
Advisor:
Peder Feldt, Q-Labs

Customer-Developer Interface
Exploring Best Practices of

Communication with Ad-hoc
Customers in Software Projects

Bachelor Thesis by

Jonas Wisbrant
June, 2001
Supervisor:
Associate Professor Per Runeson,
Department of Telecommunication,
Lund University

2 (123) The Customer-Developer Interface - Appendix A

The Customer-Developer Interface 3 (123)

Abstract

Problems in contract-based software development are often linked to problems in the
relation with the customer. The objective of the study is to explore and model the
organisational interface between developers and ad-hoc customers in software
development projects. The objective is also to summarise, from the developer’s
viewpoint, different best practices for communication with customers.

The study uses a qualitative methodology. The customer-developer interface
according to six established best practices for software development and six real
world projects is assessed, described, summarised and analysed in terms of three
theoretical perspectives:

• Process Model Perspective
• The Actors and Stakeholders Perspective
• Message Perspective

Objectives for a proper working customer-developer interface and practices for
achieving these objectives are extracted from the established best practices. The
findings in the best practices are compared to the findings in the real world projects.
The usability of the three theoretical perspectives is successively evaluated in order to
verify the results of the study.

• The three theoretical perspectives are shown being useful when assessing,
describing and analysing the customer-developer interface of the best practises
and the real world projects.

• A set of partly overlapping objectives for a proper working customer-developer
interface is identified in the best practices.

• Practices for addressing the objectives are also identified. Interface objectives that
have not been addressed by the best practices are identified in the real world
projects.

Keywords: Acquisition, Actor, CMM, CRM, DSDM, Communication, Customer
Relation, Gaps-model, Message, Process model, Procurement, Requirements, RUP,
SA-CMM, Software, Stakeholder, Team Risk Management, XP

4 (123) The Customer-Developer Interface - Appendix A

The Customer-Developer Interface 5 (123)

Acknowledgements
The work for this bachelor thesis has been performed at Q-Labs AB at IDEON
Research Park in Lund, Sweden in collaboration with the Department of
Communication Systems at Lund Institute of Technology.

To work in the creative atmosphere of Q-Labs, LTH Telecom and IDEON has been a
privilege and a pleasure. I would like to thank my supervisors Per Runeson and Peder
Feldt for their ability and willingness to give inspiration, answers and support
throughout the work.

I would also like to thank my thesis colleague and roommate Pernilla Persson, partly
for sending me many good email jokes and partly for sparring me in both English,
logical thinking and table hockey.

Also a thank to all you Q-Labbers for being just as nice, competent and talkative as
you claim to be.

Jonas Wisbrant

Lund, Sweden, 30 May 2001

6 (123) The Customer-Developer Interface - Appendix A

Table of contents
Abstract ...3
Acknowledgements...5
Table of contents ..6
Table of Figures ...9
1 Introduction...11

1.1 Background ... 11
1.1.1 The PPM Story...12

1.2 Objective ... 13
1.2.1 On the Control of Software Processes..15

1.3 The Problem Domain Terminology... 15
1.3.1 Customer ..15
1.3.2 Developer ...16
1.3.3 Software ...16

1.4 Limitations .. 16
1.4.1 The Maturity of the Actors...17
1.4.2 The customer and developer organisation..18
1.4.3 Section of software lifecycle ..18
1.4.4 Factors affecting the customer-developer interface..19
1.4.5 Scientific Perspectives on the Interface..20

1.5 Outline of the Report... 21
1.5.1 Section 1: Introduction ...21
1.5.2 Section 2: Methodology ...21
1.5.3 Section 3: Theoretical Perspectives of the Customer-Developer Interface21
1.5.4 Section 4: The Customer-Developer Interface According to Best Practices of Software

Development ..21
1.5.5 Section 5: Customer-Developer Interfaces in Real Life Projects...22
1.5.6 Section 6: Summary and Conclusions..22
1.5.7 Section 7: Further research...22

2 Methodology ..23
2.1 Outline for a Quantitative Approach ... 23
2.2 Arguments for a Qualitative Approach ... 25
2.3 Outline of a Qualitative Approach .. 26
2.4 Summary ... 28

3 Theoretical Perspectives of the Customer-Developer Interface29
3.1 Process Model Perspective.. 30

3.1.1 Waterfall Model ...31
3.1.2 Evolutionary Development ..31
3.1.3 Formal Systems Development..32
3.1.4 Reuse-oriented development ..32
3.1.5 The Waterfall-Evolutionary Axis...33

3.2 The Actors and Stakeholders Perspective ... 34
3.2.1 Actors in the Customer Organisation ...36
3.2.2 Actors in the Development Organisation ...37
3.2.3 The Actors and their Interconnections ...38

3.3 Message Perspective ... 39
3.3.1 The Sending and Receiving Actors ..40
3.3.2 Message Contents...40
3.3.3 The Media ..41
3.3.4 The Level of Surprise...42
3.3.5 Conflict between process models and messges ..42

3.4 Summary ... 42

The Customer-Developer Interface 7 (123)

4 The Customer-Developer Interface According to Best Practices of
Software Development ..43

4.1 Capability Maturity Model.. 44
4.1.1 Generic Description of CMM...45
4.1.2 The Customer-Developer Interface According to Software Acquisition CMM...................47
4.1.3 Process model of SA CMM ...49
4.1.4 Actors and stakeholders of SA-CMM ..51
4.1.5 Messages of SA-CMM...51
4.1.6 Analysis and Summary...51

4.2 The Customer-Developer Interface According to SEI Team Risk Management 52
4.2.1 Process Model of Team Risk Management..53
4.2.2 Actors in Team Risk Management...53
4.2.3 Messages in Team Risk Management ..54
4.2.4 Analysis and Summary...54

4.3 The Gap-model of Service Quality.. 54
4.3.1 Process Models of the Gaps-model ..58
4.3.2 Actors and Stakeholders of the Gaps-model ..58
4.3.3 Messages of the Gaps-model..59
4.3.4 Analysis and Summary...59

4.4 The Rational Unified Process – RUP.. 60
4.4.1 Process Model of the Rational Unified Process ...62
4.4.2 Actors and Stakeholders in the Rational Unified Process ..63
4.4.3 Messages in the Rational Unified Procesess ..65
4.4.4 Analysis and Summary...66

4.5 Extreme Programming – XP ... 66
4.5.1 Process Model of the Extreme Programming...68
4.5.2 Actors and Stakeholders in Extreme Programming ...69
4.5.3 Messages in Extreme Programming...70
4.5.4 Analysis and Summary...70

4.6 Dynamic System Development Method – DSDM .. 71
4.6.1 Process Model of the DSDM ...72
4.6.2 Actors and Stakeholders of DSDM..74
4.6.3 Messages in DSDM..74
4.6.4 Analysis and Summary...75

4.7 Summary and Evaluation of the Customer-Developer Interface According to the Best
Practices 75

5 Customer-Developer Interfaces in Real Life Projects78
5.1 Choice of Projects ... 78
5.2 Assessment Methods ... 78
5.3 The Projects... 79
5.4 Real World Projects vs. Best Practices ... 81
5.5 Summary ... 82

6 Summary and Conclusions ...83
6.1 Summary ... 83
6.2 Evaluation of the Objective of the Study .. 84
6.3 Conclusion .. 84

7 Further Research...86
7.1 Model the Conceptual Content of the Customer-Developer Interface 86
7.2 Find Practices for the Unaddressed Objectives ... 86
7.3 Evaluate how to Quantify of the Objectives of the Interface .. 87
7.4 Structure the Messages of the Customer-Developer Interface .. 87

8 References ..88
8.1 Interviews.. 89

8 (123) The Customer-Developer Interface - Appendix A

A. Appendix A – Cases of Customer-Developer Interface90
A.1 Customer-developer interface in project A ... 91

A.1.1 Project abstract ...91
A.1.2 The customer developer interface ..91
A.1.3 Problem areas related to the customer interface and deviations from plan identified by

the developer ..94
A.2 Customer-developer interface in project B ... 97

A.2.1 Project abstract ...97
A.2.2 The customer developer interface ..97
A.2.3 Problems areas related to the customer interface and deviations from plan identified by

the developer ..101
A.3 Customer-developer interface in project C.. 103

A.3.1 Project abstract ...103
A.3.2 The customer developer interface ..103
A.3.3 Problem areas related to the customer interface and deviations from plan identified by

the developer ..107
A.4 Customer-developer interface in project D ... 108

A.4.1 Project abstract ...108
A.4.2 The customer developer interface ..108
A.4.3 Risk and problem areas related to the customer interface and deviations from plan

identified by the developer ...112
A.5 Customer-developer interface in project E.. 114

A.5.1 Project abstract ...114
A.5.2 The customer developer interface ..114
A.5.3 Problem areas related to the customer interface or deviations from plan identified by

the developer ..118
A.6 Customer-developer interface in project F .. 119

A.6.1 Project abstract ...119
A.6.2 The customer developer interface ..119
A.6.3 Problem areas related to the customer interface and deviations from plan identified by

the developer ..122

The Customer-Developer Interface 9 (123)

Table of Figures
Figure 1 The problem domain – the customer developer interface. ..13
Figure 2: The perspective of the problem domain the customer-developer interfaces.14
Figure 3: Customer and developer maturity matrix...17
Figure 4: Multiple interface development ...18
Figure 5: Single interface development ...18
Figure 6: Generic view on a typical software lifecycle. ..19
Figure 7: Hypotheses and variables for a quantitative analysis of the customer-developer interface............24
Figure 8: Characteristics for qualitative and quantitative methods..25
Figure 9: Waterfall development process model ...31
Figure 10: Evolutionary development process model ...32
Figure 11: Formal systems development ...32
Figure 12: Process model extremes ...33
Figure 13: Actors and stakeholders on the software market ..35
Figure 14: Actors and possible communications in a software development project.39
Figure 15: Basic communication process ..39
Figure 16: Risks and advantages of communication media...41
Figure 17: CMM structure - Goals, Common features and Key Practices ..47
Figure 18: Key Process Areas of Software Acquisition CMM..48
Figure 19 Key Process Areas and Top-Level-Activities dealing with customer-developer interface in

SA-CMM level two and level three ..49
Figure 20: Process model perspective of the customer-developer interface according to Acquisition

CMM...50
Figure 21: Actors and their roles according to SA-CMM ...51
Figure 22: Messages according to SA-CMM ..51
Figure 23: High level activities of SEI Team Risk Management ..53
Figure 24: Messages in Team Risk Management ..54
Figure 25: gaps model of service quality...56
Figure 26: Process model of Gaps-model..58
Figure 27: Messages in the Gaps-model..59
Figure 28: Rational Unified Process - Phases, Iterations and core workflows [Kruchten 1999, p 45]..........61
Figure 29: Process model of Rational Unified Process ...63
Figure 30: Description of Actor: Stakeholder according to RUP2000 ..63
Figure 31: Extract from RUP2000 dictionary regarding actor terminology ..64
Figure 32: Actors in RUP 2000 ...64
Figure 33: Reports in RUP 2000 ...65
Figure 34: Extract from RUP2000 dictionary regarding messages ...65
Figure 35: Key features of Extreme Programming and their supportive interconnections............................67
Figure 36: Process model of a possible XP-project ...69
Figure 37: Actors and stakeholders in Extreme Programming ..69
Figure 38: Messages in XP..70
Figure 39: Nine underlying principles of DSDM ..72
Figure 40: Process model of the customer-developer interface according to DSDM....................................73
Figure 41: Actors and stakeholders in DSDM...74
Figure 42: Some messages in DSDM..74
Figure 43: Summary of objectives and practices from the examined best parctices76
Figure 44: Project scope, problems and characteristics ...80
Figure 45: Problems in real life projects vs. practices from the best practices ..81
Figure 46: Project A organisation of increment according to development plan...92
Figure 47: Actors and roles in project A ...93
Figure 48: Actors in project A and their most frequent interconnections..93

10 (123) The Customer-Developer Interface - Appendix A

Figure 49: Identified classes of important or frequent messages between customer and developer in
project A ...94

Figure 50: Schematic description of major interface activities during project A ..96
Figure 51: Project B organisation of development of the first service and the technical/graphical

platform according to development plan...98
Figure 52: Actors and roles in project B..99
Figure 53: Actors in project B and their most frequent interconnections ..100
Figure 54: Identified classes of important or frequent messages between customer and developer in

project B..101
Figure 55: Project C development process in a standard increment ..104
Figure 56: Actors and roles in project C..105
Figure 57: Actors in project C and their most frequent interconnections ..106
Figure 58: Identified classes of important or frequent messages between customer and developer in

Project C ...107
Figure 59: Project D development process for a feature or major release ...109
Figure 60: Actors and roles in project D ...110
Figure 61: Actors in project D and their most frequent interconnections..111
Figure 62: Identified classes of important or frequent messages between customer and developer in

project D ...112
Figure 63: Development process of project E ...115
Figure 64: Actors and roles in project E..116
Figure 65: Actors in project E and their most frequent interconnections ..117
Figure 66: Identified classes of important or frequent messages between the customer and the

developer in project E ...118
Figure 67: Project F development process...120
Figure 68: Actors and roles in project F ..121
Figure 69: Actors in project F and their most frequent interconnections ..121
Figure 70: Identified classes of important or frequent messages between customer and developer in

project F ..122

The Customer-Developer Interface 11 (123)

Why be surprised by something
that can be clearly foreseen?

1 Introduction

1.1 Background
Software engineering is the activity of developing software within schedule, to a
planned cost with expected quality. A mature development organisation is able to do
this in a controlled way with limited deviations from project to project and without
significant impact from surprises from within the organisation or from the project
environment. But in the same moment an organisation decides not to develop a
software product on its own, control of the development process is lost. The
organisation can no longer use its own defined development process and its quality
assurance program to guide the development. Or when an organisation decides to
develop software on contract for another organisation, this control is also lost.

It is indeed very common for companies, government authorities and other
organisations to acquire more or less complex software applications from different
software developers. It is also very common for software developers to aim for an
external end-user for its software. Each time one of these two situations happens, an
interface between the two organisations is established.

Far too often, the delivered application will not reach the customer’s expectations
regarding cost, functionality, quality or time of delivery. The reasons for these
negative deviations from the expectations could be found almost anywhere in the
software development process. As stated above, the basic objective for software
engineering is to optimise software development according to cost, functionality,
quality and time of delivery. Examining the entire development process for problems
is too great a task, but an are with frequent problems is the communication between
the customer and the developer during the project. The successes and shortcomings of
this communication will have a significant impact on the development project. The
subject for this study is the customer-developer interface.

This kind of study is often introduced with discouraging examples from the real
world. The five billion SEK failure of the Ariane V rocket [Ariane V96], the luggage
transport system at Denver International Airport [Gibbs 1994] and the overdosing
radiation machine for cancer treatment [Leveson 1995, Appendix A] are famous
examples of unsuccessful projects where the failures cannot be related to the
customer-developer interface. The failure of the computer aided dispatch system
acquired for London Ambulance Service in the mid-nineties [LAS 1995] can partly
be blamed on deficiencies in the communication between developer and customer, by
for instance missing the end-user’s needs and requirements.

12 (123) The Customer-Developer Interface - Appendix A

1.1.1 The PPM Story
A rather new and very Swedish example to put on the list of discouraging cases is the
failure of PPM1 to acquire a web-based system for the administration of 5.5 million
Swedes premium pensions. The story is not scientifically verified. It is based on an
authority report [PPM 99-63] and some magazine articles [CS 1999:10], [CS
2000:38], [CS 1999:49].

The acquisition process of the system was initiated by RFV2 in parallel with the
establishment of the new authority PPM. The company that got the development
contract, a well-known global corporation with 60 000 consultants, started with an
object-oriented and very modern concept. When PPM was established it took over the
acquisition responsibility from RFV. When the first prototypes where shown to the
future system owners at PPM it turned out to be a system with wrong services and
very little capacity for hundreds of thousands simultaneous users. The primary
consequence of the misconceptions was that the premium pension reform, which had
an immediate impact on the future pensions of half of the Swedish population, was
postponed one year, involving changes of laws by the parliament and government. A
crisis group with representatives from both the developer and RFV was established.
The analysis showed that the chosen system architecture was not sufficient for the
actual needs. In the meantime technicians at PPM had started to develop prototypes
on their own, partly in order to clarify the system requirements. When there was only
a half-year left to deployment, PPM decided to break the deal with the external
developer and put efforts into the in-house developed alternative.

