar to the recast
partition in that some portion of the domain partition is mapped into the syntax of another meta
schema. These mappings can use the same qualifier scratch pads and associated algorithms that
are developed for the recast partition. The second type of mapping facilitates documenting the
content overlap between the domain partition and some other model (for example, software



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 71

groups). These mappings cannot be determined in a generic way at import time; therefore, it is
best to consider them in the context of exporting. The mapping uses filters to determine the
overlaps and then performs the necessary conversions. The filtering can be done using qualifiers
that indicate a particular set of domain partition constructs map into some combination of
constructs in the target/source model. The conversions would be documented in the repository
using a complex set of qualifiers that capture how to write or insert the overlapped content into
the target model. The mapping qualifiers for the domain partition would be organized like the
recasting partition for the syntax conversions, and there would be scratch pads for each of the
models for documenting overlapping content.

In summary, pick the partition, develop a mapping, and identify the qualifiers necessary to
capture potentially lost information when developing mapping details for a particular source.  On
the export side, the mapping algorithm checks to see if the content to be exported includes the
necessary qualifiers for the logic to work.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 72

Appendix A MOF SYNTAX GRAMMAR DESCRIPTION

This section contains the grammar for MOF syntax. The grammar is described in the notation
defined in [7], with this deviation:  each token may be separated by an arbitrary number of white
space characters, except where stated otherwise (at least one tab, carriage return, line feed, form
feed or space).

However, while this notation is convenient for describing the MOF syntax clearly, it should be
noted that the MOF syntax has been defined to be expressible in an LL(1)-parseable grammar.
This has been done to allow low-footprint implementations of MOF compilers.

In addition, note these points:

1. An empty property list is equivalent to "*".

2. All keywords are case-insensitive.

3. The IDENTIFIER type is used for names of classes, properties, qualifiers, methods and
namespaces; the rules governing the naming of classes and properties are to be found in
section 1 of Appendix F.

4. A string Value may contain quote (") characters, provided that each is immediately
preceded by a backslash (\) character.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 73

mofSpecification = *mofProduction

mofProduction = compilerDirective    |
classDeclaration     |
assocDeclaration     |
indicDeclaration     |
qualifierDeclaration |
instanceDeclaration

compilerDirective = PRAGMA pragmaName  "(" pragmaParameter ")"

pragmaName = IDENTIFIER

pragmaParameter = stringValue

classDeclaration = [ qualifierList ]
CLASS className [ alias ] [ superClass ]
"{" *classFeature "}" ";"

assocDeclaration = "[" ASSOCIATION *( "," qualifier ) "]"
CLASS className [ alias ] [ superClass ]
"{" *associationFeature "}" ";"

// Context:
// The remaining qualifier list must not include
// the ASSOCIATION qualifier again. If the
// association has no super association, then at
// least two references must be specified! The
// ASSOCIATION qualifier may be omitted in
// sub associations.

indicDeclaration = "[" INDICATION *( "," qualifier ) "]"
CLASS className [ alias ] [ superClass ]
"{" *classFeature "}" ";"

className = schemaName "_" IDENTIFIER   // NO whitespace !

// Context:
// Schema name must not include "_" !

alias = AS aliasIdentifer

aliasIdentifer = "$" IDENTIFIER   // NO whitespace !

superClass = ":" className

classFeature = propertyDeclaration | methodDeclaration

associationFeature = classFeature | referenceDeclaration

qualifierList = "[" qualifier *( "," qualifier ) "]"

qualifier = qualifierName [ qualifierParameter ] [ ":" 1*flavor ]

qualifierParameter = "(" constantValue ")" | arrayInitializer

flavor = ENABLEOVERRIDE | DISABLEOVERRIDE | RESTRICTED |
TOSUBCLASS | TRANSLATABLE

propertyDeclaration = [ qualifierList ] dataType propertyName
[ array ] [ defaultValue ] ";"

referenceDeclaration = [ qualifierList ] objectRef referenceName



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 74

[ defaultValue ] ";"

methodDeclaration = [ qualifierList ] dataType methodName
"(" [ parameterList ] ")" ";"

propertyName = IDENTIFIER

referenceName = IDENTIFIER

methodName = IDENTIFIER

dataType = DT_UINT8 | DT_SINT8 | DT_UINT16 | DT_SINT16 |
DT_UINT32 | DT_SINT32 | DT_UINT64 | DT_SINT64 |
DT_REAL32 | DT_REAL64 | DT_CHAR16 |
DT_STR | DT_BOOL | DT_DATETIME

objectRef = className REF

parameterList = parameter *( "," parameter )

parameter = [ qualifierList ] (dataType|objectRef) parameterName
[ array ]

parameterName = IDENTIFIER

array = "[" [positiveDecimalValue] "]"

positiveDecimalValue = positiveDecimalDigit *decimalDigit

defaultValue = "=" initializer

initializer = ConstantValue | arrayInitializer | referenceInitializer

arrayInitializer = "{" constantValue*( "," constantValue)"}"

constantValue = integerValue | realValue | charValue | stringValue |
booleanValue | nullValue

integerValue = binaryValue | octalValue | decimalValue | hexValue

referenceInitializer = objectHandle | aliasIdentifier

objectHandle = """ [ namespaceHandle ":" ] modelPath """

namespaceHandle = *ucs2Character
// Note: structure depends on type of namespace

modelPath = className "." keyValuePairList

keyValuePairList = keyValuePair *( "," keyValuePair )

keyValuePair = ( propertyname | referenceName ) "=" initializer

qualifierDeclaration = QUALIFIER qualifierName qualifierType scope
[ defaultFlavor ] ";"

qualifierName = IDENTIFIER

qualifierType = ":" dataType [ array ] [ defaultValue ]

scope = "," SCOPE "(" metaElement *( "," metaElement ) ")"

metaElement = SCHEMA | CLASS | ASSOCIATION | INDICATION | QUALIFIER



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 75

PROPERTY | REFERENCE | METHOD | PARAMETER | ANY

defaultFlavor = "," FLAVOR "(" flavor *( "," flavor ) ")"

instanceDeclaration = [ qualifierList ] INSTANCE OF className [ alias ]
"{" 1*valueInitializer "}" ";"

valueInitializer = [ qualifierList ]
( propertyName | referenceName ) "=" initializer ";"