The lesson learned is that even though both parties were very experienced in their
respective roles in the acquisition process; they had deficiencies in their
communication and the validation of the requirements. The fault is mainly on the
acquiring side. RFV requested a proposal when the system-owner existed only as a
pile of paper. When PPM had learned to walk and talk it was too late to include its
opinions. Sadly, these kinds of mistakes are likely to occur in such a unique situation.
More surprising is the fact that the 60 000 strong contractor did not predict the
problems inherent in the acquirer’s organisation. The contractor did nothing to
prevent the problem. The contractor did not back out of the bid.

1 Premiepensionsmyndigheten: The Swedish Premium Pension Authority
2 Riksförsäkringsverket: The National Social Insurance Board

The Customer-Developer Interface 13 (123)

1.2 Objective
Figure 1 below illustrates activities and deliverables that in some form always appear
in a software development project lifecycle. The circle in the middle describes the
problem domain of this study, the customer-developer interface.

Customer activities Deliverables Developer activities

Outline description

Request for proposalIdea

Tender Project idea

Negotiation Contract Negotiation

Project plan Project planning

Requirement specification

Design

Implementation

Validation

Test

Acceptance Deployment

Maintenance

Support
Operation
Evaluation

Request for evolution

Software artefact

Re-engineering

Phase-out

Figure 1: The problem domain – the customer developer interface.

One objective of the study is to explore a sub-class (see Section 1.4.1) of the interface
between a customer and a developer in software projects. Another objective is to
model and summarise how different best practices of software development handle
the customer-developer interface.

The prime users of the result of the study are account managers or project managers
in software development companies with a market in service oriented organisations.
The developer’s customer may for instance be someone that provides service or
products by the Internet or through mobile phones. The result of the study would
ideally be used when the account manager writes a tender for a software development
project or when the project manager plans the project. The report from the study can
inspire these persons to introduce or refresh the following questions into their agenda:

• What risks are we facing if we sign a contract with our prospective customer?
• How well suited is the customer to specify expectations, needs and

requirements?

Problem
domain:
Customer –
developer
interface

14 (123) The Customer-Developer Interface - Appendix A

• Is it likely that the expectations and requirements will change during the
project?

• Is the customer capable of validating the system?

The study will not answer these questions, but the report can provide give a
framework for handling questions like:

• How should we best design our interface to the customer to mitigate fears
regarding the customer’s acquisition capability?

• Should we adjust our inner organisation or development process?
• Should we back out of the project?

Questions like these are traditionally treated in the risk management section of project
management. The ambition here is to reduce the need for subtle intuition in favour of
a more structured approach when identifying the risks.

Figure 2 below is a re-worked variant of Figure 1, page 13. The highlighted developer
activities illustrate the viewpoint of the study and thought of end users of the report.
More on this subject in Section 1.4.5 Scientific Perspectives on the Interface.

Customer activities Deliverables Developer activities

Outline description

Request for proposalIdea

Tender

Negotiation Contract

Project plan

Requirement specification

Design

Implementation

Validation

Test

Acceptance Deployment

Maintenance

Support
Operation
Evaluation

Request for evolution

Software artefact

Re-engineering

Phase-out

Figure 2: The perspective of the problem domain the customer-developer interfaces.

Viewpoint
of the study

Problem
domain:
Customer –
developer
interface

Project idea

Negotiation

Project planning

The Customer-Developer Interface 15 (123)

1.2.1 On the Control of Software Processes
A tradition within software engineering, e. g. in the software improvement models
developed by Humphrey [Humphrey 1995] and SEI Capability Maturity Model
[Paulk 1997], is built on the axiom “You can’t control what you can’t measure”
[DeMarco 1982, p 3]. This tradition has developed a very complex and fertile
methodology, which mainly involves statistical analysis of measurements of vital
aspects of the software development process. This analysis makes it possible to verify
whether an improvement of a development process reaches its objectives. It would be
very pleasant to be able to contribute to that tradition by suggesting statistical
measurable aspects of the customer-developer interface in order to strengthen the
framework for process improvements. Unfortunately such an objective is very hard to
fully accomplish, since the customer-developer interface is composed of two
organisations of which the other one is hard to control. The result of a process
improvement is hard to statistically verify if the parties have only a short time to
build a relationship. Different corporate cultures may also make it hard or costly to
share an improvement process.

1.3 The Problem Domain Terminology
There are a lot of almost synonymous terms flourishing in the literature of the
problem domain. Before any definitions are made some of these termes are listed
below:

• Acquisition – procurement
• Customer – acquirer – end-user – buyer – consumer – purchaser
• Software – programme –application – product – artefact
• Deliverer – supplier – contractor – developer
• Offer – tender – bid
• Contract – deal – agreement – settlement – arrangement
• Specification – requirement – feature description – outline description

Mostly it does not matter which of the terms is used, either because they are
completely synonymous or because the context makes the meaning of the term
obvious. This section discusses and defines three of the most essential terms of the
study: the customer, the developer and software.

1.3.1 Customer
The term customer is chosen because of the chosen developer perspective for the
study. From a developer perspective the term customer gives a proper attitude. The
Software Engineering Institute (SEI) at Carnegie Mellon University has defined a
customer according to what the customer does in a software acquisition project:

 “The organisation acquiring systems. The customer is responsible for:
• defining requirements
• obtaining funding
• selecting supplier/contractor

16 (123) The Customer-Developer Interface - Appendix A

• negotiating the contract
• accepting the product” [CMU/SEI-94-SR-5, p 4]

1.3.2 Developer
For this actor the choice of term stands between deliverer, supplier, contractor and
developer. Higuera et. al. defines in a text about Team Risk Management the supplier
as the

“…organisation developing and producing the system and is responsible for
implementing the requirements under the terms of the contract, which include
cost and schedule.” [CMU/SEI-94-SR-5, p 5].

This is a straightforward definition of what a software supplier does in relation to the
customer. However, in this study the term developer is chosen since it is the term that
best applies to what the organisation mostly do and that is to develop software.

1.3.3 Software
IEEE Recommended Practice for software acquisition deals with three different
categories of software products according to the degree to which the acquirer may
specify the requirements [IEEE std 1062-1993, pp 1]:

1. COTS – commercial off the shelf software:
This type of software is stable and well defined in terms of capabilities and
documentation. There is a market driven need for the product and the developer is
not willing to modify the product for a single customer.

2. MOTS – modified off the shelf software:
MOTS are almost the same as COTS but some major tailoring towards customer-
specific needs are to be made.

3. Fully developed software:
This software is one of a kind. It has potentials for further development and the
documentation is project specific.

If nothing else is stated, the term software in this study will cover the meaning of
MOTS and fully developed software.

1.4 Limitations
The object of the study, the customer-developer interface, at a first glance seems to
be possible to overview. It is not. It is necessary to make some limitations. This
section deals with some major limitations and their consequences for the result of the
study. Some other limitations, that might affect how to understand the results of the
study, are dealt with on the fly. A second purpose of the section is to give a broader
picture of the problem domain.

The Customer-Developer Interface 17 (123)

1.4.1 The Maturity of the Actors
An organisation that decides to let another organisation develop a software
application creates an organisational interface between the two organisations. If both
parties are well-organised and mature organisations, with a great experience in their
respective role in the software acquisition process, it is quite possible that they have
processes and procedures to handle the situation. The interface during the project has
a good potential of success. But if one of the organisations is not experienced, there
are a lot of pitfalls to be caught in. One can roughly divide the parties in a software
acquisition into two categories; mature and not mature. Then there are four possible
combinations. Examples of these combinations are given in the matrix of Figure 3
below.

Software developer

Mature Not mature

Mature

Established software
consultants develops sub-
components for a big telecom
industry

Rapid growing internet
Consultant company develops
a multi-sender municipal web
portal

So
ftw

a
re

 A
cq

ui
re

r

Not Mature

Established software
development company
develops a business
management system for an
ad-hoc customer

Small advertising agency
develops a website for a local
street kitchen.

Figure 3: Customer and developer maturity matrix

The prime target for this study are those developer-customer interfaces that are
created in the highlighted lower left corner of the matrix in Figure 3 There are several
reasons for this limitation.

Companies in the upper left mature-mature combination are well guarded by their
own maturity. If, for instance, both parties are engaged in a CMMI- [CMMI 1.02d] or
SPICE- program [SPICE] they already have instruments and procedures to guide
them into a proper organisational interface or perhaps choose a more mature
developer.

In the upper right part of the matrix, where the developer is not very experienced but
the customer is, it is likely that the acquiring part is aware of the problems and
thereby tries to control the interface.

In the lower right corner of the matrix, were none-of the parties has significant
experience of the inter-organisational interface, there are risks for a great number of
different problems, by which the interface aspect only are one. Furthermore has the
developer no process context to fit an improved process into.

Left for this study is the lower left part of the matrix. An experienced software
developer can be assumed to be aware of the problems arising when working with in-

18 (123) The Customer-Developer Interface - Appendix A

experienced or ad-hoc customers. Thereby the developing company might have an
incentive to reduce the problem. At the same time these developers can be assumed to
have some kind of development process framework into which potential
improvements will fit. The fact that the customer more often than the developer is ad-
hoc also puts a greater responsibility on the developer.

1.4.2 The customer and developer organisation
The communication between the customer and developer consists mostly of
information about expectations, requirements, timing, responsibility etc. Facts and
ideas are shuffled from one part to the other and back again. In many real life projects
e.g. when developing for of-the-shelf-market or when the acquiring organisation is a
sub-contractor for a bigger system, the end-user is not a part of the acquiring
organisation. Another situation is when a developer, for some reason, might need to
use a sub-contractor to develop a component in the software. If one, or both, of these
situations occurs, there will be two or three interfaces to deal with in accordance with
Figure 4 below.

Figure 4: Multiple interface development

If it is problematic to communicate with a second organisation that one has a
contractual relation to, it is obvious that it is an even more complex challenge to
communicate with a third part through the second part. But even if the contents of the
communication probably differs between the interfaces one, two and three of Figure
4, the increasing challenge mostly is a matter of level, not of nature. Therefore in the
theoretical parts of this study it is assumed that the customer is in full control of the
user-side of the development process and that the developing organisation is in full
control of the developing side of the development process. This situation is described
in Figure 5 below.

Figure 5: Single interface development

The inner organisations of the customer and the developer will be further discussed in
Section 3.2 The Actors and Stakeholders.

1.4.3 Section of software lifecycle
Next limitation will be made according to the software lifecycle. Even if it is hard to
prove, a software artefact may work forever. It may be used for decades or even
longer. As a natural consequence of this it is possible for the customer-developer
interface to be used during a very long period. This aspect should of course be

End-user Customer Sub-contractorDeveloper
Inter-
face

1

Inter-
face

3

Inter-
face

2

End-user

Customer

Sub-contractor

DeveloperThe
inter-
face

The Customer-Developer Interface 19 (123)

thought of when planning a development project and thereby ideally also be included
in this study. Unfortunately it would be very hard to trace software projects for
decades. One could investigate project plans for how deeply they deal with customer-
deliverer communication according maintenance or re-engineering ten years ahead,
when yet unknown technologies, user-expectations and organisational trends rule the
world. But to evaluate the project plans in relation to the project outcomes would be
difficult. Therefore the theoretical parts of the study will exclude communication
during the latter parts of the software lifecycle. A limit will be put somewhere at
deployment/acceptance.

Customer activities Deliverables Developer activities

Outline description

Request for proposalIdea

Tender

Negotiation Contract

Project plan

Requirement specification

Design

Implementation

Validation Software artefact

Test

Acceptance Deployment

Maintenance

Support
Operation
Evaluation

Request for evolution
Re-engineering

Phase-out

Figure 6: Generic view on a typical software lifecycle.

Figure 6 illustrates activities that in one form or another always appear in a software
development project lifecycle. The study is restricted to the activities and deliverables
localised in the white area in the middle.

1.4.4 Factors affecting the customer-developer interface
It is quite easy to come up with ideas for factors that in one way or another could
stimulate, interfere or in some other way affect the functionality of the customer-
developer interface. One is how the mutual relationship between the parties works.
Other aspects are what kind of development processes that are to be used and what
kind of product that is to be developed. Still other factors affecting the
communication are the size of the project, the customer’s inner organisation and the
corporate culture on both the developer’s and the customer’s side. Even if each of
these aspects might have a very significant impact on the customer-developer
interface the resulting model would probably become very complex. Such complexity

Viewpoint
of the study

Problem
domain:
Customer-
developer
interface

Restriction
in project
time

Project idea

Negotiation

Project planning

20 (123) The Customer-Developer Interface - Appendix A

would have two negative consequences. Firstly the model would both be hard to
develop and to verify. Secondly the model would be hard to use. There are at least
two ways for making a trade-off between easy to use and easy to develop.3 A proper
way of dealing with the problem is to choose those factors that can be regarded as
positive in both cases.

Three of the factors or perspectives affecting the interface chosen in the study are:
• Process Model Perspective
• The Actors and Stakeholders Perspective
• Message Perspective

1.4.5 Scientific Perspectives on the Interface
It is quite easy to find many different realistic academic approaches or perspectives
on what occurs in the interface between customer and developer. Examples are
• An economist would perhaps want to examine how much resource in form of

time and money the two parties spend on their communication.
• A psychologist would be interested in the personal motives of the involved

actors.
• The hands-on software developer would like to know how to determine when

there will be an end to new requirements.
• A lawyer would start the study in the contract and investigate which of the parties

that was to blame for a failure.
• An ethnologist would focus on differences in the corporate cultures or social

context of the two parties and find a lot of problem there.

The list could have been made longer and moreover not so adequate perspectives of
the problem domain e.g. chemical, ecological or astrological could have prolonged
the list.

Since it is hard to apply all of the academic perspectives in the same study, a choice
among them has to be made. A choice of perspective always means a choice of
possible models and explanations. The choice can be made for several reasons. E. g:

1. The thought of end-user of the result. Who will gain from the result?
2. An idea of which hypotheses and explanations that are most relevant? Which

perspective could be most fertile?
3. The competence and capability of the researcher and his/her advisors to work

with the academic tools connected to the perspective. What questions is the
researcher able to deal with?

The choice of a project management perspective (see Figure 2, page 14) are based on
a mix of the first and the third reasons above, in combination with a belief that the
perspective is fertile enough to motivate spending time and energy on the problem
domain.

3 This is by the way the same kind of trade-off that many software developers make - easy to
code vs. easy to use.

The Customer-Developer Interface 21 (123)

1.5 Outline of the Report

1.5.1 Section 1: Introduction
This section (Section 1 Introduction) has introduced the reader to the background,
objective, some terminology of the problem domain and some fundamental
limitations for the study.

1.5.2 Section 2: Methodology
Based on some methodology literature two alternative approaches to achieve the
objectives of the study will be described:

• Quantitative by statistical analysis of inquiry
• Qualitative by analysis of established best practices and case studies

captureded by interviews with project managers

The qualitative approach is argued for, chosen and described.

1.5.3 Section 3: Theoretical Perspectives of the Customer-Developer
Interface

The third section outlines three theoretical perspectives from which a customer-
developer interface may be observed. The section also shows how the customer-
developer interface may be described when observed from the theoretical
perspectives. The perspectives are:

• Process Model Perspective
• The Actors and Stakeholders Perspective
• Message Perspective

1.5.4 Section 4: The Customer-Developer Interface According to Best
Practices of Software Development

Section four gives a summary and discussion of how the customer-developer
interface is treated by some established best practices. The chosen sources are:

• SEI Software Acquisition Capability Maturity Model – SA CMM
• SEI Team Risk Management – SEI TRM
• The Gaps-model
• Rational Unified Process – RUP
• Extreme Programming – XP
• Dynamic Systems Development Method – DSDM

Different objectives for a customer-developer interface are identified as well as
practices for achieving these objectives.

22 (123) The Customer-Developer Interface - Appendix A

1.5.5 Section 5: Customer-Developer Interfaces in Real Life Projects
In order to verify the findings in the established best practices, the fifth section of the
report deals with how six real world customer-developer interfaces has been assessed
and described (Appendix A – Cases Of Customer-Developer Interface) and analysed
in the light of the three theoretical perspectives. Thereafter the findings in the real
world cases are compared to the findings in best practices.

1.5.6 Section 6: Summary and Conclusions
The sixth section summarises the study and its findings. The objectives of the study
are evaluated and some conclusions presented.

1.5.7 Section 7: Further Research
Section seven throws light upon some unanswered questions and presents ideas for
how those questions may be tackled.

The Customer-Developer Interface 23 (123)

2 Methodology
The objective for the study as described in Section 1.2 is to explore the customer-
developer interface and model and summarise best practices of customer developer
communication in development projects. This is easier said than done. A definition of
the problem domain is done (Section 1.3) and some major limitations to the area are
described (Section 1.4). The question for this section is to describe how new and
relevant knowledge is to be created, validated and presented in a consequent,
consistent and verifiable form. In other words - what methods are to be used? The
methodological thinking in the section is based on what is written in Holme et al
“Forskningsmetodik – Om kvalitativa och kvantitativa metoder”4 [Holme1997].

The two basic strategies for a scientific study are the quantitative and the qualitative
approach respectively. To find out and verify good practices of how to interact with
an ad-hoc customer in a software development project one could use the quantitative
approach. One way could be to try to measure variables in the communication
process that is likely to affect the successes and shortcomings of the development
process in the large, or just the customer communication aspect in the small. With
statistical computation it would then be possible to show the correlation between the
variables (cause) and the outcome (effect). Moreover, it would also be possible to
identify which of the variables that has the most significant impact and thereby would
be most important to avoid or accentuate when planning the project.

In opposition to the quantitative approach, the qualitative approach does not aim for
statistical verifiability. Here the objective is rather to find variation, structures and
context in order to get a deeper understanding of the problem domain. The qualitative
researcher is allowed to affect the studied object, which is not desired in the
quantitative study.

This section describes one possible quantitative and one possible qualitative
methodological strategy for meeting the objectives of the study as described in
Section 1.2 and presents arguments for a choice of strategy.

2.1 Outline for a Quantitative Approach
Another way of describing the quantitative methodology is that the researcher raises
some hypotheses, e g that some phenomenon in the customer-developer interface
affects the outcome of the project in some certain direction. The next step would be
to statically verify whether the hypothesis is true or not. Figure 7 below lists
examples of such measurable hypotheses on the problem domain of this study
combined with suggestions of measurable variables.

4 Translation: Research methodology – on qualitative and quantitative methods

24 (123) The Customer-Developer Interface - Appendix A

Hypotheses Ideas for measurable variables
The fewer stakeholders at the customer side, e g
classes of end-users, sponsors, system
responsible etc that is affected by the software
to be developed the better will the project
outcome be.

• The number of stakeholders is measured by
counting them.

• The project outcome are measured by the
end-user final system opinion questionaries.

The more messages between the customer and
developer during the project that is exchanged
outside what was defined in the project plan
the worse will the project outcome be.

• The number of messages is measured by
statistics on meetings, mail, phone calls and
use of change request tools.

The more contact-points between the parties
there are the better the project outcome will
be.

• The number of contact points is measured
by interviewing the participants on their
contacts.

Figure 7: Hypotheses and variables for a quantitative analysis of the customer-developer
interface

An approach like this would have the great effect that the study would come up with
statistically verifiable truths. But there would also be some complications. In order to
make the results statistically reliable, the study would for instance have to analyse a
large number of projects. The environment would also have to be controlled. If a
stipulated positive correlation between two variables were identified, it would also
have to be shown that the second variable depended on the first – not in the opposite
direction or both variables depending on a third variable. An outline for such a
quantitative study could be:

1. Identify hypothetical causes and effects in the customer-developer interface.
2. Show and argue for their dependency relations.
3. Find assessment points in real life projects.
4. Argue for the connection between the assessment points and their respective

cause or effect.
5. Assess metrics from real life development projects.
6. Compute the statistical correlation, significance.
7. Compute the probabilities that the hypothesises about causes and effects

(point 1) are true or not.

The Customer-Developer Interface 25 (123)

2.2 Arguments for a Qualitative Approach
Holme et al [Holme1997] summarise the characteristics of the quantitative and the
qualitative approach in Figure 8 below.

Quantitative methods Qualitative methods
1. Precision: the researcher wants fair

reflection of the quantitative variation.
1. Accuracy: the researcher want to maximise

the coverage of the qualitative variation.
2. Limited information on many units. A broad

investigation.
2. Much information about few units. A deep

investigation.
3. Systematic and structured observations.

E. g. questionnaires.
3. Unstructured interviews with open questions.

4. Interest in common features, average the
representative.

4. Interest in the unique, differences,
abnormal.

5. Distance to the object: data collection is
parted from the studied object.

5. Closeness to the object: gathering of data
is done close to the studied object.

6. Interest in separable variables. 6. Interest in coherence and structure.
7. Description and explanation. 7. Description and understanding.
8. Audience or manipulator: the researcher

watches the phenomenon from outside
and strives for the roll as observer. Variations
in the object can be manipulated.

8. Participator or actor: the researcher
observes the phenomenon from inside. He
knows that he affects the result by being
present. He may interact.

9. Me-it-relation between the scientist and the
object for the study.

9. Me-you-relation between the scientist and
the object for the study.

Figure 8: Characteristics for qualitative and quantitative methods [Holme1997 p 78]

Recall Section 1.2 Objective. In the perspective of the objective of the study, both
methodological approaches are absolutely possible to use, but the qualitative
approach is chosen. Primarily this choice is made for practical reasons. A serious
quantitative study of the customer-developer interface could, for instance, be done in
either of the following two ways:

• In one alternative, very much time and effort would have to be devoted to find
a very small sub-set of the problem domain. An example of this could be one
project with a very long-term development contract with a specific customer.
In such case the study could first find and specify assessment points, then
assess process variables and perhaps end up with a process improvement plan.
This alternative would presumably be very interesting and valuable for the
involved parties. But it would also face the risks of not finding the right
project. It would be hard to follow over time and it would not allow extracting
generic conclusions valid outside the involved organisations.

• In a second alternative a lot of people, organisations, time and money would
have to be engaged in the study, for instance a mass survey about attitudes,
experiences and methods in the customer-developer interface. Such study
would, if properly carried through, give us valuable knowledge and give
conclusions valid in a considerable part of the software society. Probably it
would be a real hit at software engineering conferences. Unfortunately this
second alternative in the first place would be hard both to finance and to finish
in a limited period of time. Second, and most important from a scientific point
of view, in order to formulate the hypotheses and casual connections that

26 (123) The Customer-Developer Interface - Appendix A

would be the foundation for the quantitative study, the study probably would
anyhow have to be started up with a qualitative study like the one outlined in
the next section. More on this in Section 7 Further Research at page 86.

2.3 Outline of a Qualitative Approach
A possible qualitative approach for exploring the customer-developer interface and
model and summarising best practices of customer developer communication (see
Section 1.2 Objective) will be given here. By studying real life project plans, process
policies and project reports and by interviewing customers and developers about their
experiences, it should be possible to extract knowledge and experiences of good and
bad features of the customer-development interface. By comparing the experiences
from different projects to each other, as well as to known and verified best practices
of domains closely related to the customer-developer interface, it should be possible
to picture relevant causes and effects. With this approach, the researcher is fully
aware of the fact that each instance (a customer-developer interface in a software
project) lives in a unique context out of control from the researcher.

To be able to describe the customer-developer interface in real life projects in a way
that makes it possible to compare them, both to each other and to the related best
practices, the studied interfaces have to be streamlined in some way. One way of
doing the streamlining, is to describe the customer-developer interface in the light of
a theoretical perspective, showing static and dynamic features that could be expected
to appear. This perspective could then be used to describe both the real life projects as
well as the related best practices in a form that makes it possible to compare them to
each other.

The outlined approach, however, involves a risk. Suppose that the theoretical
perspective fails to capture and model relevant aspects of the best practices and the
real life projects. Then the summation and comparison of projects and best practices
would be misguiding.

In order to reduce the risk of choosing the wrong perspective – three perspectives are
chosen instead of one. From the objective and the viewpoint chosen in this study it is
adequate to select perspectives close to the environment of the project manager or
software engineer.

• Process Model Perspective
• The Actors and Stakeholders Perspective
• Message Perspective

The choice has two benefits related to the arguing in Section 1.4.5 at page 20. One is
that the perspectives are fairly easy to use. The other is that answers are easy to
understand for the thought of audience.

The Customer-Developer Interface 27 (123)

Before the study is made there is no way to verify that the three chosen perspectives
are better than others are - or good enough. Therefor, the study has to be
supplemented with a strategy for answering the question whether the perspectives
cover the relevant parts of the problem domain or not. Otherwise it is impossible to
know if the qualitative exploring of the interface and summation of best practices
gives maximum description of the qualitative variation. See Figure 8 upper right
field.

One way of answering the question is to, when exploring the best practices and real
life projects, continuously look for features not covered in the models. Was
something left out? This is hard to do, but it is also hard to come up with a better
strategy.

On the other hand, the risk of missing relevant features opens for a slightly shift of
the question of the initial objective. The mission was to model and summarise best
practices. Now it turns out to be, not drawing a model of best practices, but drawing
a model of the customer-developer interface.

The consequences of the reasoning above are that the exploration, the description and
the comparison of best practices and real life interfaces are not enough. A minor
hypothesis that has to be dealt with has emerged:

If a customer-developer interface is described by its process model, its actors
and stakeholders and its messages, this description is all-embracing enough to
give a relevant understanding of how to plan and evaluate a customer-
developer interface.

A way of verifying the hypothesis is to use the theoretical perspectives when
capturing, describing and comparing the best practices and when capturing,
describing and analysing the real life projects. If these activities are successful and if
there are not too many missing features in the best practices and real life interfaces,
the hypothesis can be said to be true. If the hypothesis turns out to be true then the
exploring, describing and comparing parts of the study also is very relevant.
Otherwise the models have to be rebuilt or complemented in some way.

This approach outlines a concrete study like the following:
1. Outline and describe theoretical perspectives for capturing and describing

static and dynamic features of the customer-developer interface:
• Process Model Perspective
• The Actors and Stakeholders Perspective
• Message Perspective

2. Study how the customer-developer interface is described by best practices
(known and verified software development processes).

3. Describe the best practices as shown by the theoretical perspectives.

28 (123) The Customer-Developer Interface - Appendix A

4. Ask if the theoretical perspectives capture the essence of the best practices?
List aspects that were left out.

5. Extract objectives and practice that can be related to the customer-developer
interface.

6. Assess some real life projects through analysis of project documentation and
interviews.

7. Describe the projects as shown by the theoretical perspectives. List aspects
that could not be captured by the theoretical perspectives.

8. Analyse the real life projects and compare them to each other and to the best
practices. Verify if the three theoretical perspectives were useful for assessing
real life projects.

9. Analyse the missed objectives and practices.
10. Evaluate the objective of the study
11. Draw conclusions around the question: Can the theoretical model together

with the best practice guide us to a better understanding of how to plan the
interface to ad-hoc customers?

Recall the objective once again. Exploring the customer-developer interface and
model and summarise best practices of customer developer communication

The theoretical perspectives together with the summarised best practices will
constitute a model for how to avoid problems in treating the ad-hoc customer. If the
list of missed aspects turns out to be very long or very important, the models have to
be rebuilt or completed. Suggestions of how this may be done, will be made in
Section 7. The exploration objective of this study will anyhow be met. The gathered
material could perhaps furthermore be used as an interesting input to or inspiration
for a future quantitative analysis of causes and effects in the customer-developer
interface. More on this will also be discussed in Section 7.

2.4 Summary
Based on some methodology literature two alternative approaches for achieving the
objectives of the study has been described:

• Quantitative by statistical analysis of inquiry
• Qualitative by analysis of established best practices and case studies fetched

by interviews with project managers

The qualitative approach was argued for, chosen and described.

The Customer-Developer Interface 29 (123)

3 Theoretical Perspectives of the Customer-Developer
Interface

Abstracted to a very high level, software development is about transferring and
transforming information, experiences, knowledge and visions about the phenomenon
and the rules in the future environment of the software. Software engineering guides
both the transferring activities and transformation activities. The transferring is done
by communication. Hence in all software projects there is a need for communication.
Most of the communication concerns what the developed software is expected to
accomplish. Some of the communication deals with how the software is to be
developed. Whenever the software development is split on two or more organisations
there will automatically be a need for communication between the organisations. The
communication passes through the customer-developer interface.

What kind of information that should be exchanged, when it should be exchanged,
under which form and by whom, is closely related to the answers of questions like:

• What kind of development processes is to be used?
• What kind of product is to be developed?
• How is the relationship between acquirer and developer?
• How large is the project?
• How are acquirers and developers organised?
• Which are the main actors and their stakes?
• How do they communicate?

How a phenomenon is described is, among other things dependent of the viewpoint or
perspective of the observer. To get a detailed and useful picture of a complex
phenomenon it is often useful to observe the phenomenon from different
perspectives. Each perspective gives a unique description. Descriptions from different
perspectives complement each other to a more complete and complex picture of the
phenomenon.

This section presents three different theoretical perspectives of the customer-
developer interface. Each perspective is connected to and exemplified with a
description of features and phenomenon that the use of the perspective can be
assumed to bring about. The perspective and its related description can in
combination be regarded as a tool for describing and analysing the customer-
developer interface. The three perspectives are:
1. Process model perspective

The process models uses macro perspective, and result in a description of the
customer-developer interface based on entities like high level activities, high-
level deliverables and the ordering of and the relation between these high level
activities and deliverables.

30 (123) The Customer-Developer Interface - Appendix A

2. Actor and stakeholder perspective
The actor and stakeholder perspective examines the customer-developer interface
from in between the micro and the macro level. This perspective is more static
over time than the process model perspective. The use of this perspective at the
customer-developer interface results in descriptions of categories of people,
departments or organisations participating in the software development process,
why they are there and what objectives they can be assumed to have.

3. Message perspective
The message perspective studies with the customer-developer interface at a micro
level. Just as in the case with the perspective of process models, it is also
dynamic. The achieved picture consists of what information that is transferred,
between whom, when and how?

Each of these perspectives forms frameworks that help capturing the customer-
developer interface in a detailed way. Together they form a tool for describing and
analysing the customer-developer interface. In later part of the study, they are used as
a mainframe in order to assess, describe and analyse both established best practices
and real life customer-developer interfaces.

Remark! The perspectives chosen are by no means bound to the situations where the
software development is split on two or more parties. Neither does the maturity of the
involved organisation matter. This mean that they probably also can be used to
analyse processes where a software system is developed within a single organisation.

3.1 Process Model Perspective
This section describes the customer-developer interface in the perspective of the
project’s development process model.

A software process model is

“a simplified representation of a software process, presented from a specific
perspective.” [Sommerville2001, p 8]

Sommerville describes four different categories of such development process models.
All four models are built around the fundamental activities:

• Software specification: Specification of software functionality
• Software design and implementation: The development of the software
• Software validation: Confirmation of that the software meets customer

expectations
• Software evolution: Continuos evolution to meet customer needs

The four models are:
• Waterfall process model

The Customer-Developer Interface 31 (123)

• Evolutionary process model
• Formal system development
• Re-use oriented development

The choice of process model has a significant impact on the customer-developer
interface and before discussing that impact, the following subsection shortly
describes the four models.

3.1.1 Waterfall Model
The waterfall model is illustrated in Figure 9 below. The process model partitions the
development project into separable phases where one phase produces the input to the
next phase and each phase verifies that it produced what was stipulated by the former
phase.