These productions do not allow whitespace between the terms:

schemaName = IDENTIFIER
// Context:
// Schema name must not include "_" !

fileName = stringValue

binaryValue = [ "+" | "-" ] 1*binaryDigit ( "b" | "B" )

binaryDigit = "0" | "1"

octalValue = [ "+" | "-" ] "0" 1*octalDigit

octalDigit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7"

decimalValue = [ "+" | "-" ] ( positiveDecimalDigit *decimalDigit | "0" )

decimalDigit = "0" | positiveDecimalDigit

positiveDecimalDigit = "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

hexValue = [ "+" | "-" ] ( "0x" | "0X" ) 1*hexDigit

hexDigit = decimalDigit | "a" | "A" | "b" | "B" | "c" | "C" |
"d" | "D" | "e" | "E" | "f" | "F"

realValue = [ "+" | "-" ] *decimalDigit "." 1*decimalDigit
[ ( "e" | "E" ) [ "+" | "-" ] 1*decimalDigit ]

charValue = // any single-quoted Unicode-character, except
// single quotes

stringValue = 1*( """ *ucs2Character """ )

ucs2Character = // any valid UCS-2-character

booleanValue = TRUE | FALSE

nullValue = NULL

The remaining productions are case-insensitive keywords:

ANY = "any"
AS = "as"
ASSOCIATION = "association"
CLASS = "class"
DISABLEOVERRIDE = "disableOverride"
DT_BOOL = "boolean"
DT_CHAR16 = "char16"
DT_DATETIME = "datetime"
DT_REAL32 = "real32"



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 76

DT_REAL64 = "real64"
DT_SINT16 = "sint16"
DT_SINT32 = "sint32"
DT_SINT64 = "sint64"
DT_SINT8 = "sint8"
DT_STR = "string"
DT_UINT16 = "uint16"
DT_UINT32 = "uint32"
DT_UINT64 = "uint64"
DT_UINT8 = "uint8"
ENABLEOVERRIDE = "enableoverride"
FALSE = "false"
FLAVOR = "flavor"
INDICATION = "indication"
INSTANCE = "instance"
METHOD = "method"
NULL = "null"
OF = "of"
PARAMETER = "parameter"
PRAGMA = "#pragma"
PROPERTY = "property"
QUALIFIER = "qualifier"
REF = "ref"
REFERENCE = "reference"
RESTRICTED = "restricted"
SCHEMA = "schema"
SCOPE = "scope"
TOSUBCLASS = "tosubclass"
TRANSLATABLE = "translatable"
TRUE = "true"



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 77

Appendix B CIM META SCHEMA
// version 2.2

Qualifier Abstract : boolean = false, Scope(class, association, indication),
                     Flavor(disableoverride, restricted);

Qualifier Aggregate : boolean = false, Scope(reference),
                      Flavor(disableoverride, tosubclass);

Qualifier Aggregation : boolean = false, Scope(association),
                        Flavor(disableoverride, tosubclass);

Qualifier Alias : string = null, Scope(property, reference, method),
                  Flavor(translatable);

Qualifier ArrayType : string = "Bag", Scope(property, parameter);

Qualifier Association : boolean = false, Scope(class, association),
                        Flavor(disableoverride);

Qualifier BitMap : string[], Scope(property, method, parameter);

Qualifier BitValues : string[], Scope(property, method, parameter),
                      Flavor(Translatable);

Qualifier Counter : boolean = false, Scope(property, method, parameter);

Qualifier Delete : boolean = false, Scope(association, reference);

Qualifier Description : string = null, Scope(any), Flavor(translatable);

Qualifier DisplayName : string = null, Scope(any), Flavor(translatable);

Qualifier Expensive : boolean = false,
                      Scope(property, reference, method, class, association);
Qualifier Gauge : boolean = false, Scope(property, method, parameter);

Qualifier Ifdeleted : boolean = false, Scope(association, reference);

Qualifier In : boolean = true, Scope(parameter), Flavor(disableoverride);

Qualifier Indication : boolean = false, Scope(class, indication),
                       Flavor(disableoverride);

Qualifier Invisible : boolean = false,
                      Scope(reference, association, class,property, method);

Qualifier Key : boolean = false, Scope(property, reference),
                Flavor(disableoverride);

Qualifier Large : boolean = false, Scope(property, class);

Qualifier MappingStrings : string[],
                           Scope(class, property, association, indication, reference);

Qualifier Max : uint32 = null, Scope(reference);

Qualifier MaxLen : uint32 = null, Scope(property, method, parameter);

Qualifier MaxValue : sint64 = null, Scope(property, method, parameter);



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 78

Qualifier Min : uint32 = 0, Scope(reference);

Qualifier MinValue : sint64 = null, Scope(property, method, parameter);

Qualifier ModelCorrespondence : string[], Scope(property);

Qualifier NonLocal : string = null, Scope(reference);

Qualifier NonLocalType : string = null, Scope(reference);