Figure 9: Waterfall development process model [Sommerville 2001, p 45]

3.1.2 Evolutionary Development
In the evolutionary development model the project starts with a very loosely defined
outline of what is to be developed. Figure 10 below describes how an initial version
of the software is, in co-operation with the customer and through several intermediate
versions, successively develops to a final version of the software. Specification,
development and validation activities are done in parallel on different parts of the
system.

Requirement
analysis &
definition

Implemen-
tation & unit

testing

System
& software

design

Operation
&

maintenance

Integration
& system
testing

Verification

Specification

Design

Component

Software

32 (123) The Customer-Developer Interface - Appendix A

Figure 10: Evolutionary development process model [Sommerville 2001, p 47]

But Sommerville also identifies some different categorise of the evolutionary process
models. The exploratory process model starts with mostly well known requirements.
The reason for the evolutionary approach is explore possible technical solutions. A
second variant is the termed throwaway prototyping. Here is the objective to by trial-
and-error together with the customer, explore and find out the requirements of the
system. The third variant is incremental development. The main difference between
this and the two former evolutionary models are that the system on the start of the
development are reasonable well specified. The first increment might for instance
carry the most important features and be up running long before its successors. The
incremental model has much in common with the waterfall model e g the need for
stringent and baselined specifications and a controlled change management system.

3.1.3 Formal Systems Development
The formal system development model has much in common with the waterfall
model. The big difference is a more stringent conversion from one phase to the next
phase. The content of one specification is mathematically derived from its precursor.
This model makes it very difficult to change requirements during development. But if
the requirements are changed or added there should be a good possibility to check for
negative consequences on other parts of the software product.

Figure 11: Formal systems development [Sommerville 2001, p 48]

According to how the process model affects the customer-developer interface, the
formal development can be regarded as a sub-class to the waterfall model.

3.1.4 Reuse-oriented development
The fourth Sommerville process model is reuse-oriented and used when the customer
or developer assumes the software can be constructed from existing components or
COTS. A vital consequence of a reuse strategy is that there probably has to be some

Intermediate
versions

Intermediate
versions

Development

Specification

Validation

Concurrent
activities

Outline
description

Initial
version

Intermediate
versions

Final
version

Formal
specification

Requirements
definition

Formal
transformation

Integration and
system testing

The Customer-Developer Interface 33 (123)

trade-offs between the desired features and what the market has to offer at a
reasonable cost. This reuse oriented process model could be a sub-class to both the
waterfall model and the evolutionary models. The difference lies mostly in the need
to modify early requirement specifications.

3.1.5 The Waterfall-Evolutionary Axis
There are no exact mach between how things are done in real life and process models
on a paper. But the interface between customers and developers looks absolutely
different in the process models and their variants. Regarding the need for
communication between the two parties it is easy to build a scale from the formal
system development model in one end to the throwaway prototyping evolutionary
model in the other end. A planned incremental development process can be placed
somewhere in the middle.

Figure 12 below illustrates briefly this phenomenon. In the formal systems
development the customer sends a very strict specification to the developer in the
beginning of the project and receives a fully developed (derived) and tested software
at the end. In the evolutionary development project the communication between the
parties is continuos and perhaps more emphasising than within the respective
organisations.

Figure 12: Process model extremes

There is no reason to believe that there is any difference in the amount of information
about the software to be developed that needs to be transferred and transformed at the
two extremes of the axis. But since each information occasion has to be accompanied
with more or less overhead information (handshakes, scheduling, synchronisation etc)
the total amount of information floating around can be assumed to be higher in the
right part of the axis than in the left part. In other words, the number of
communication events during the project increases continuously when moving further

Requirements
definition

Software
Product

DeveloperCustomerDeveloper

Formal
specification

Formal
transformation

Integration and
system testing

Customer

Formal systems development

Few points of
communication

Evolutionary development

Software
Product

Outline

Continuous need for
communication

Validation

Evolution

Refinement

Specification

Development

Test

34 (123) The Customer-Developer Interface - Appendix A

left along the axis. This means that a development project using an evolutionary
process model has to be prepared to handle both a more intense and a more complex
flow of information between the parties, than if the development process was
organised according to the formal development model.

3.2 The Actors and Stakeholders Perspective
This section presents the customer-developer interface in form of actors and
stakeholders. At an organisational level the basic actors of a software development
project are the acquiring and the development organisations. In order to describe and
analyse the actors and stakeholders of the customer-developer interface it is necessary
to, on one hand look wider and include parts of their environment, and on the other
hand, divide the basic actors to into smaller parts.

In major projects it happens that the acquiring organisation engage a supporting
contractor to assist in matters like selection of developer, verification or system
validation. Occasionally, the developer uses one or more sub-contractors. This
happens for instance when the project runs short of scheduled time, special
competence or other resources. [Marciniak 94, p 15].

The prime organisations – the customer and the developer – consist of departments,
sections and individuals – each with unique or individual roles and special interest in
relation to the software development project. In those cases the actor also can be said
to be a stakeholder. In some cases the actor is a person. In some other cases the actor
is a company department. Sometimes one actor represents several different – and in
worst case conflicting interests. Figure 13 below describes, on an organisational
level, important actors and stakeholders on the software market.

The Customer-Developer Interface 35 (123)

Figure 13: Actors and stakeholders on the software market

The actors in the environment have no direct impact on the customer-developer
interface during the development. But they may have some impact before and after
the project or indirect effect during the project, which are arguments for keeping
some of them in mind:
! Competing software development companies will try to get the contract in

competition with other software developers. Mostly this competition is
accomplished with fair methods on factors as prize, quality and confidence.

! The competitors of the customer will try to gain market shares from the
customer. One possible way of doing that is to acquire better business supporting
software.

! Legislature has an impact on the acquisition process by setting the rules and
giving a mainframe for how a contract should be formulated.

! Official authorities are often big acquirers of software and as such they have
high demands from political institutions on the quality of their acquisition process
and can thereby perhaps serve as a model for a good acquisition process.

In some management literature the description of the environment is much more
penetrating, including cultural values, financial institutions, plagues, weather, lobby
organisations and neighbours etc. In this study they are ignored since they are
believed to have very limited impact, both direct and indirect, on the customer-
developer interface.

The purpose of the rest of this section is to describe the head organisational and inner
actors and their expected stakes in the software development process.

End-user

Customer

Developer
Sub-

contractor

Support
contractor

Legislature

Developer’s
competitor

Customer’s
competitor

Software
market

Customer’s business
domain

36 (123) The Customer-Developer Interface - Appendix A

3.2.1 Actors in the Customer Organisation
As a whole, the customer organisation has the interest of doing a good and effective
job on its business domain at a low cost. But if the software project is big there will
probably be a lot of people involved in the acquisition process – each with a unique
role, responsibility and interest.

Initiator
The initiator gives voice to the need of a new software application. The stakes might
be a combination of personal ambition and a vision of how to make the business more
successful.

The sponsor
The sponsor of the development project will provide capital for the development
project. The sponsor will also take the economical risk based on information and
estimations from other parts of the organisation.

The acquirer
The acquirer acts as representative for the acquiring organisation by formulating a bid
for request, receiving bids from software developing companies, analysing those bids
on behalf of the sponsor and/or system owner, and making decisions during the
development process.

The system owner
The system owner will be responsible for the developed software once it has gone
into use. The main stake is to get a well functioning system with low operating and
maintenance costs.

IT-administrator
The IT-administrator deals with compatibility with parallel systems, in-house
maintenance, local support and updating the systems for new users etc. During the
development project the administrator will support with information about the
systems future technical environment. The main stakes of the administrator is to
avoid technical conflicts and get a smooth well operating system.

The end-user
The end-user actor has the real knowledge of and competence on application domain.
If the software project is large and the customer organisation is big it might be
possible to divide the end-user into different sub-categories. Expert end-user will be
engaged in the work with requirement elicitation and validation activities. Normal
end-users will use the final system and for instance act as guinea pigs by trying out
and give feed-back on prototypes for a user interface.

At one extreme one person could represent all of the actors and their stakes at the
customers site. For instance a freelancing consultant calling her hacking neighbour to
develop a minimal database for her client records. On the other extreme 15 full time

The Customer-Developer Interface 37 (123)

persons, whose only role were to gather feedback on a prototype of a large-scale
business system, could for instance, represent the end-user.

3.2.2 Actors in the Development Organisation
The developing company has, in a way, the same overall goals as the acquiring
company, to do a good and effective job on its business domain at a low cost. The
difference is that business domain now is specified to software development. Thereby
is it possible to further specify the stakes of the developer. The main stakes of the
developing organisation is to win the software-development contract and fulfil it
according to price, schedule and quality with an economic surplus. But, just as in the
customer organisation, it is possible to identify several actors with unique roles,
responsibilities and stakes. These are described in the following sections.

The project manager
The project manager is responsible towards the customer for delivering the developed
software in time, with a specified quality. The responsibility towards the development
company is to meet the customer’s expectations within given budget. This is done by
influencing the project plan, staffing and risk management etc. and by leading the
project.

The creator of tender
The creator of tender is the actor who, based on information from the customer about
what, when and how etc., formulates a tender, negotiates with the customer and
finally signs a contract on behalf of the developer. The creator of the tender has two
conflicting objectives. One is to win the contract. The second objective is to make
that contract a good contract, in the meaning high revenues and low costs. In some
organisations the creator of the tender is the same person as the project manager.
Then a trade-off solves the conflicts. In a case where the roles are played by two
different persons, there will be a high risk for surprises waiting for the project
manager, if the creator of the tender underestimated the need for resources for the
development.

Development
The development staff can be divided into several different sub-categories. Their
common stake is the same as the project managers’ - to deliver a software product
with expected quality, on time and within budget. But each category also has some
mutually different interest or needs – both generic and according to the customer
interface.
• The requirements engineer needs very good access to the end-users both in

order to elcitate detailed requirements and to validate the requirements
specification to ensure that it is equivalent with actual needs of the end-users. In
case of disagreement among the end-users the acquirer is called upon in order to
conciliate.

• The designer needs both the end-users and the acquirer to validate the software
design and overall structure. The designer sometimes also needs to directly

38 (123) The Customer-Developer Interface - Appendix A

communicate with the acquirers’ IT –administrator to discuss conflicts or
technical interfaces with existing systems.

• The programmer has seldom any need for direct communication with the
customer organisation. If the software design seems odd, the problem is best
broken with the designer who in turn might contact the customer if needed.

• The tester is in a broad sense responsible for ensuring that the requirements
specification is fulfilled. If there appears conflicts among the requirements during
a system test, there will be need for consulting the customer organisation. To
make an acceptance test the customer organisation has to meet up with at least the
acquirer, system owner and some representative non-expert end-users.

Product support
Product support has a broad scope of developing user manuals, train the end-users
and give telephone support. This means a lot of contacts towards many different
customer actors.

Quality manager
The quality manager monitors, evaluates and calibrates the software development
process in order to ensure that the quality of the software reaches its objectives.

3.2.3 The Actors and their Interconnections
All the actors, stakeholders and roles in the two previous sections will communicate
regarding the software project with other actors in or outside the project. Figure 14
pictures the actors and what might be the most frequent or relevant communication
lines in different phases of the project.

The Customer-Developer Interface 39 (123)

Project manager

Support

System Owner

Acquirer

Initiator

DeveloperCustomer

Project Sponsor

Requirement

Test

Design

IT Administrator

Creator of Tender

End User

Quality Manager

Programmer

Figure 14: Actors and possible communications in a software development project.

The lines between the actors of Figure 14 represents communication in a possible
development project. The space between the customer box and the developer box
represents the customer developer interface. Some of the messages will be very
precise and travel from an actor to another in a defined and verifiable form. Some
messages will be more diffuse and perhaps reach the wrong person with modified
content at wrong point of time.

3.3 Message Perspective
This section describes the customer-developer interface in the perspective of the
messages passing between the customer and the developer during a software
development project. Communication theory describes an information process in the
terminology of Figure 15 below.

Figure 15: Basic communication process

Each connection line of Figure 14 can be said to represent such a communication
process.

Actor 1 Actor 2MessageMediaMessage

Feedback

40 (123) The Customer-Developer Interface - Appendix A

The right message box is written in italics because the message has been affected by
the media. This means that the receiver never gets exactly what the sender has sent.
The feedback arrow represents the same kind of information process, but in the
opposite direction. If the feedback information can be related to the first message, the
duplex information flow has turned in to communication.

In some contexts the term media is confused with the term channel. In this report,
media describes by which technical form a message is transferred, e g by phone mail
or live meeting. A channel is something that has a specific intellectual content, a
defined sender and receiver and uses one or more specific media. Examples of
channels are CNN, The Washington-Moscow Hot Line or a weekly news-mail from a
project manager.

The three components of the communication process (actors, message and media) are
excellent bases for deeper analysis of the basic component in the communication
process – the message. A fourth aspect, related to the state of the receiving actor,
will also be introduced. Together they will build a foundation for a fertile
categorisation of the messages. The four aspects are:

• The Sending and Receiving Actors
• Message Contents
• The Media
• The Level of Surprise

3.3.1 The Sending and Receiving Actors
Each message can be defined by who is the source and who is the receiver. Section
3.2, describing the actors, gives a picture of which actors at one side that are directly
involved in interaction with the actors on the other side or somehow connected to the
interface. Remark the consequences of the restriction made in Figure 5: Single
interface development at page 18. The study is restricted to one interface that might
have to be used by several involved actors. A designer might request an clarification
direct from an end-user or send the request via a project-manager at the developers
side and a system owner at the customer side. Both these scenarios are legal here.
This means that the possible number of combination is n*(n-1) bi-personal interfaces.
Add the possible multi-personal links and the ability to broadcast - the number of
unique connections is enormous.

3.3.2 Message Contents
Another straightforward way of defining a message is by its contents. In a software
development context one can separate product information from process information.
Product information deals with the functionality or features of the product in the form
of functional and non-functional requirements. Process information deals with the
organisation of the development project e.g. questions like when, where and who?
Most of the messages can be assumed to deal with requirements. From the customer
side the following possibilities are likely to occure:

• New requirements
• Demand for changes in existing requirements

The Customer-Developer Interface 41 (123)

• Removal of existing requirements

From the developers side, the following messages seems very likely:
• Request for clarification of a requirement
• Request for validation of a requirement
• Suggestion to change of a requirement

Concrete examples of process information are:
• Time, place and participants for putting the requirements in baseline
• Request for process status
• New deadlines
• Progress reviews
• External audits
• Time and amount for partial financial settlement

3.3.3 The Media
This section handles the third aspect of the messages - the form in which the
information is distributed, the media. Is a new requirement communicated by an
informal phone call or by an electronic request-for-change-form? Is a validation made
by a baseline review meeting or over a lunch pizza? Every channel or media is
combined with certain risks and certain advantages. To exemplify this, Figure 16
below lists some common communication media and some, but absolutely not all, of
their qualities.

Media Advantage Risk
Telephone call Full duplex

Rapid
Hard to record and verify

E-mail Rapid
Available
Storable

Technical
Security problems

Letter Sense of formality
Hard to change
Signature
Static

Slow
Only one version
Static

Fax Can communicate hand
made illustrations and sketches

Gets lost in office

Web page Available in office environment
Updateable

Static structure

Formal meeting with agenda
and record

Full (multi-) duplex for those
present

Non-present persons might not
be informed
Time for attestation of record

Informal meeting Full duplex
Rapid
Socially nice
Creative

Hard to record and verify

Figure 16: Risks and advantages of communication media

The contents of Figure 16 are by no means complete. The purpose is to give an idea
of questions that has to be dealt with when deciding on by which media a certain
messages best should be communicated.

42 (123) The Customer-Developer Interface - Appendix A

3.3.4 The Level of Surprise
The fourth approach in how to categorise the messages is inspired from a risk
management perspective. How the situation in which the message is received or the
level of surprise affects the reception of the information. Is the message part off a
planned interaction or is it not? Is the message welcomed or feared? One can assume
that a planned and positive message is received and understood in a better way than a
negative message that comes as a complete surprise. Some possible categories are
listed below:

• scheduled
• expected but not scheduled
• feared and analysed in risk analysis
• feared but not analysed in risk analysis
• a complete surprise

It is assumable that the reception of the messages in the upper categories will be both
better and cheaper than the reception of the lower categories, independent of whether
the customer or the developer is the sending part.

3.3.5 Conflict between process models and messges
One basic component of a process model (Section 3.1) is the high-level activity.
Sending and receiving messages can be regarded as low-level activities and it is hard
to draw an exact dividing-line between low-level and high-level activities. This
problem becomes obvious when to decide if for instance a requirement workshop
should be classified as an activity or as a message. Therefore: meetings that have a
stringent focus at transfer of a defined type of information is regarded as messages in
the report.

3.4 Summary
This section has outlined three perspectives on different levels of how a customer-
developer interface can be described:

• Process models:
How is the development process organised on a high level and what
consequences will the chosen organisation have on the customer-developer
interface?

• Actors and stakeholders:
Which actors are involved in the development process at respective site and
how do their roles and stakes affect the customer-developer interface?

• Messages:
Who communicates what message to whom, by which media and under which
circumstances?

Each of the three perspectives captures some unique features, phenomenon and rules
that can be assumed to affect the customer-developer interface. A description of a
customer-developer interface based on process models, actors and stakeholders and
messages should make it possible to analyse the pros, cons and development areas of
the customer-developer interface in a comparable way.

The Customer-Developer Interface 43 (123)

4 The Customer-Developer Interface According to Best
Practices of Software Development

A lot of well-written standards, process models, reference models, best practices,
scientific articles and management guidebooks focus on explaining how to develop
software have published. Some examples are:

• Capability Maturity Model – CMM [SW-CMM]
• Capability Maturity Model Integrated – CMMI [CMMI 1.02d]
• Software Process Improvement and Capability dEtermination – SPICE

[SPICE]
• The Institute of Electrical and Electronics Engineers – IEEE [IEEE std 1062-

1993]
• Extreme programming – XP [Beck 1999]
• Rational Unified Process – RUP [Kruchten 1999]
• Dynamic Systems Development Method – DSDM [Stapleton 1997]
• Department of Defence (U.S.A) - DoD

Many of these standards and models also deal with the consequences of splitting the
development process on two organisations, and thereby they also deal with the
customer-developer interface. Some of the models give clear recommendations of
how and when to interact with the customer. Some models have only little to say on
the issue.

The objective of this section is to describe some models and best practices; most of
them focused on software development. From the descriptions will then objectives for
proper customer-developer interfaces and practices for reaching these objectives, be
extracted

In order to avoid confusion and mix up with the theoretical perspective of process
models from Section 3.1, the standards, models and practices from now on will be
termed best practices. They will be called so regardless of whether the originators of
the best practice consider them to be best practices or not. To clarify this in short;

Objectives and practices for the customer-developer interface are to be
extracted from best practices of software development.

Most of the chosen best practices focus processes and activities that happen inside the
development organisation. There is no absolute secure way of knowing if these best
practices in combination really cover all relevant objectives and practices of the
customer-developer interface. One way of determining if they do, is to investigate if
the best practices describe similar objectives and practices or if they are mutually
very disparate. The arguments are as follows.

44 (123) The Customer-Developer Interface - Appendix A

If, on one hand, all the best practices identify the same problems and describe similar
practices, it can be assumed that the problem is relevant and that the described
practice is good and useful. If, on the other hand, the objectives and practices are
disparate, new variants of problems and practices have been identified and can be
added to a list of qualitative variations. The way to know when to stop is to make a
trade-off between the cost of investigating new best practices and the probability to
find not yet discovered objectives or practices.

There is a risk that identified similarities between the best practices is due to that one
best practice is an imitation of the other. A cure for that risk is to choose models from
different sources, with different perspectives or even with competing driving forces.

The choice for which best practices to examine is, by other words, based on the
assumption that the learning that can be made from each of them and from their
attitude towards the customer-developer interface, to some extent complements the
learning that can be made from the others. In the terminology of qualitative
methodology this is the same that the researcher wants to maximise the coverage of
the qualitative variation (see Section 2.2, page 25).

The trade-of between the risk of missing objectives and practices on one hand and the
cost of investigating more best practices on the other hand ends in this study with the
choice of the following best practices:

• SEI Software Acquisition Capability Maturity Model – SA CMM [SA-
CMM1.01]

• SEI Team Risk Management – SEI TRM [CMU/SEI-94-SR-5]
• The Gaps-model [Zeithamal 1996]
• Rational Unified Process – RUP [Kruchten 1999]
• Extreme Programming – XP [Beck 1999]
• Dynamic Systems Development Method – DSDM

The structure of the section is as follows. Each best practice is first described in
general. After that follows a description of how the model looks when captured by
each of the three theoretical perspectives outlined in Section 3. Each model is finally
analysed regarding:
1. To what extent the theoretical perspectives could capture the best practice.
2. If any new objectives and practices of the customer-developer interface were

revealed by the best practice.

4.1 Capability Maturity Model
The Software Engineering Institute (SEI) of the Carnegie Mellon University has
developed the CMM concept of software process improvement during the late
eighties and nineties. The major sponsor has been the American Department of
Defence (DoD). The main argument for this was the need to get control over cost and
quality of the software products delivered by its contractors. The intellectual

The Customer-Developer Interface 45 (123)

framework was founded in the eighties and early nineties by Watts Humphrey in
work like “A Discipline for Software Engineering” [Humphrey 1995].

One of the strengths of CMM is that it is based on contributions from software
developing practitioners. The late versions of Software-CMM [Paulk 1997] and
Software Acquisition CMM [SA-CMM 1.01] has been validated and proven by use in
numerous organisations and development projects. This indicates that, what is
recommended by these documents is really relevant.

The interface between the customer and the developer are treated in many different
SEI documents. Software Acquisition CMM [SA-CMM 1.01] was designed to guide
the acquiring part to gain maturity and Software CMM [Paulk 1997] was designed to
guide the developer. Lately, these to models and a third model, System Engineering
CMM, has been integrated to CMMI (Capability Maturity Model – Integrated)
[CMMI 1.02d]. Another concept designed by SEI in order to deal with the customer-
developer interface is Team Risk Management. Team Risk Management will be
presented in Section 4.2.

Section 4.1.1 describes features and structures that are common for of all of the
CMM’s. The Sections 4.1.2 to 4.1.6 penetrates the customer-developer interface as
described in Software Acquisition CMM.

4.1.1 Generic Description of CMM
The generic description of CMM in this section is primary based on texts about SW-
CMM 1.1. SEI defines two major areas for using the model [Paulk 1993, p 43]:

• To assess the current development process used by an organisation in order to
improve its ability to deliver high quality software. This is what a CMM-climbing
organisation does in order to compete better on the market of software.

• To evaluate a development process used by a potential sub-contractor in order to
gain trust in its ability to deliver high quality software. This is what the American
Department of Defence wants to do when selecting software contractors to
military systems.

A third user domain is to be inspired by the huge work invested in building and
validating the model and derive lightweight process models from it.

CMM structure
The keywords of CMM are maturity and capability. The basic assumption permeating
the Capability Maturity Model is that software development organisations with a
structured way of doing their job will over time deliver software with higher quality
than less well structured organisation will. In CMM terminology this means that a
well-structured organisation has better capabilities to deliver high quality software.
This capability is the “C” in “CMM”.

46 (123) The Customer-Developer Interface - Appendix A

For everybody who agrees on the assumption above, CMM offers a concept of:
• How an organisation can get well structured.
• Where to start and how to control the organisation evolution process.

By CMM terminology this would be expressed: how an organisation might gain
maturity, Maturity is the first “M”. The concept or model stands for the second “M”.
Maturity and capabilities are very central to the model.

Immaturity
An immature development organisation is likely to be characterised by statements as:
• The development processes are genererally improviced.
• The project management is focused on solving immediate crises.
• Functionality and quality of the product often have to be reduced in order to meet

deadlines.
• The organisation has no objective ways to judge quality

Maturity
In contrast a very mature organisation may be characterised by these statements:
• The organisation has an organisation-wide ability to manage software

development and maintenance.
• Development activities are carried out according to a defined and by all parties

understood and recognised development process.
• These processes are gradually improved and updated.
• The roles and responsibilities within the organisation are clear and understood by

its participants.
• Management monitors the quality of the product and the process.
• The organisation keeps an objective base for a quantitative measure of quality.

If a software development organisation wants to transform from an immature to a
mature organisation is the SEI Capability Maturity Model one of several, but heavily
tested way to go.

The software process capability is the range of expected results that can be achieved
and thereby a way of predicting the most likely outcome of the next project. The five
maturity levels, which represent the steps to climb in order to reach the organisational
maturity, are:
1. Initial
2. Repeatable
3. Defined
4. Managed
5. Optimising

Next central concept of the CMM is the Key Process Area. The Key Process Areas
are the building block of each capability level.

The Customer-Developer Interface 47 (123)

Figure 17: CMM structure - Goals, Common features and Key Practices

Figure 17 pictures the Key Process Area in its CMM context. Each Key Process Area
is defined by its Goals, Common Features and Key Practices. The goals are very
concrete. An example from Key Process Area: Software Configuration Management
at level 2 is in short [Paulk 1997, p 180] that:

• Configuration management is planned.
• The configuration-managed products are controlled, identified and available.
• Changes to the products or deliverables are controlled.
• Relevant people have access to status information about the software and

deliverables.

Each Key Process Area is also described according to five common features listed
below together with explaining questions:
1. Commitment to perform: Do we have a good reason to become better?

2. Ability to perform: What organisational features have to be established before
the project for improvement of the Key Process Area starts off?

3. Activities performed: How shall we do the job when we do it better then before?

4. Measurements and analysis: How can we measure to decide whether we do
what we planned to do?

5. Verifying implementation: Did we do what we planed to do?

4.1.2 The Customer-Developer Interface According to Software
Acquisition CMM

Software Acquisition CMM [SA-CMM 1.01] was designed to guide the acquiring
part to gain maturity in its role. What recommendation has Software Acquisition

Contain

Maturity levels

Key process

Common features

Key practices

Process
capability

Goals

Implementation or
institutionalisation

Infrastructure
or activities

Indicate

Achieve

Address

Describe

Contain

Organised by

48 (123) The Customer-Developer Interface - Appendix A

CMM to make about the customer-developer interface? The material to investigate is
very large. In order to get out the most relevant materiel the following condensation
is performed. Figure 18 lists the key process areas of SA-CMM.5

Level Focus Key Process Areas
5 Optimizing Continuous

process
improvement

• Acquisition Innovation Management
• Continuous Process Improvement

4 Quantitative Quantitative
management

• Quantitative Acquisition Management
• Quantitative Process Management

3 Defined Process
Standard-
isation

• Training Program
• Acquisition Risk Management
• Contract Performance Management
• Project Performance Management
• Process Definition and Maintenance

2 Repeatable Basic project
management

• Transition to Support
• Evaluation
• Contract Tracking and Oversight
• Project Management
• Requirements Development and Management
• Solicitation
• Software Acquisition Planning

1 Initial Competent people and heroics

Figure 18: Key Process Areas of Software Acquisition CMM

In SA-CMM, all key process areas, in some way or another, deal with the customer-
developer interface. The best description of them is made in the original document
[SA-CMM 1.01, p 17-112]. Since this study focus on the ad-hoc customer, there is a
limited scope for process improvement. Therefore an analysis can be restricted to the
key process areas, goals and practices of the maturity level two and of the maturity
level three. Some of the key process areas at level two and three focus on aspects that
are private to the customer. Left, dealing with the interface, is the key process areas,
marked with bold style in Figure 18. Figure 19 below lists them together with the top-
level activities that can be assumed to affect customer-developer interface.

5 Remark that the structure of SA-CMM is the same as the structure of SW-CMM. The difference
between them lies primarily in the purpose, the user and the Key Process Areas.

The Customer-Developer Interface 49 (123)

Maturity
Level

Key Process
Area

Top-level activities

2 Requirement
development
and
Management

5. Bi-directional traceabilty between the software-related
contractual requirements and the contractor’s software
work products and services is maintained throughout the
effort.

Contract
Tracking

2. The project team reviews required contractor software
planning documents which, when satisfactory, are used
to oversee the contractor’s software engineering effort.

3. The project team conducts periodic reviews and
interchanges with the contractor.

Evaluation 3. The evaluation requirements are incorporated into the
solicitation package and resulting contract

4. The project team assesses contractor’s performance for
compliance with evaluation requirements.

6. Results of evaluations are analysed and compared to the
contractor’s requirements to establish an objective basis
to support the decision to accept the product and
services or take further action.

Transition to
Support

2. Responsibility for the software products is transferred only
after the software support organisation demonstrates its
capability to modify and support the software products.

3 Contract
Performance
Management

3. The contractor’s software engineering process is appraised
according to the project’s defined software acquisition
process.

4. Results of the contractor’s engineering activities are
appraised according to the project’s defined software
acquisition.

5. Measurements are used to apprise the contractor’s
performance and trends analysed.

6. As understanding of the software engineering process,
products, and services improves, the project team may
propose changes to the software products or services,
process descriptions, plans and activities.

7. The end user periodically participates in the evaluation of
evolving software products and services to determine the
satisfaction of operational requirements.

8. Contract performance management activities are
performed to foster a co-operative environment
between the project team and the contractor.

Figure 19 Key Process Areas and Top-Level-Activities dealing with customer-developer
interface in SA-CMM level two and level three [SA-CMM 1.01, Appendix C]6

Keeping in mind that SA-CMM says a lot about what is to be done and little about
how it is to be done, SA-CMM gives more detailed recommendations than that of
Figure 19. But without penetrating the top-level activities any further, the content of
the left column of Figure 19 highlights practices of the customer-developer interface
that are important in the perspective of SA-CMM.

4.1.3 Process model of SA CMM
CMM gives no opinion whether a waterfall model or incremental model is to be used.
But the list of activities in Figure 19 can be seen as the list of important top-level
activities at the customers side that should be performed, without deciding when, how

6 The number references the position in the original document.

50 (123) The Customer-Developer Interface - Appendix A

often and in what order. Suppose the development was to follow a waterfall process
model, then Figure 20 is a fragmentarily illustration of the high level interface
according to SA-CMM describing high-level activities at the customer side mostly
aiming for controlling the process and product at the developers side.

Figure 20: Process model perspective of the customer-developer interface according to
Acquisition CMM

DeveloperCustomer

System

Tracing

Specification

Acceptance

Contract on cost, time,
functionality and quality

Transition to
support

(deployment)

Evaluation of
process

Build support
organisation

System

Development
plan

Design

Reviewing

Evaluation of
product

Modification of
process

Modification of
product

The Customer-Developer Interface 51 (123)

4.1.4 Actors and stakeholders of SA-CMM
The actors and their roles that can be identified in the top-level activities of Figure 19
is, in short, listed in Figure 21 below.
Actor Roll
Customer
Project Team

Maintains bi-directional traceabilty between requirements and software product.
Reviews developer’s software plan.
Communicates with the developer.
Assesses developer performance.
Adjust the developer’s development process.
Adjust the software product.

Customer
Support

Receives responsibility for the software on deployment

Customer End
User

Participates in evaluation of evolving software product and services

Developer Plans the software development.
Maintains bi-directional tractability between requirements and software product.
Develops the software product.
Transfer the product to the customer

Figure 21: Actors and their roles according to SA-CMM

4.1.5 Messages of SA-CMM
Messages that can be outlined in the condensed description of Figure 19 are listed in
Figure 22 below.
Product information Source To When Media
Contract Customer

Developer
Requirements Customer Developer
Software product Developer Customer
Acceptance Customer Developer

Process information:
Contract Customer

Developer
Project plan Developer Customer

Project audits Customer
Developer

--- ---

Figure 22: Messages according to SA-CMM

Since CMM says little of how things are to be done, it is consequent that the model
has no suggestions regarding timing and media for messages

4.1.6 Analysis and Summary
The choice of describing the SA-CMM instead of other CMMs automatically puts the
focus to the responsibilities of the customer. The process model perspective revealed
some customer high-level activities relevant for the customer-developer interface. In
the SA-CMM the main customer responsibility is to monitor and control the activities
and deliverables of the developer in order to get confidence in the software under
development. The developer develops the system and serves the customer with
product and process information.