Qualifier NullValue : string = null, Scope(property),
                      Flavor(tosubclass, disableoverride);

Qualifier Out : boolean = false, Scope(parameter), Flavor(disableoverride);

Qualifier Override : string = null, Scope(property, method, reference),
                     Flavor(disableoverride);

Qualifier Propagated : string = null, Scope(property, reference),
                       Flavor(disableoverride);

Qualifier Provider : string = null, Scope(any);

Qualifier Read : boolean = true, Scope(property);

Qualifier Required : boolean = false, Scope(property);

Qualifier Revision : string = null, Scope(schema, class, association, indication),
                     Flavor(translatable);

Qualifier Schema : string = null, Scope(property, method),
                   Flavor(disableoverride, translatable);

Qualifier Source : string = null, Scope(class, association, indication);

Qualifier SourceType : string = null,
                       Scope(class, association, indication,reference);

Qualifier Static : boolean = false, Scope(property, method), Flavor(disableoverride);

Qualifier Syntax : string = null, Scope(property, reference, method, parameter);

Qualifier SyntaxType : string = null, Scope(property, reference, method, parameter);

Qualifier Terminal : boolean = false, Scope(class);

Qualifier TriggerType : string = null,
                  Scope(class, property, reference, method, association, indication);

Qualifier Units : string = null, Scope(property, method, parameter),
                  Flavor(translatable);

Qualifier UnknownValues : string[], Scope(property),
                          Flavor(disableoverride, tosubclass);

Qualifier UnsupportedValues : string[], Scope(property),
                              Flavor(disableoverride, tosubclass);

Qualifier ValueMap : string[], Scope(property, method, parameter);

Qualifier Values : string[], Scope(property, method, parameter),
                   Flavor(translatable);



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 79

Qualifier Version : string = null,
                    Scope(schema, class, association, indication),
                    Flavor(translatable);

Qualifier Weak : boolean = false, Scope(reference),
                 Flavor(disableoverride, tosubclass);

Qualifier Write : boolean = false, Scope(property);

// ==================================================================
//    NamedElement
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description(
        "The Meta_NamedElement class represents the root class for the "
        "Metaschema. It has one property: Name, which is inherited by all the "
        "non-association classes in the Metaschema. Every metaconstruct is "
        "expressed as a descendent of the class Meta_Named Element.") ]
class Meta_NamedElement
{
        [Description (
        "The Name property indicates the name of the current Metaschema element. "
        "The following rules apply to the Name property, depending on the "
        "creation type of the object:<UL><LI>Fully-qualified class names, such "
        "as those prefixed by the schema name, are unique within the schema."
        "<LI>Fully-qualified association and indication names are unique within "
        "the schema (implied by the fact that association and indication classes "
        "are subtypes of Meta_Class).<LI>Implicitly-defined qualifier names are "
        "unique within the scope of the characterized object; that is, a named "
        "element may not have two characteristics with the same name."
        "<LI>Explicitly-defined qualifier names are unique within the defining "
        "schema. An implicitly-defined qualifier must agree in type, scope and "
        "flavor with any explicitly-defined qualifier of the same name."
        "<LI>Trigger names must be unique within the property, class or method "
        "to which the trigger applies.<LI>Method and property names must be "
        "unique within the domain class. A class can inherit more than one "
        "property or method with the same name. Property and method names can be "
        "qualified using the name of the declaring class.<LI>Reference names "
        "must be unique within the scope of their defining association class. "
        "Reference names obey the same rules as property names.</UL><B>Note:</B> "
        "Reference names are not required to be unique within the scope of the "
        "related class. Within such a scope, the reference provides the name of "
        "the class within the context defined by the association.") ]
    string Name;
};

// ==================================================================
//    QualifierFlavor
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_QualifierFlavor class encapsulates extra semantics attached "
        "to a qualifier such as the rules for transmission from superClass "
        "to subClass and whether or not the qualifier value may be translated "
        "into other languages") ]
class Meta_QualifierFlavor:Meta_NamedElement
{
};



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 80

// ==================================================================
//    Schema
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Schema class represents a group of classes with a single owner."
        " Schemas are used for administration and class naming. Class names must "
        "be unique within their owning schemas.") ]
class Meta_Schema:Meta_NamedElement
{
};

// ==================================================================
//    Trigger
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "A Trigger is a recognition of a state change (such as create, delete, "
        "update, or access) of a Class instance, and update or access of a "
        "Property.") ]
class Meta_Trigger:Meta_NamedElement
{
};

// ==================================================================
//    Qualifier
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Qualifier class represents characteristics of named elements. "
        "For example, there are qualifiers that define the characteristics of a "
        "property or the key of a class. Qualifiers provide a mechanism that "
        "makes the Metaschema extensible in a limited and controlled fashion."
        "<P>It is possible to add new types of qualifiers by the introduction of "
        "a new qualifier name, thereby providing new types of metadata to "
        "processes that manage and manipulate classes, properties, and other "
        "elements of the Metaschema.") ]
class Meta_Qualifier:Meta_NamedElement
{
        [Description ("The Value property indicates the value of the qualifier.")]
    string Value;
};

// ==================================================================
//    Method
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Method class represents a declaration of a signature; that is, "
        "the method name, return type and parameters, and (in the case of a "
        "concrete class) may imply an implementation.") ]
class Meta_Method:Meta_NamedElement
{
};

// ==================================================================
//    Property
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Property class represents a value used to characterize "
        "instances of a class. A property can be thought of as a pair of Get and "
        "Set functions that, when applied to an object,  return state and set "
        "state, respectively.") ]
class Meta_Property:Meta_NamedElement
{
};