52 (123) The Customer-Developer Interface - Appendix A

An objective for the customer-developer interface highlighted by SA-CMM is the
importance of the customer getting confidence in the development process and in the
software product. The method to achieve the objective is to monitor and control the
process and product. If the capability to perform the monitoring and control is low,
then the developer’s responsibility to serve in these matters is increased in
correspondence to that.

Regarding the actors and the messages, the theoretical perspectives helped to capture
a picture of the customer-developer interface, but on a very high level.

4.2 The Customer-Developer Interface According to SEI Team Risk
Management

From the descriptions of SA-CMM it might be close to that SEI only focus the
responsibility of the acquiring part. This is not true. In order to deal with the
problems of the communication between customer and developer SEI has introduced
the concept of Team Risk Management. In short it recommends an introduction of a
joint forum for risk management. This is in fact a new organisation that can be said to
be The Interface. The concept is best introduced by two quotations:

“Team Risk Management is a new paradigm for managing programs or
projects by developing a shared product vision, focused on results, and using
the principles and tools of risk management to cooperatively manage risks
and opportunities.“ [CMU/SEI-94-SR-5, p 1]

Team Risk Management is an extension of basic Risk Management and to fully
understand the Team Risk Management one has to be familiar with SEI’s basic Risk
Management. The SEI definition of Risk Management:

“Risk Management sets forth a discipline and environment of proactive
decisions and actions to
1. assess continuously what can go wrong (risks).
2. determine what risks are important to deal with.
3. implement strategies to deal with those risks.” [CMU/SEI-94-SR-5, p 6]

Traditionally Risk Management is an activity that is initiated during project planning
and then sustained and evolved during the project. The objective is to identify risks
and then, in best case, avoid them or otherwise reduce the negative impact the risks
might have on the process or on the product. The concept of Team Risk Management
extends the Risk Management by moving the responsibility from the project
manager at the developer’s side to a team consisting of representatives from both the
customer and developer organisations. Even if the focus of this joint forum is on
risks, the concept has several benefits. First, many of the risks that will come up on
the risk management agenda will probably deal with problems related to the
customer-developer interface, leading to prevention actions. Second, working
together will bring about a better understanding of the application domain respective

The Customer-Developer Interface 53 (123)

restrictions enforced by the nature of software development. Third, the Team Risk
Management activity has a chance to bring about a shared product vision between
the parties. Both organisations will synchronise the image of the product under
development and become better to make good decisions.

4.2.1 Process Model of Team Risk Management
Figure 23 illustrates the basic activities of Team Risk Management. The shadowed
boxes illustrate high level activities. The inner white boxes illustrate activities of risk
management at a lower level. Team Risk Management does not deal directly with the
basic engineering aspects of the development process, e. g. design and test as
described in Section 3.1. It can rather be described as an activity focused on
supporting the continuos planning of the engineering activities.

Figure 23: High level activities of SEI Team Risk Management [CMU/SEI-94-SR-5, p 13]

4.2.2 Actors in Team Risk Management
The concept of Team Risk Management deals with the actor categories:
• Customer
• Developer
• The team: the customer and developer together.

SEI Risk Management

Track outcome

Plan actions

Analyse risk

Identify risks

Initiate

Build team

DeveloperCustomer

Control

54 (123) The Customer-Developer Interface - Appendix A

4.2.3 Messages in Team Risk Management
From studying [CMU/SEI-94-SR-5] it is possible to extract some messages, which
are listed in Figure 24 below. Since the risk management activities are performed in
the joint organisation it is hard to define a source and a receiver for the messages.

Product information Source To When Media
List of risk regarding product Identification

Process information:
Team Risk Management
Initiative

At start up

List of risk regarding process Identification

Risk mitigation plans Analyse

Action plans Plan

Meeting
Team review

Customer
Developer

Figure 24: Messages in Team Risk Management

4.2.4 Analysis and Summary
The process model perspective of Team Risk Management introduced interface
related high level activities that was not mentioned among the engineering activities
in Section 3.1 – the joint Risk Management. A new concept introduced by Team Risk
Management, mostly related to the process model perspective of the customer-
developer interface, was the bridging accomplished by introducing a new and
common organisation – the interface itself. This aspect was also captured by the
actor-perspective in the form of the joint organisation.

The message-perspective introduced a lot of documents regarding Risk Management.
One objective of Team Risk Management is to facilitate opportunities for the
customer and the developer to better understand the problem domain of the other part.
During the process of achieving that, the list of risks that relate to the product will
grow continuously, describing the most critical aspects of the development. At the
same time there will be a continuos transformation of domain knowledge from the
customer side to the developer and from the developer to the customer. This is aspect
illustrated by the list of risks in Figure 22.

One of the key objectives of Team Risk Management is to generate a shared vision or
a team spirit. This objective was not captured by any of the three perspectives.

4.3 The Gap-model of Service Quality
Software engineering is not the only discipline dealing with customer-developer
communication. As an instrument in the theory of service marketing, the gaps-model
of service quality [Zeithamal 1996] illustrates how a supplier can minimise the gap
between the customers’ expectations of a service and the customer’s and perceptions
of the received service:

The Customer-Developer Interface 55 (123)

“In a perfect world, expectations and perceptions would be identical:
customers would perceive that they receive what they thought they would and
should. In practice these concepts are often, even usually, separated by some
distance. Broadly it is the goal of services marketing to bridge this
distance…” [Zeithamal 1996, p 38]

Adapted to the word of software development the Gaps-model aims at reducing the
distance between the customer’s (initial) expectations or outline vision of a software
product and the customer’s image of the result. One reason for why the Gaps-model
can be interesting from a perspective of software development is that it can be said to
deal with the fundamental problem of transfer and transformation of knowledge from
the application domain to the software engineering domain. The object of the model
is the conceptual gap. The objective is to reduce and even eliminate that gap. The
strategy is to break it into manageable sections that can be dealt with one by one.

Remark! The conceptual parallelisms between marketing and providing of services
on one hand and creative development of software on the other hand are not total - but
big enough to motivate the spending of time and printing ink on the model.

This section will briefly describe the Gaps-model and how it may affect the
customer-developer interface. The basic axiom for the Gaps-model is that the
objective for at service provider is to minimise the gap between customer’s
expectations of a service and the same customer’s perception of the perceived service
- in other words to reduce gap 5 of Figure 25 below.

56 (123) The Customer-Developer Interface - Appendix A

Figure 25: gaps model of service quality [Zeithamal96, p 48]

The strategy for closing the gap at the customer’s side lies in closing four different
gaps at the company’s side (gap 1-4 of Figure 25). Each of these gaps has some
certain characteristics, some likely explanations and can be handled by some
recommended actions in order to shrink the gap.
Below the gaps are described translated into a software development terminology:

Gap 1 - expected service vs. company perception
Gap 1 describes the difference between the customer expectations of what is to be
developed and how the developer perceives these expectations. Possible reasons for
the gap may be that there is no direct interaction with the customer, the developer is
for some reason unwilling to ask for the requirements or incapable of addressing
them.

The main action recommended when marketing services is to establish e. g. market
surveys, complaint systems or customer panels. Translated to a software engineering
activity this could be translated to structured requirement elicitation through methods
like interviews, user observation, focus groups etc.

Gap 2 - Company perception of expectation vs. Service design and standards
Gap 2 describes the problems that might occur if the developer is fully aware of the
customer expectations but unable to meet them due to organisational practices,
routines or standards that obstruct the adoption of the system under development to
the customer expectations. An example in software engineering may be eagerness to

Expected
Service

GAP 5

GAP 3

GAP 2

GAP 4

COMPANY

GAP 1

Perceived
Service

Company perceptions
of consumer
expectations

Customer-driven
service design and

standards

Service Delivery
External

communications to
customers

CUSTOMER

The Customer-Developer Interface 57 (123)

re-use components in favour of flexible adoption. A less concrete reason for the
deviation may be as simple as lack of commitment in the developing organisation.

To reduce and eliminate gap 2, Zeithamal et. al., among other things, recommend the
use of barometers and surveys of customer satisfaction. From a software engineering
perspective this could be translated to applying usability engineering methodology
and evaluate usability metrics.

Gap 3: Service design and standards vs. Service delivery
Gap 3 is the gap that occurs if the developer is fully aware of the customer
expectations and at the same time capable of developing and delivering the right
product but yet fails to do so – mainly due to human resource factors. According to
the Gaps-model the reasons for this failure is to be found in factors like:

• The involved personnel does not understand their role
• The employees feel in conflict between customers and the developer

management
• Inadequate technology
• Lack of empowerment

In software development gap 3 is likely to be widened by if for instance the developer
organisation forces a project to follow inadequate development processes or to use a
certain CASE-tools. Another problem that could expand gap 3 is a classic example
where development process or product metrics stimulates writing a lot of code lines
in favour of building compact and maintainable systems.

Actions in order to reduce gap 3 could for instance be to empower the development
team in order to aim for the customer needs rather than to satisfy developer-internal
policies.

Gap 4: Service Delivery vs. External customer communication
Gap 4 is the gap between what the developer says it delivers and what the customer
believes it will get, with focus on the saying part. If the developer initially promises
features that will not be fulfilled, the gap 4 will be widened. Another aspect that
might open the gap is when the developer fails to show or convince the customer that
the initial promises actually have been fulfilled.

Recommended action is to try to influence the customers’ image of the system before
development, during development as well as on deployment

58 (123) The Customer-Developer Interface - Appendix A

4.3.1 Process Models of the Gaps-model
Expressed in the process model syntax, the Gaps-model in Figure 25 above, in short,
will look like Figure 26 below.

Figure 26: Process model of the Gaps-model

The Gaps-model has very little and, at the same time, very much to say about top-
level activities of software development and how to arrange the activities over time.
Problems and recommended actions introduced by gap 1 to 3 are rather to be used as
a qualitative input when designing the high-level engineering activities independent
of whether the project follows a waterfall or an incremental development process.

4.3.2 Actors and Stakeholders of the Gaps-model
The Gaps-model does not fit the actor and stakeholder perspectives too well either. At
a high level there is the customer and the developer. At a low level there is an
enormous amount of different actors and players overlapping each other in different
organisations. Some of them are more essential and some of them are more peripheral
to the activities of software development.

DeveloperCustomer

Closing Gap 1:
Find out expectations

System

Needs,
requirements
expectations

Closing Gap 2:
Design a development
process that makes it
possible to meet the

expectations

Closing Gap 3:
Follow and monitor the
designed development

process while developing
and delivering the system

Closing Gap 4:
Explain the system to the

customer

Perceive

Evaluate
differences

The Customer-Developer Interface 59 (123)

4.3.3 Messages of the Gaps-model
Both the Figure 25 and Figure 26 indicate three high-level messages listed in Figure
27 below.

Product information Source To When Media
Needs, requirements
expectations

Customer Developer

Developed system Developer Customer
System explanation Developer Customer

Process information:

--- ---

Figure 27: Messages in the Gaps-model

4.3.4 Analysis and Summary
The process model-perspective introduced a new perspective of the objective of the
traditional high level engineering activities – where to look for the conceptual gap
between the customer expectations and the delivered system. The process model
perspective also introduced a new high-level activity for the later part of the
development process. In order to facilitate the customer’s ability to compare initial
expectations with the delivered product, the system has to be explained to the
customer. This explanation should be expressed in the same form and language as the
customer’s initial vision. Compared to the development activities of Section 3.1, the
activities of the Gaps-model are best regarded at some meta-level activity or as low-
level activities in the project planning process. Another target activity that ought to be
influenced by the Gaps-model is the developer’s aspects of validation.

From the marketing domain it is to learn the need for specialist competence in how to
understand the customer expectations and how to learn the business rules of the
application domain. Another learning is that it could be a good idea to put some
energy into telling the customer what he/she actually has acquired, in a form and
language that matches the form and language of the initial needs, requirements and
expectations.

The actor perspective of the Gaps-model did not prove to be very useful but the
message perspective helped in finding a new and very useful message – the system
explanation.

One thing the three perspectives could not capture was the conceptual gap itself, but
the Gaps-model indicates a possible way to break down the gap in manageable parts.

The Gaps-model carries a problem in its assumption that the requirements, needs and
expectations of the customer are static throughout the entire development. That
assumption will probably never be fulfilled in a software project with an
inexperienced ad-hoc customer.

60 (123) The Customer-Developer Interface - Appendix A

4.4 The Rational Unified Process – RUP
The Rational Unified Process is a defined and detailed software development process
available for customers of Rational Software Corporation7.

“The goal of the process is to produce, within a predictable schedule and budget,
high-quality software that meets the needs of its users.” [Kruchten 1999, p ix] and in
that sense the RUP does not differ much from other best practices. Worth noticing is
the mentioning of the needs of the end users. RUP is truly aware of the possible
complications on the customer side of the development processes.

The Rational Unified Process deals with the customer-developer interface in several
different ways. In order to describe these, the basic structure of the process model
and some terminology has to be introduced. The analysis in this section is based on
[Kruchten 99] and the RUP version RUP2000, which is a 50 megabyte 2000 file large
web-package of interrelated UML8-charts, specifications, definitions etc.

RUP can be described as a mix of waterfall and iterative development. The process is
iterative in the short run. But since the emphasised activities of each iteration
gradually changes through different phases in the long run of the development
process it also has some waterfall characteristics. The iterative approach is very
central to RUP.

The process is designed to be used together with advanced CASE tools. Therefore
another core concept of the process model – the artefacts – are made possible. The
artefacts constitute the software to be developed and its surrounding elements like for
instance use-cases, descriptions of actors, architecture etc. From the artefact it is
possible to extract reports. Reports are momentary images of the artefact that for
instance could be used for letting the customer validate a set of specifications. The
artefacts are objects for configuration and change management. The reports are not.

7 “Rational Software Corporation (Nasdaq: RATL), the e-development company, helps
organisations develop and deploy software for e-business, infrastructure, devices and
embedded systems through a combination of tools, services and software engineering best
practices. “[Rational]

8 UML: Unified Modelling Language [Stevens 2000]

The Customer-Developer Interface 61 (123)

Phases

Workflows Inception Elaboration Construction Transition

Business modelling

Requirements

Analysis and Design

Implementation

TestPr
o

c
e

ss
 W

o
rk

flo
w

s

Deployment

Configuration and Change
Management

Project Management

Su
p

p
o

rti
ng

W
o

rk
flo

w
s

Environment

Preliminary
iteration(s)

Iter.
1

Iter.
#2

Iter.
#n

Iter.
#n+1

Iter.
#n+1

Iter.
#m

Iter.
#m+1

Iterations

Figure 28: Rational Unified Process - Phases, Iterations and core workflows [Kruchten 1999, p 45]

Figure 28 above illustrates some basic terminology of the RUP. Each of the iterations
consists of some or all of totally nine different workflows. The involved actors,
concrete activities and the dependencies between the activities describe the
workflows. The activities are described and argued for on very low level. There are
checklists, vocabularies, explanations and hints about risks and their consequences. In
other words who should do what, when and how? Each iteration, except from the
first, is supposed to end up with a product that to some extent is executable and
thereby usable for validation.

The goal of the inception phase is to specify the objectives of the project. The goal of
the elaboration phase is to specify architecture and high level design. During the
construction phase most of the software actually is constructed while the transition
phase is dominated by deployment. In Figure 28 above, the shift in emphasis
throughout the project, is illustrated by the shaded area, corresponding to each
workflow. Between each of the four phases there is a formal milestone.

As indicated before, in RUP the interface between the customer and developer is
covered in several different ways. And to get an answer to how RUP treats the
interface, one has to look in several different parts of the process:
• The workflows:

- Business modelling
- Requirement
- Deployment

Time

62 (123) The Customer-Developer Interface - Appendix A

• The concept of iterations itself
• The UML-syntax itself
These aspects will be dealt with in the following sections.

4.4.1 Process Model of the Rational Unified Process
From the perspective of the waterfall-evolutionary axis pictured in Figure 12, RUP
can be described as a hybrid. The process is iterative in a short perspective. But since
the emphasised activities of each iteration changes gradually through different phases
in the long run of the development project, the process also has some waterfall
characteristics.

Since all nine workflows, at least to some extent, are present in each iteration, the
concept of iterative development means that there will be several formalised ways of
communication between the customer and developer. In fact, one of the key
arguments for the RUP is that the iterative approach bears the solutions to several
customer related problems:

“1. Serious misunderstandings are made evident early in the life cycle,
when it’s possible to react to them.

2. This approach enables and encourages user feedback so as to elicit the
system’s real requirements.

…
8. Stakeholders in the project can be given concrete evidence of the

project’s status throughout the life cycle.” [Kruchten 99, p 8]

The model prescribes, to a quite detailed level, when some instance of the customer is
to be contacted on which issue and what to do with the answer. Workflows that
involves the customer to a high degree are the following three:

• The workflow: business modelling9 is primarily oriented towards creating and
validating the developer’s side understanding of the rules, actors, activities and
product flows of the customer business domain.

• In the workflow: requirements, actual requirements are elicited from end users as
input to use-cases etc.

• The workflow: deployment deals with the introduction of the developed product at
the customer site and thereby also with validation of functionality and quality.

Figure 29 below shows one iteration of the nine core workflows as top-level activities
and which of the workflows that involves communication with the customer.

9 The syntax means that business modelling is an instance of a workflow.

The Customer-Developer Interface 63 (123)

Figure 29: Process model of Rational Unified Process

Business modelling, requirements and deployment are the three cor workflows that
includes interaction with the customer. Activities in the supporting workflows in the
right box has only indirect contact to the customers

4.4.2 Actors and Stakeholders in the Rational Unified Process
In the activity charts of the process flows Business modelling, Requirements and
Deployment the customer is mentioned as an actor involved in the activity.
In some of these activity charts the actor: customer are mentioned, in some others the
actor: stakeholder and in yet other the actor: end user are mentioned. The actor:
stakeholder is specified in Figure 30 below.

Actor: Stakeholder
A stakeholder is defined as anyone who is materially affected by the outcome of the project.

Effectively solving any complex problem involves satisfying the needs of a diverse group of
stakeholders. Stakeholders will typically have different perspectives on the problem, and different
needs that must be addressed by the solution. Many stakeholders are users of the system. Many
stakeholders are only indirect users of the system or are affected only by the business outcomes
that the system influences. Many are economic buyers or champions of the system. An
understanding of who the stakeholders are, and their particular needs, is a key element in
developing an effective solution.
Examples of stakeholders:
• Customer (or Customer representative)
• User (or User representative)
• Investor
• Shareholder
• Production manager
• Buyer
• Designer
• Tester
• Documentation writer, etc.

Figure 30: Description of Actor: Stakeholder according to RUP2000

DeveloperCustomer

Business
modelling

Increment

Needs,
requirements
expectations

Requirements elicitation and
specification (use-cases)

Analysis and Design
Implementation

Test

Application
domain

Configuration and
Change Management

Management

Environment

Deployment

64 (123) The Customer-Developer Interface - Appendix A

In the recommendations, best practices and checklists connected to these workflows,
the stakeholders and how to treat them and their needs is discussed and described on
a very detailed level. Figure 31 below quotes the formal RUP definition of two actors
on the customer side and the superclass of all the actors at the developer’s side – the
worker.

customer
A person or organisation, internal or external to the producing organisation, who takes financial
responsibility for the system. In a large system this may not be the end user. The customer is the
ultimate recipient of the developed product and its artefacts. See also stakeholder.

business worker
A business worker represents a role or set of roles in the business. A business worker interacts with
other business workers and manipulates business entities while participating in business use-case
realizations.

worker
A definition of the behaviour and responsibilities of an individual, or a set of individuals working
together as a team, within the context of a software engineering organisation. The worker
represents a role played by individuals on a project, and defines how they carry out work.

Figure 31: Extract from RUP2000 dictionary regarding actor terminology

The business worker is also regarded as an instance of the worker. In RUP 2000 there
are listed 31 different workers, most of them at the developers side. Each of these
workers has a specific role and responsibilities in the development process. One
person can act as several workers. From the name of workers it is quite easy to
roughly determine their high-level responsibilities. Figure 32 below lists the actors in
the process. The actors at the developer’s side in the figure that is marked with bold
text are likely to be in direct contact with the customer actors.

Customer
actors Analysts Developers Testers Managers

Additional
workers

Customer -or
Customer
representative

User - or User
representative

Investor

Shareholder

Production
manager

Buyer

Business-
Process Analyst

Business
designer

Business Model
Reviewer

Requirements
Reviewer

System Analyst

Use-Case
Specifier

User-Interface
Designer

Architect

Architecture
Reviewer

Code Reviewer

Database
Designer

Design
Reviewer

Designer

Designer

Integrator

Tester

Test Designer

Change
Control
Manager

Configuration
Manager

Deployment
Manager

Process
Engineer

Project
Manager

Project
Reviewer

Course
Developer

Graphic Artist

System
Administrator

Technical Writer

Tool Specialist

Figure 32: Actors in RUP 2000

The Customer-Developer Interface 65 (123)

4.4.3 Messages in the Rational Unified Procesess
Features that can be considered to be messages are the reports that are generated as
momentary extracts from the artefacts. Many of these reports are used in order to
describe and validate both the development process and the product under
development. The purpose is to provide a base for the evolving agreement with the
customer of what is to be developed. Thereby many of these reports must be regarded
as messages for the customer-developer interface. Figure 33 lists the most important
reports in RUP 2000. All the reports of the business modelling set and the
requirements set is likely to be communicated to the customer and therefor
highlighted in the figure.

Business Modelling Set Requirements Set Analysis & Design Set Test Set
Business Use-Case
Model Survey

Business Use-Case

Business Object
Model Survey

Business Use-Case
Model Realisation

Business Worker

Business Entity

Use-Case Model
Survey

Use Case

Actor

Use-Case Storyboard

Design
Package/Subsystem

Design-Model Survey

Use-Case Realisation

Class

Test Survey

Figure 33: Reports in RUP 2000

The reports are not the only defined messages or message-related phenomena in the
RUP. Figure 34 describes some of the other. These are defined in a way that makes
them possible to treat in the configuration management system of the process.

change request (CR)
A general term for any request from a stakeholder to change an artefact or process. Documented
in the Change Request is information on the origin and impact of the current problem, the
proposed solution, and its cost. See also enhancement request, defect.

enhancement request
A type of stakeholder request that specifies a new feature or functionality of the system. See also
change request.

stakeholder need
The business or operational problem (opportunity) that must be fulfilled in order to justify purchase
or use.

stakeholder request
A request of any type — for example, Change Request, enhancement request, request for a
requirement change, defect — from a stakeholder.

Figure 34: Extract from RUP2000 dictionary regarding messages

The low-level activity Requirements Workshop can be regarded as yet another aspect
of messages. The main objectives of the Requirements Workshop is:
• To make the project team meet the stakeholders of the project.

66 (123) The Customer-Developer Interface - Appendix A

• To gather a comprehensive "wish list" from stakeholders of the project.
• To prioritise the collected requirements based on stakeholders attending the

workshop.

4.4.4 Analysis and Summary
To what extent is the RUP approach to address the customer-developer interface
possible to capture in the three theoretical perspectives? The process perspective and
the actor perspective are very easy to use when describing the customer-developer
interface according to RUP. The RUP model is indeed fully aware of the
communicative benefits of an iterative development process. A lot of interaction
points towards the customer are defined. The main actors are described and the model
even offers low-level instructions in how to find and analyse the actors, their roles
and responsibilities.

A lot of messages were also possible to find. At a low level of the RUP there are also
a lot of what, when and how regarding messages in the customer-developer interface.

The mapping between the process and the three theoretical perspectives seems to be
good10.

One aspect of RUP that partly can be related to messages is the recommendation of
using the Unified Modelling Language (UML) when modelling, designing and
communicating the system. If the advocates of UML are right, the using of UML as a
common language for messages between the customer and the developer during the
development project, will mitigate problems corresponding to deficiencies in
customer knowledge in the developer’s domain and the developer’s knowledge of the
customer’s business domain. The use of UML as a strategy for reducing the
conceptual gap between application domain and the developer’s engineering domain
was not captured by the theoretical perspectives.

4.5 Extreme Programming – XP
Extreme Programming is a young development process model that has gained a lot of
attention in the software development society. The first chapter of the originator Kent
Beck’s book “Extreme Programming explained” is introduced by the statement:

“Software fails to deliver, and fails to deliver value. This failure has huge
economic and human impact. We need to find a new way to develop software”
[Beck 1999, p 3]

That is what Extreme Programming (XP) claims to have done.

10 For a process this complete and all embracing it is worth noticing that in the support
workflow: environment there is an actor: process engineer with the responsibility to design and
develop the specific process for the software development project. It is interesting to notice
that in none-of those workflow details the stakeholders are mentioned. RUP does not seem to
have a plan for how to design the customer-developer interface – perhaps a challenge for
the future.

The Customer-Developer Interface 67 (123)

The stereotyped picture of the XP process says that if everything is:
• tested every day,
• the system is expressed in pure code
• and there is a full time customer in the development room,
then will the developed software be delivered:
• with desired functionality,
• on scheduled time,
• within budget,
• to an excellent quality.

XP is more sophisticated than that. Figure 35 gives a view of key features of the XP
process and how they support each other.

On-site
customer

Collective
ownership

Continous
integration

Coding
standards

Short
releasesTesting

Pair
programming

Simple
design

Refactoring

Metaphor

40 hour
week

Planning
game

Figure 35: Key features of Extreme Programming and their supportive interconnections11.[Beck
1999, p 70]

Those features that have direct connections to the customer-developer interface are
highlighted in the figure and will be discussed here.
• On site-customer gives the development team continuos access to the customer

competence and possibility to let the customer make fast decisions and priorities.
• The planning game is a continuously running planning activity where the

customer prioritises among features for implementation.
• Continuous customer-driven testing gives the customer confidence in the software

under development.

11 “Refactoring – Programmers restructure the system without changing its behaviour to remove
duplication, improve communication, simplify or add flexibility.” [Beck 1999, p 54]

Collective ownership address collectively within the group of programmers.

68 (123) The Customer-Developer Interface - Appendix A

• The term metaphor stands for the need of common language that both the
developers and the customer has to use in order to understand each other.

Two other features related to the customer-developer interface are:
• The customer writes stories, which can be described as the XP-variant of the use-

cases.
• Splitting of the power and responsibility between the customer and developer.

The customer decides on timing of releases, makes priorities among features (the
stories) and decides the exact scope of each feature. The developer has to provide
information about technical and schedule consequences of various features and
choices.

4.5.1 Process Model of the Extreme Programming
A typical development process of an XP-project can be divided into different phases
[Beck 1999, chapter 21]. These phases can be regarded as high-level activities. The
phases and their contents are listed in XP terminology below:
• Exploration – Gaining confidence in the possibility to reach the project

objectives, trying out tools and technologies, experimenting with architectural
ideas etc. The customer practising writing stories.

• Planning – Planning the first development cycle, the customer prioritises among
the stories, sets date for the first release.

• Iterations – The customer writes functional tests together with the Tester. The
programmers design, implement, and integrate the software based on the
customer written stories chosen in the Planning Game. Perform a planning game
for the next iteration.

• Productionising – Deployment of the first release in the target environment.
• Maintenance – Keep the system running in the target environment and at the

same time implementing new features and continuously test and refactor the
system.

• Death – Project termination. Document the system.

The Customer-Developer Interface 69 (123)

Figure 36 below illustrates how XP high-level activities relate to each other and to the
customer-developer interface. In order to illustrate that the customer is a part of the
project team, all activities are gathered in one box.

Figure 36: Process model of a possible XP-project

4.5.2 Actors and Stakeholders in Extreme Programming
The description of XP [Beck 1999, chapter 22] includes a listing of the actors in an
XP project.
Actor Roll
Customer Provides domain knowledge during the project by writing stories and makes decisions and

priorities among features.
Designs functional tests.

Programmer Designs. Implements. Integrates. Tests. Refactors the system.
Informs the customer on technical aspects of the stories. Teaches the customer to write
stories to ground priorities.

Tester Helps the customer in writing tests.
Tracker Monitors, evaluates and evolves the development process .
Coach Guides and inspire the development team.
Consultant Technical expert on matters that the development team does not master.
Big Boss Monitors and defends the project. Terminates the project if it fails.

Figure 37: Actors and stakeholders in Extreme Programming

Developer

First increment of
running system

Improving
 System

Running system

System
documentation

Customer

Exploration

Planning

First iteration

Writing stories

Productionising

Writing tests

Planning

Maintenance

Writing stories

Writing tests

Death

70 (123) The Customer-Developer Interface - Appendix A

4.5.3 Messages in Extreme Programming
If it is easy to picture the high-level process model and to identify the actors of XP it
is harder to identify specific messages. One of the most central concepts of XP is the
continuos oral communication between the on-site customer and the programmers
regarding visions, requirements, clarifications, technical complications etc. The
stories describing the scope of the system are messages from the customer to the
developer. Preferable everything else within the process is expressed in code or in
executable software. The test cases that the customer designs can be regarded as
messages in a validation process. Figure 38 below lists the main messages identified
in XP.

Product information Source Receiver When Media
Continuos project
communication

Customer
Developer Oral

Stories Customer Developer Structured textual
document

Estimations on time and
complexity etc

Developer Customer

Decisions, priorities etc Customer Developer
Tests Customer Developer Code
Running System Developer Customer Executable

software
System documentation Developer Customer

Process information:
Development plan Customer

Developer
Written document

Figure 38: Messages in XP

4.5.4 Analysis and Summary
XP could comfortably be captured by the process model perspective and the actor and
stakeholder perspective. But the way to find out the main messages communicated
between the customer and developer was not straightforward.

XP did not introduce any new high-level activities. But it did introduce some new
features of the high-level activities and of the roles of the stakeholders that affects the
customer-developer interface. Both of the new features deal with strategies for
reducing conceptual gaps.

First, the concept of letting the customer design tests reduces one of the gaps
described in the Gaps-model (see Section 4.3) – the difference between what the
customer-perceived need and the customer-perceived result. By letting the customer
design and own the functional tests, the customer can be said to continuously monitor
and calibrate the gap between the need and the result. Either by modifying the need
towards what may be implemented or by affecting what is implemented in the
direction of the need.

Second, the concept of bringing the customer into the development team is an attempt
to reduce conceptual gaps between the customer and the developer side regarding the

The Customer-Developer Interface 71 (123)

application domain and the software development domain. A continuos fraternisation
and the short communication links help both parties to better understand each other’s
expertise.

But the on-site customer also introduces a new problem. XP says that it is important
that the customer is capable of representing the end-user and is empowered by the
customer organisation to make fast decisions throughout the project. If the
stakeholders or the goals of the project are in conflict or if the application domain is
very large, complex and dynamic, it is very hard to find such a person. Add to that the
fact that living with the programmers for a long period of time probably will push the
loyalty of the customer representative in the direction of the developer organisation.

Hence there is a risk that the customer representative becomes a kind of hostage for
the developer organisation, successively moving the customer-developer interface to
a point between the customer representative and the organisation of the customer
representative. In the short run this could be good for the developer that can claim
that the customer is satisfied, but sad for the customer organisation that might get the
wrong system.

The metaphor concept could to some extent be mentioned in the same context as the
conceptual gap and the RUP UML since the basic idea of the metaphor is to establish
a common language between the customer and the development team. The theoretical
perspectives did not capture this aspect.