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 81

// ==================================================================
//    Reference
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Reference class represents (and defines) the role each object "
        "plays in an association. The reference represents the role name of a "
        "class in the context of an association, which supports the provision of "
        "multiple relationship instances for a given object. For example, a "
        "system can be related to many system components.") ]
class Meta_Reference:Meta_Property
{
};

// ==================================================================
//    Class
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Class class is a collection of instances that support the same "
        "type; that is, the same properties and methods. Classes can be arranged "
        "in a generalization hierarchy that represents subtype relationships "
        "between classes.<P>The generalization hierarchy is a rooted, directed "
        "graph and does not support multiple inheritance. Classes can have "
        "methods, which represent the behavior relevant for that class. A Class "
        "may participate in associations by being the target of one of the "
        "references owned by the association.") ]
class Meta_Class:Meta_NamedElement
{
};

// ==================================================================
//    Indication
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Indication class represents an object created as a result of a "
        "trigger. Because Indications are subtypes of Meta_Class, they can have "
        "properties and methods, and be arranged in a type hierarchy. ") ]
class Meta_Indication:Meta_Class
{
};

// ==================================================================
//    Association
// ==================================================================
        [Version( "2" ), Revision( "2" ), Description (
        "The Meta_Association class represents a class that contains two or more "
        "references and represents a relationship between two or more objects. "
        "Because of how associations are defined, it is possible to establish a "
        "relationship between classes without affecting any of the related "
        "classes.<P>For example, the addition of an association does not affect "
        "the interface of the related classes; associations have no other "
        "significance. Only associations can have references. Associations can "
        "be a subclass of a non-association class . Any subclass of "
        "Meta_Association is an association.") ]
class Meta_Association:Meta_Class
{
};



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 82

// ==================================================================
//    Characteristics
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Aggregation, Description (
        "The Meta_Characteristics class relates a Meta_NamedElement to a "
        "qualifier that characterizes the named element. Meta_NamedElement may "
        "have zero or more characteristics.") ]
class Meta_Characteristics
{
        [Description (
        "The Characteristic reference represents the qualifier that "
        "characterizes the named element.") ]
    Meta_Qualifier REF Characteristic;
        [Aggregate, Description (
        "The Characterized reference represents the named element that is being "
        "characterized.") ]
    Meta_NamedElement REF Characterized;
};

// ==================================================================
//    PropertyDomain
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Aggregation, Description (
        "The Meta_PropertyDomain class represents an association between a class "
        "and a property.<P>A property  has only one domain: the class that owns "
        "the property. A property can have an override relationship with another "
        "property from a different class. The domain of the overridden property "
        "must be a supertype of the domain of the overriding property.  The "
        "domain of a reference must be an association.") ]
class Meta_PropertyDomain
{
        [Description (
        "The Property reference represents the property that is owned by the "
        "class referenced by Domain.") ]
    Meta_Property REF Property;
        [Aggregate, Description (
        "The Domain reference represents the class that owns the property "
        "referenced by Property.") ]
    Meta_Class REF Domain;
};

// ==================================================================
//    MethodDomain
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Aggregation, Description (
        "The Meta_MethodDomain class represents an association between a class "
        "and a method.<P>A method has only one domain: the class that owns the "
        "method, which can have an override relationship with another method "
        "from a different class. The domain of the overridden method must be a "
        "supertype of the domain of the overriding method. The signature of the "
        "method (that is, the name, parameters and return type) must be "
        "identical.") ]
class Meta_MethodDomain
{
        [Description (
        "The Method reference represents the method that is owned by the class "
        "referenced by Domain.") ]
    Meta_Method REF Method;
        [Aggregate, Description (
        "The Domain reference represents the class that owns the method "
        "referenced by Method.") ]
    Meta_Class REF Domain;
};



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 83

// ==================================================================
//    ReferenceRange
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Description (
        "The Meta_ReferenceRange class defines the type of the reference.") ]
class Meta_ReferenceRange
{
        [Description (
        "The Reference reference represents the reference whose type is defined "
        "by Range.") ]
    Meta_Reference REF Reference;
        [Description (
        "The Range reference represents the class that defines the type of "
        "reference.") ]
    Meta_Class REF Range;
};

// ==================================================================
//    QualifiersFlavor
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Aggregation, Description (
        "The Meta_QualifiersFlavor class represents an association between a "
        "flavor and a qualifier.") ]
class Meta_QualifiersFlavor
{
        [Description (
        "The Flavor reference represents the qualifier flavor to "
        "be applied to Qualifier.") ]
    Meta_QualifierFlavor REF Flavor;
        [Aggregate, Description (
        "The Qualifier reference represents the qualifier to which "
        "Flavor applies.") ]
    Meta_Qualifier REF Qualifier;
};

// ==================================================================
//    SubtypeSupertype
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Description (
        "The Meta_SubtypeSupertype class represents subtype/supertype "
        "relationships between classes arranged in a generalization hierarchy. "
        "This generalization hierarchy is a rooted, directed graph and does not "
        "support multiple inheritance.") ]
class Meta_SubtypeSupertype
{
        [Description (
        "The SuperClass reference represents the class that is hierarchically "
        "immediately above the class referenced by SubClass.") ]
    Meta_Class REF SuperClass;
        [Description (
        "The SubClass reference represents the class that is the immediate "
        "descendent of the class referenced by SuperClass.") ]
    Meta_Class REF SubClass;
};



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 84

// ==================================================================
//    PropertyOverride
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Description (
        "The Meta_PropertyOverride class represents an association between two "
        "properties where one overrides the other.<P>Properties have reflexive "
        "associations that represent property overriding. A property can "
        "override an inherited property, which implies that any access to the "
        "inherited property will result in the invocation of the implementation "
        "of the overriding property. A Property can have an override "
        "relationship with another property from a different class.<P>The domain "
        "of the overridden property must be a supertype of the domain of the "
        "overriding property. The class referenced by the Meta_ReferenceRange "
        "association of an overriding reference must be the same as, or a "
        "subtype of, the class referenced by the Meta_ReferenceRange "
        "associations of the reference being overridden.") ]
class Meta_PropertyOverride
{
        [Description (
        "The OverridingProperty reference represents the property that overrides "
        "the property referenced by OverriddenProperty.") ]
    Meta_Property REF OverridingProperty;
        [Description (
        "The OverriddenProperty reference represents the property that is "
        "overridden by the property reference by OverridingProperty.") ]
    Meta_Property REF OverriddenProperty;
};

// ==================================================================
//    MethodOverride
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Description (
        "The Meta_MethodOverride class represents an association between two "
        "methods, where one overrides the other. Methods have reflexive "
        "associations that represent method overriding. A method can override an "
        "inherited method, which implies that any access to the inherited method "
        "will result in the invocation of the implementation of the overriding "
        "method.") ]
class Meta_MethodOverride
{
        [Description (
        "The OverridingMethod reference represents the method that overrides the "
        "method referenced by OverriddenMethod.") ]
    Meta_Method REF OverridingMethod;
        [Description (
        "The OverriddenMethod reference represents the method that is overridden "
        "by the method reference by OverridingMethod.") ]
    Meta_Method REF OverriddenMethod;
};



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 85

// ==================================================================
//    ElementSchema
// ==================================================================
        [Association, Version( "2" ), Revision( "2" ), Aggregation, Description (
        "The Meta_ElementSchema class represents the elements (typically classes "
        "and qualifiers) that make up a schema.") ]
class Meta_ElementSchema
{
        [Description (
        "The Element reference represents the named element that belongs to the "
        "schema referenced by Schema.") ]
    Meta_NamedElement REF Element;
        [Aggregate, Description (
        "The Schema reference represents the schema to which the named element "
        "referenced by Element belongs.") ]
    Meta_Schema REF Schema;
};      



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 86

Appendix C VALUES FOR UNITS QUALIFIER

The UNITS qualifier specifies the unit of measure in which the associated property is expressed.
For example, a Size property might have Units ("bytes"). Currently recognized values are:

• Bits, KiloBits, MegaBits, GigaBits

• Bits per Second

• Bytes, KiloBytes, MegaBytes, GigaBytes, Words, DoubleWords, QuadWords

• Degrees C, Tenths of Degrees C, Hundredths of Degrees C, Degrees F, Tenths of
Degrees F, Hundredths of Degrees F, Degrees K, Tenths of Degrees K, Hundredths of
Degrees K, Color Temperature

• Volts, MilliVolts, Tenths of MilliVolts, Amps, MilliAmps, Tenths of MilliAmps, Watts,
MilliWattHours

• Joules, Coulombs, Newtons

• Lumen, Lux, Candelas

• Pounds, Pounds per Square Inch

• Cycles, Revolutions, Revolutions per Minute, Revolutions per Second

• Minutes, Seconds, Tenths of Seconds, Hundredths of Seconds, MicroSeconds,
MilliSeconds, NanoSeconds

• Hours, Days, Weeks

• Hertz, MegaHertz

• Pixels, Pixels per Inch

• Counts per Inch

• Percent, Tenths of Percent, Hundredths of Percent

• Meters, Centimeters, Millimeters, Cubic Meters, Cubic Centimeters, Cubic Millimeters

• Inches, Feet, Cubic Inches, Cubic Feet Ounces, Liters, Fluid Ounces

• Radians, Steradians, Degrees

• Gravities, Pounds, Foot-Pounds

• Gauss, Gilberts, Henrys, MilliHenrys, Farads, MilliFarads, MicroFarads, PicoFarads

• Ohms, Siemens

• Moles, Becquerels, Parts per Million

• Decibels, Tenths of Decibels

• Grays, Sieverts



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 87

Appendix D UML NOTATION

The CIM meta-schema notation is based directly on the notation used in Unified Modeling
Language (UML). There are distinct symbols for all of the major constructs in the schema, with
the exception of qualifiers (as opposed to properties, which are directly represented in the
diagrams).

In UML, a class is represented by a rectangle. The class name either stands alone in the rectangle
or is in the uppermost segment of the rectangle. If present, the segment below the segment
containing the name contains the properties of the class. If present, a third region indicates the
presence of methods.

A line decorated with a triangle indicates an inheritance relationship; the lower rectangle
represents a subtype of the upper rectangle. The triangle points to the superclass.

Other solid lines represent relationships. The cardinality of the references on either side of the
relationship is indicated by a decoration on either end. The following character combinations are
commonly used:

“1”  indicates a single-valued, required reference

“0…1” indicates an optional single-valued reference

“*”  indicates an optional many-valued reference (as does “0..*”)

“1..*”  indicates a required many-valued reference

A line connected to a rectangle by a dotted line represents a subclass relationship between two
associations.

The diagramming notation and its interpretation are summarized in this table:

META ELEMENT INTERPRETATION DIAGRAMMING NOTATION

Object

Class Name:
Key Value

Property Name
= Property Value

Primitive type Text to the right of the colon in the
center portion of the class icon



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 88

META ELEMENT INTERPRETATION DIAGRAMMING NOTATION

Class

Method

Property

Class name

Subclass

Association

1:1

1:Many

1:zero or 1

Aggregation

1
1

1
*

1
0..1

Association with
properties

 link-class with the link-class having
the same name as the association, and

using normal conventions for
representing properties and methods.

Association
Name

Property

Association with
subclass

A dashed line running from the sub
association to the super class.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 89

META ELEMENT INTERPRETATION DIAGRAMMING NOTATION

Property Middle section of the class icon is a
list of the properties of the class.

Method

Property

Class name

Reference One end of the association line
labeled with the name of the

reference.

Reference
Name

Method Lower section of the class icon is a
list of the methods of the class.

Method

Property

Class name

Overriding No direct equivalent.

Note: Use of the same name does not
imply overriding.

Indication Message trace diagram in which
vertical bars represent objects and

horizontal lines represent messages.

Trigger State transition diagrams.

Qualifier No direct equivalent.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 90

Appendix E GLOSSARY

Aggregation A strong form of an association. For example, the containment relationship between a
system and the components that make up the system can be called an aggregation. An
aggregation is expressed as a Qualifier on the association class. Aggregation often
implies, but does not require, that the aggregated objects have mutual dependencies.

Association A class that expresses the relationship between two other classes. The relationship is
established by the presence of two or more references in the association class pointing to
the related classes.

Cardinality A relationship between two classes that allows more than one object to be related to a
single object. For example, Microsoft Office* is made up of the software elements Word,
Excel, Access and PowerPoint.

CIM Common Information Model is the schema of the overall managed environment. It is
divided into a Core model, Common model and extended schemas.

CIM Schema The schema representing the Core and Common models. Versions of this schema will be
released by the DMTF over time as the schema evolves.

Class A collection of instances, all of which support a common type; that is, a set of properties
and methods. The common properties and methods are defined as features of the class.
For example, the class called Modem represents all the modems present in a system.

Common model A collection of models specific to a particular area, derived from the Core model.
Included are the system model, the application model, the network model and the device
model.

Core model A subset of CIM, not specific to any platform. The Core model is set of classes and
associations that establish a conceptual framework for the schema of the rest of the
managed environment. Systems, applications, networks and related information are
modeled as extensions to the Core model.

Domain A virtual room for object names that establishes the range in which the names of objects
are unique.

Explicit Qualifier A qualifier defined separately from the definition of a class, property or other schema
element (see implicit qualifier). Explicit qualifier names must be unique across the entire
schema. Implicit qualifier names must be unique within the defining schema element;
that is, a given schema element may not have two qualifiers with the same name.

Extended schema A platform specific schema derived from the Common model. An example is the Win32
schema.

Feature A property or method belonging to a class.

Flavor Part of a qualifier spcification indicating overriding and inheritance rules. For example,
the qualifier KEY has Flavor(DisableOverride ToSubclass), meaning that every subclass
must inherit it and cannot override it.

Implicit Qualifier A qualifier defined as a part of the definition of a class, property or other schema
element (see explicit qualifier).



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 91

Indication A type of class usually created as a result of the occurrence of a trigger.

Inheritance A relationship between two classes in which all the members of the subclass are required
to be members of the superclass.  Any member of the subclass must also support any
method or property supported by the superclass. For example, Modem is a subclass of
Device.

Instance A unit of data. An instance is a set of property values that can be uniquely identified by a
key.

Key One or more qualified class properties that can be used to construct a name.

One or more qualified object properties which uniquely identify instances of this object
in a namespace.

Managed Object The actual item in the system environment that is accessed by the provider. For example,
a Network Interface Card.

Meta model A set of classes, associations and properties that expresses the types of things that can be
defined in a Schema. For example, the meta model includes a class called property which
defines the properties known to the system, a class called method which defines the
methods known to the system, and a class called class which defines the classes known
to the system.

Meta schema The schema of the meta model.

Method A declaration of a signature; that is, the method name, return type and parameters, and, in
the case of a concrete class, may imply an implementation.

Model A set of classes, properties and associations that allows the expression of information
about a specific domain. For example, a Network may consist of Network Devices and
Logical Networks. The Network Devices may have attachment associations to each
other, and may have member associations to Logical Networks.

Model Path A reference to an object within a namespace.

Namespace An object that defines a scope within which object keys must be unique.

Namespath Path A reference to a namespace within an implementation that is capable of hosting CIM
objects.

Name Combination of a Namespace path and a Model path that identifies a unique object.

Trigger The occurrence of some action such as the creation, modification or deletion of an object,
access to an object, or modification or access to a property. Triggers may also be fired as
a result of the passage of a specified period of time. A trigger typically results in an
Indication.

Polymorphism A subclass may redefine the implementation of a method or property inherited from its
superclass. The property or method is thereby redefined, even if the superclass is used to
access the object. For example, Device may define availability as a string, and may
return the values “powersave”, "on" or "off." The Modem subclass of Device may
redefine (override) availability by returning "on," "off," but not "powersave". If all
Devices are enumerated, any Device that happens to be a modem will not return the
value "powersave" for the availability property.

Property A value used to characterize an instance of a class. For example, a Device may have a



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 92

property called status.

Provider An executable that can return or set information about a given managed object.

Qualifier A value used to characterize a method, property, or class in the meta schema. For
example, if a property has the qualifier KEY with the value TRUE, the property is a key
for the class.

Reference Special  property types that are references or "pointers" to other instances.

Schema A namespace and unit of ownership for a set of classes. Schemas may come in forms
such as a text file, information in a repository, or diagrams in a CASE tool.

Scope Part of a Qualifier specification indicating with which meta constructs the Qualifier can
be used. For example, the Qualifier ABSTRACT has Scope(Class Association
Indication), meaning that it can only be used with Classes, Associations and Indications.

Scoping Object Objects which represent a real-world managed element, which in turn propagate keys to
other objects.

Signature The return type and parameters supported by a method.

Subclass See Inheritance.

Superclass See Inheritance.

Top Level Object A class or object that has no scoping object.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 93

Appendix F UNICODE USAGE

All punctuation symbols associated with object path or MOF Syntax occur within the Basic Latin
range U+0000 to U+007F. These include normal punctuators, such as slashes, colons, commas,
and so on. No important syntactic punctuation character occurs outside of this range.

All characters above U+007F are treated as parts of names, even though there are several reserved
characters such as U+2028 and U+2029 which are logically whitespace.

Therefore, all namespace, class and property names are identifiers composed as follows:

1. Initial identifier characters must be in set S1, where S1 = {U+005F, U+0041...U+005A,
U+0061...U+007A, U+0080...U+FFEF) [This is alphabetic, plus underscore]

2. All following characters must be in set S2 where S2 = S1 union {U+0030...U+0039} [This is
alphabetic, underscore, plus Arabic numerals 0 through 9.]

Note that the Unicode specials range (U+FFF0...U+FFFF) are not legal for identifiers. While the
above sub-range of U+0080...U+FFEF includes many diacritical characters which would not be
useful in an identifier, as well as the Unicode reserved sub-range which has not been allocated, it
seems advisable for simplicity of parsers to simply treat this entire sub-range as ’legal’ for
identifiers.

Refer to RFC2279, published by the Internet Engineering Task Force (IETF), as an example of a
Universal Transformation Format that has specific characteristics for dealing with multi-octet
characters on an application-specific basis.

F.1 MOF Text

MOF files using Unicode must contain a signature as the first two bytes of the text file, either
U+FFFE or U+FEFF, depending on the byte ordering of the text file (as suggested in Section 2.4
of the Unicode specification).

U+FFFE is little endian.

All MOF keywords and punctuation symbols are as described in the MOF Syntax document and
are not locale-specific. They are composed of characters falling in the range U+0000...U+007F,
regardless of the locale of origin for the MOF or its identifiers.

F.2 Quoted Strings

In all cases where non-identifier string values are required, delimiters must surround them.

The supported delimiter for strings is U+0027. Once a quoted string is started using the delimiter,
the same delimiter, U+0027, is used to terminate it.

In addition, the digraph U+005C ("\") followed by U+0027 """ constitutes an embedded
quotation mark, not a termination of the quoted string.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 94

The characters permitted within the quotation mark delimiters just described may fall within the
range U+0001 through U+FFEF.



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 95

Appendix G GUIDELINES

Method descriptions are recommended and must, at a minimum, indicate that method’s side-
effects (pre- and post-conditions).

Associations must not be declared as subtypes of classes that are not associations.

Leading underscores in identifiers are to be discouraged and not be used at all in the standard
schemas.

As a general rule, it is recommended that class names not be reused as part of property or method
names.  Property and method names are already unique within their defining class.

To enable information sharing between different CIM implementations, the MAXLEN qualifier
should be used to specify the maximum length of string properties.  This qualifier must always be
present for string properties used as keys.

A class that has no ABSTRACT qualifier must define, or inherit, key properties.

G.1 Mapping of Octet Strings

Most management models, including SNMP and DMI, support octet strings as data types. The
octet string data type represents arbitrary numeric or textual data. This data is stored as an
indexed byte array of unlimited, but fixed size.  Typically, the first N bytes indicate the actual
string length.  Since some environments only reserve the first byte, they do not support octet
strings larger than 255 bytes.

In the current release, CIM does not support octet strings as a separate data type. To map octet
strings, it is recommended that the equivalent CIM property be defined as an array of unsigned 8-
bit integers (uint8).  The first four bytes of the array contain the length of the octet data: byte 0 is
the most significant byte of the length; byte 3 is the least significant byte of the length.  The octet
data starts at byte 4.

G.2 SQL Reserved Words

It is recommended that SQL reserved words be avoided in the selection of class and property
names. This particularly applies to property names, since class names are prefixed by the schema
name, making a clash with a reserved word unlikely. The current set of SQL reserved words are:

From sql1992.txt:

AFTER ALIAS ASYNC BEFORE

BOOLEAN BREADTH COMPLETION CALL

CYCLE DATA DEPTH DICTIONARY

EACH ELSEIF EQUALS GENERAL

IF IGNORE LEAVE LESS



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 96

LIMIT LOOP MODIFY NEW

NONE OBJECT OFF OID

OLD OPERATION OPERATORS OTHERS

PARAMETERS PENDANT PREORDER PRIVATE

PROTECTED RECURSIVE REF REFERENCING

REPLACE RESIGNAL RETURN RETURNS

ROLE ROUTINE ROW SAVEPOINT

SEARCH SENSITIVE SEQUENCE SIGNAL

SIMILAR SQLEXCEPTION SQLWARNING STRUCTURE

TEST THERE TRIGGER TYPE

UNDER VARIABLE VIRTUAL VISIBLE

WAIT WHILE WITHOUT

From sql1992.txt (Annex E):

ABSOLUTE ACTION ADD ALLOCATE

ALTER ARE ASSERTION AT

BETWEEN BIT BIT_LENGTH BOTH

CASCADE CASCADED CASE CAST

CATALOG CHAR_LENGTH CHARACTER_LENGTH COALESCE

COLLATE COLLATION COLUMN CONNECT

CONNECTION CONSTRAINT CONSTRAINTS CONVERT

CORRESPONDING CROSS CURRENT_DATE CURRENT_TIME

CURRENT_TIMESTAMP CURRENT_USER DATE DAY

DEALLOCATE DEFERRABLE DEFERRED DESCRIBE

DESCRIPTOR DIAGNOSTICS DISCONNECT DOMAIN

DROP ELSE END-EXEC EXCEPT

EXCEPTION EXECUTE EXTERNAL EXTRACT

FALSE FIRST FULL GET

GLOBAL HOUR IDENTITY IMMEDIATE

INITIALLY INNER INPUT INSENSITIVE

INTERSECT INTERVAL ISOLATION JOIN

LAST LEADING LEFT LEVEL

LOCAL LOWER MATCH MINUTE

MONTH NAMES NATIONAL NATURAL

NCHAR NEXT NO NULLIF

OCTET_LENGTH ONLY OUTER OUTPUT

OVERLAPS PAD PARTIAL POSITION

PREPARE PRESERVE PRIOR READ

RELATIVE RESTRICT REVOKE RIGHT

ROWS SCROLL SECOND SESSION

SESSION_USER SIZE SPACE SQLSTATE

SUBSTRING SYSTEM_USER TEMPORARY THEN



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 97

TIME TIMESTAMP TIMEZONE_HOUR TIMEZONE_MINUTE

TRAILING TRANSACTION TRANSLATE TRANSLATION

TRIM TRUE UNKNOWN UPPER

USAGE USING VALUE VARCHAR

VARYING WHEN WRITE YEAR

ZONE

From sql3part2.txt (Annex E):

ACTION ACTOR AFTER ALIAS

ASYNC ATTRIBUTES BEFORE BOOLEAN

BREADTH COMPLETION CURRENT_PATH CYCLE

DATA DEPTH DESTROY DICTIONARY

EACH ELEMENT ELSEIF EQUALS

FACTOR GENERAL HOLD IGNORE

INSTEAD LESS LIMIT LIST

MODIFY NEW NEW_TABLE NO

NONE OFF OID OLD

OLD_TABLE OPERATION OPERATOR OPERATORS

PARAMETERS PATH PENDANT POSTFIX

PREFIX PREORDER PRIVATE PROTECTED

RECURSIVE REFERENCING REPLACE ROLE

ROUTINE ROW SAVEPOINT SEARCH

SENSITIVE SEQUENCE SESSION SIMILAR

SPACE SQLEXCEPTION SQLWARNING START

STATE STRUCTURE SYMBOL TERM

TEST THERE TRIGGER TYPE

UNDER VARIABLE VIRTUAL VISIBLE

WAIT WITHOUT

sql3part4.txt (ANNEX E):

CALL DO ELSEIF EXCEPTION

IF LEAVE LOOP OTHERS

RESIGNAL RETURN RETURNS SIGNAL

TUPLE WHILE



CO M M O N  IN F O R M A T I O N  M O D E L  (CIM) S P E C I F I C A T I O N  VE R S I O N  2 .2

06/14/99 98

Appendix H REFERENCES

[1] Grady Booch and James Rumbaugh, Unified Method for Object-Oriented Development
Document Set, Rational Software Corporation, 1996, http://www.rational.com/uml

[2] HyperMedia Management Protocol, Protocol Encoding, draft-hmmp-encoding-03.txt,
February, 1997

[3] Interface Definition Language, DCE/RPC, The Open Group.

[4] Georges Gardarin and Patrick Valduriez, Relational Databases and Knowledge Bases,
Addison Wesley, 1989

[5] Coplein, James O., Schmidt, Douglas C (eds). Pattern Languages of Program Design,
Addison-Wesley, Reading Mass., 1995

[6] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

[7] Augmented BNF for Syntax Specifications: ABNF, RFC 2234, Nov 1997

[8] G. Weinberger, General Systems Theory

[9] The Unicode Standard, Version 2.0, by The Unicode Consortium, Addison-Wesley, 1996.

[10] Universal Multiple-Octet Coded Character Set, ISO/IEC 10646

[11] UCS Transformation Format 8 (UTF-8), ISO/IEC 10646-1:1993 Amendment 2 (1996)

[12] Code for the Representation of Names of Languages, ISO/IEC 639:1988 (E/F)

[13] Code for the Representation of Names of Territory, ISO/IEC 3166:1988 (E/F)


	Introduction and Overview
	CIM Management Schema
	Core Model
	Common Model
	Extension Schema

	CIM Implementations
	CIM Implementation Conformance


	Meta Schema
	Definition of the Meta Schema
	Property Data Types
	Date, Time, and Interval Types
	Indicating Additional Type Semantics with Qualifiers

	Supported Schema Modifications
	Schema Versions

	Class Names
	Qualifiers
	Meta Qualifiers
	Standard Qualifiers
	Optional Qualifiers
	User-defined Qualifiers
	Mapping MIF Attributes


	Managed Object Format
	MOF usage
	Class Declarations
	Instance Declarations

	MOF Components
	Keywords
	Comments
	Validation Context
	Naming of Schema Elements
	Class Declarations
	Association Declarations
	Qualifier Declarations
	Instance Declarations
	Method Declarations
	Compiler Directives
	Value Constants
	Initializers

	Naming
	Background
	Weak Associations: Supporting Key Propagation
	Naming CIM Objects
	
	Namespace Type
	Namespace Handle


	Specifying Object Names in MOF Files

	Mapping Existing Models Into CIM
	Technique Mapping
	Recast Mapping
	Domain Mapping
	Mapping Scratch Pads

	Repository Perspective
	DMTF MIF Mapping Strategies

	Recording Mapping Decisions