4.6 Dynamic System Development Method – DSDM
The origin of Dynamic System Development Method (DSDM) is a consortium
founded and managed by large software development companies mainly focused on
in-house development of business applications. The in-house focus means that the
terms for the parties in the process model often are the user and the IT-department. In
this report these terms often are translated to customer and developer respectively, in
order to facilitate the reading and analysis. The information about DSDM in this
section is based on the book “DSDM Dynamic Systems Development Method”, by
Jennifer Stapleton [Stapleton 1997]. In the book she places a warning for using
DSDM in contractual development:

“Many external suppliers are using DSDM: it can work but there has to be
trust on both sides…” [Stapleton 1997, p17].

Despite this warning DSDM has features that are suitable for the analysis of the
customer-developer interface.
Just as in the case with RUP, the details of DSDM are only available to paying
members. The book [Stapleton 1997] often refers to a manual. The contents of that
manual is unfortunately unavailable for this study.

72 (123) The Customer-Developer Interface - Appendix A

The nine underlying principles of DSDM are listed in Figure 39 below.

Underlying principles of DSDM
1. Active user involvement is imperative
2. DSDM teams must be empowered to make decisions
3. The focus is on frequent delivery of products
4. Fitness for business purposes is the essential criterion for acceptance of deliverables
5. Iterative and incremental development is necessary to converge on a accurate business

solution
6. All changes during development are reversible
7. Requirements are baselined at a high level
8. Testing is integrated throughout the lifecycle
9. A collaborative and co-operative approach between all stakeholders is essential

Figure 39: Nine underlying principles of DSDM [Stapleton 1997, p 11-18]

The basic ideas of DSDM have a lot in common with the ideas of XP. Incremental
flexible development, closeness to the customer and short release cycles should be
combined with continuos testing and an early first release covering those features that
has the highest value to the business of the customer. The project team, which
includes a customer representative, has to be empowered to make decisions.
Compared to XP, DSDM shows a higher dependency of, non-code documentation
and formal configuration management. It is for instance very important that all
changes to the software are reversible. DSDM also gives instructions and
recommendations about when to do what on a lower level than XP does. To that
extent DSDM has more in common with RUP than with XP.

4.6.1 Process Model of the DSDM
The process model of DSDM consists of five high-level phases briefly listed and
described below:
1. Feasibility study – The objective of the feasibility study is to, on a high level find

and explore the objectives of the project and to evaluate whether it is technically
possible to implement the system or not. Another purpose is to find out if DSDM
is the right methodology for the project.

2. The business study – The objective of the business study is to picture the
environment of the system and create the Business Area Definition document
including high-level object models, data flow diagrams and entity relation
diagrams.

3. Functional model iteration – In this phase the focus is set on refining the
business aspect of the system. The phase is iterative, both design documents and
software is created and evolved to a point where they, by reviews, prototypes or
tests, are determined to have reached the goals for the phase.

4. Design and build iteration – In this phase the system is refined and tested to the
quality necessary for deployment.

The Customer-Developer Interface 73 (123)

5. Implementation – During the implementation phase the system is deployed in
the target environment. System and user documentation is delivered and the end-
users are trained to use the system.

Phase three, four and five are iterative. It is also possible to move between the phases
e.g. to jump from phase five to phase three or to phase four.

Users outside the development team are engaged in requirements workshops and
when the development team needs special opinions. The main contribution of
application domain competence is accomplished by that the:

“… process involves a few knowledgeable users who support or participate in
the development team throughout the project. This is as opposed to the
traditional approach of sending out documents to a mass of users and calling in
a fairly large user population for acceptance testing at the end of the process.”
[Stapleton 1997, p 11]

Figure 40: Process model of the customer-developer interface according to DSDM

The relative frequent introduction of new increments to the user society guarantees
just as frequent validation of the implemented features. Figure 40 above illustrates

Running, growing
and improving

system
User guidelines

DeveloperCustomer

Feasibility study

Business Study

Design and Build Iteration
Create Design Prototype

Functional Model Iteration
Create functional prototype

Functional prototype

Implementation
User documentation

Review business

Design prototypeSystem
Usage

Feedback

74 (123) The Customer-Developer Interface - Appendix A

how top level activities of DSDM relate to each other and to the customer-developer
interface. In order to illustrate that the customer is a part of the project team all of the
team activities are gathered in one box.

4.6.2 Actors and Stakeholders of DSDM
In the DSDM book [Stapleton 1997, Section 5.3] the main actors and stakeholders are
described. They are listed in Figure 41 below.
Actor Role
Ambassador
User

Full time in the development team. Brings the knowledge from the user community into
the team. Informs the other end-users of what is happening inside the team

Visionary Participates in meetings to make sure that the team do not lose sight of the originate
business objectives

Advisor User Covers the ambassador user with disparate views of the system. On an ad hoc basis.
Executive
sponsor

The ultimate decision maker and purse holder

Senior
developers

Team or competence leader

Developers Designs. Implements. Tests….
Technical co-
ordinator

Architectural responsibility. Ensures technical consistency and the quality of the
configuration management

Figure 41: Actors and stakeholders in DSDM

4.6.3 Messages in DSDM
In the section of better communication the author [Stapleton 1997, p 51] argues that a
way to avoid mental barriers between users and developers is to reduce the amount of
documents ridden by IT-jargon in favour of direct oral communication. Another
concept recommended by DSDM is joint application design workshops, where end-
users and the development team work together in designing the system. These
workshops can be regarded as complementary when the capability of the Ambassador
User and the Advisor User is not sufficient to bridge the mental gaps. A third
message related feature introduced by DSDM is the concept of training the actors in
their role in the development process so all the parties better understand what to do,
when, how and why.
The fourth highlighted messages are the prototypes, used for validating that the
developer develops what business needs. Figure 42 lists these messages.

Product information Source To When Media
Continuos project
communication

Customer
Developer Always Oral

Prototypes Developer Customer --- ---
Design workshops Customer

Developer
On demand Workshop

Process information:
Development process
training

Customer
Developer

Initially

Figure 42: Some messages in DSDM

The Customer-Developer Interface 75 (123)

4.6.4 Analysis and Summary
Could the three theoretical perspectives capture the customer-developer interface of
DSDM? Since the model primarily is designed for in-house development there is,
strictly speaking, no customer-developer interface. Besides that restriction, all of
three theoretical perspectives could reveal relevant information about the customer-
developer interface as seen by DSDM.

The risks of putting the customer in the development team that was identified when
analysing XP (see Section 4.5.4 at page 70) are also present in DSDM. Perhaps the
using of formalised requirements workshops has the ability to mitigate the risks.

A new objective was identified: To mitigate problems caused partly by wrong or
unrealistic expectations of the development process and partly by participants not
understanding their role in the project. The concept of training the actors in how they
expect to behave in the development process was a practice introduced to reach the
new objective.

4.7 Summary and Evaluation of the Customer-Developer Interface
According to the Best Practices

The objectives of this section (4) were the following:
1. extract objectives and practices for the customer-developer interface from

established best practices of software development and
2. evaluate the usefulness of the three theoretical perspectives from Section 3.

All six best practices describe the software development process with different
objectives, with unique terminology and from different perspectives. Their
differences make it hard to compare the pictures of the customer-developer interface
they give. In order to make it possible to both overview and compare the objectives
and the practices from the best practices, the terminology has to be streamlined.
Figure 43 below is a summary of the objectives and practices of the six examined
best practices, sorted by objective, best practice and practice in descending order.

76 (123) The Customer-Developer Interface - Appendix A

Interface objective Best practice Practice Captured by
SA CMM Communicate process status to

customer Audits. Process reviews.
ProcessCustomer confidence in

the development process
RUP Workflow: deployment Process
SA-CMM Customer driven acceptance test Process
Gaps-model System explanation Message

Customer confidence in
the product

XP Customer driven testing Process
SA CMM Evaluation of product Process
RUP UML ---

Customer validation of
developer specification

DSDM Prototypes Message
SEI TRM Joint Organisation Actor
SEI TRM Risk Management Process
RUP Reports Message
RUP UML ---
XP Metaphor ---

Customer understanding
of the development
domain

DSDM Requirements workshops Message
Actor understanding of
roles

DSDM Process training Message

SA CMM Evaluation of product Process
RUP Incremental development Process
XP Incremental development Process

Flexible project
adjustment to evolving
requirements

DSDM Incremental development Process
SA CMM Customer driven process

modification
ProcessFlexibility of customer

developer interface
SEI TRM Joint Risk Management Process
SEI TRM Joint organisation Actor
Gaps-model Marketing surveys Process
RUP Workflow: business modelling Process
RUP Workflow: requirements Process
XP On-site Customer Actor
XP Metaphor ---
DSDM The business study Process
DSDM Design workshops Message

Developer understanding
of customer business
domain, needs
expectations and
requirements

DSDM User Ambassador Actor
SEI TRM Joint organisation Process
XP Continuos Communication Message

Team spirit

DSDM Continuos Communication Message
SEI TRM Joint organisation ---Common product vision
XP The metaphor Message

Close customer expec-
tation-perception-gap

Gaps-model Entire model ---

Figure 43: Summary of objectives and practices from the examined best practices

The left column of Figure 43 represents syntheses of qualitatively different objectives
for the customer-developer interface that was found in the six best practices. These
objectives partially overlap one another in terms of concept. The second column
represents best practices that have a practice for achieving the objective. The third
column represents a selection of practices for achieving the objective, formulated in
the terminology of the best practice. One and the same practice also appears as
methods for achieving several of the objectives. Together the objectives and the
practices form a comprehensive picture of objectives of a proper customer-developer
interface and how it could be accomplished.

The second objective of the section (4) was to evaluate the usefulness of the three
theoretical perspectives. One way to do that is to evaluate hits in Figure 43 above.
The right column shows which perspective that can be classified as primarily
responsible for capturing the practice. Since there is no indication of which of the

The Customer-Developer Interface 77 (123)

identified objectives for the interface is most important, there is no point in counting
the number of hits. It is enough to verify that all three perspectives are represented in
the right column and state that the perspectives are useful when describing, analysing
and comparing customer-developer interfaces.

The empty spaces in the column are more problematic. They represent those
objectives and practices that were identified out of sight from the theoretical
perspectives. A feature that was not directly identified by the perspectives was the
conceptual gap described in the Gaps-model and partly adressed by features as RUP:
UML and perhaps also by XP: metaphor.

There is no secure way of knowing if other relevant features were missed. But the
three theoretical perspectives helped to capture enough aspects of the customer-
developer interface to motivate the use of them in assessment and analysis of real life
projects.

A strategic methodological decision to choose exactly six best practices, not eight or
three was made early in this section (page 44). The objective “Actors understanding
their role” was identified in only one of the best practices (DSDM). That is also valid
for the objective “Reduce the conceptual gap between customer’s expectations and
perceptions”. The latter objective was found in the Gaps-model. All the other
objectives could be identified in more than one best practice. There is no reason to
believe that some of the objectives identified in the best practices should be regarded
as more relevant and important than others, but perhaps the nine objectives identified
in more than one best practice could be regarded as somehow stronger than the other
two objectives?

The Gaps-model is not primarily focused on software development. This protruding
best practice revealed an objective (the conceptual gap between customer
expectations and perceptions) that was not obvious in the other five best practices.
This finding contradicts the idea (presented on page 44) that the trade-off between the
chance of finding new features and the cost of investigating further best practices
landed on the six chosen best practises. The five best practices chosen from the
domain of software development where probable many enough; but investigations of
best practices outside the domain of software development could give further input to
the list of objectives and practices. On the other hand, to widen the circles too far
from the discipline of software engineering could obstruct the arguments for the
strategic decision for limiting the scientific perspectives (see Section 1.4.5). Perhaps
adding additional best practices would make the result harder to use for the thought of
target group (see Section 1.2)?

78 (123) The Customer-Developer Interface - Appendix A

5 Customer-Developer Interfaces in Real Life Projects
Recall from Section 2.3 at page 28 that there was a double objective of investigating
real life customer-developer interfaces:
1. to test the usability of the theoretical perspectives of Section 3 when assessing

and analysing real world customer-develop interfaces
2. to cross-verify that the problems and practices of the customer-developer

interface extracted from established best practices of software development has
correspondence in the real world projects.

In order to reach these objectives six customer-developer interfaces of real life
projects has been assessed and analysed based on the three theoretical perspectives.
The customer-developer interfaces are described in Appendix A. Before presenting
the results of the assessment and the analysis of the projects, the foundation for the
choice of projects and the method for assessment is presented.

5.1 Choice of Projects
At a first glance it would seem suitable to investigate projects with characteristics
from upper left corner of Figure 3: Customer and developer maturity matrix, since
those are the target projects of the study. Probable findings would be a lot of
interface-related problems and better or worse ad-hoc actions in order to mitigate the
problems. But the purpose of the study is not to verify if projects with ad-hoc
customer have problematic interfaces. The purpose is to find strategies to mitigate
problems of the customer-developer interface as listed in Figure 43. The next thought
is therefor to investigate successful projects from which it would be possible to learn
some usable practices. This second approach would on the other hand bring about the
risk of finding practices that are hard to apply on projects with ad-hoc customers. The
proper consequence of this reasoning is to both study inexperienced ad-hoc customers
and projects with experienced customers.

In order not to get stuck in corporate culture, terminology etc. the six projects were
chosen from two different development companies. Senior management persons in
each of the two companies with interest in and understanding of the possible
complications in customer relations, chose the projects. Their main objectives of
investing corporate time and energy in the study was to get feedback on how their
businesses behave in the customer-developer interface and to get methodological
inspiration from the result of the study.

5.2 Assessment Methods
The projects were assessed in the form of structured interviews. Interviewees were
the project managers at the developer organisation. Dates and interviewees for the
interviews are listed in Section 8.1 at page 89. Each interview lasted for

The Customer-Developer Interface 79 (123)

approximately one hour. The main areas for the interviews are directly reflected in
the structure of the project descriptions as in appendix A:

• Project scope and overall organisation
• Process model of the customer-interface
• Actors-and stakeholders on the customer and developer side respectively
• Messages communicated between the parties
• Experienced problems and chosen solutions to the problems.

In project A and project B the interviews were combined with written documentation
in the form of project specifications and project logs etc.

The interviews was documented in the same form and syntax as in Appendix A and
sent for validation to the interviewed project manager. The customers are made
anonymous. The terminology in the documentation is mostly based on the
terminology used by the interviewee. After a couple of days the document was
validated by a telephone walkthrough with the interviewee. After changes the
descriptions and analysis of the interfaces was put in baseline as in Appendix A.

5.3 The Projects
The objectives of this section were the following:
1. Answer the question: Could the three theoretical perspectives of Section 3 capture

the essence of the customer-developer interfaces in a way that make it possible to
compare them to each other and extract essential experiences from the projects?

2. If so, compile the experiences from the customer-developer interface in a way
that is possible to overview.

Answer to the first question: Yes, it was possible to capture essential aspects and
experiences of real life projects by using the three theoretical perspectives. The
argument for this is quality of the descriptions and analyses of the real life projects, as
shown in Appendix A.

Many features and characteristics of the interfaces were similar or almost identical
between many of the projects. Since there were only six projects in the study, it is
impossible to draw any generic conclusions; however these six projects have the
following features in common:
• Initial requirements are not detailed enough to develop a system from. The

customer requirements evolve throughout the project.
• The projects are iterative.
• It is hard to force the customer to communicate requirements, change requests

and problem reports in a structured form.

80 (123) The Customer-Developer Interface - Appendix A

Project
Application
domain Problems Characteristic or new features

A Recruitment
agency

• The initial Requirements
Workshop was badly
communicated to the
project.

• Customer business
processes developed in
parallel with the system.

• Organisational problems at
the customer site

• Unreliable customer
representative

• Limited end-user
involvement

• Project Communication Plan
• Attempt to formalise problem

reports and change requests

B Customer
internal
service
broker

• Waterfall model could not
be followed

• Written specifications etc
could not be validated

• Double communication
from co-contractor

• Specified increments
• External Head Project Manager

as co-ordination
• Direct contact between

developers and expert-users
• Live walkthroughs of specification

and prototypes
• Large acquisition organisation at

the customer side
C Web-shop for

system
components

• Initial problems regarding
structure of requirements

• Planned incremental
development

• Customer educable regarding
structure of requirements

• Formal specifications could be
validated by the technically
skilled customer

• Formal system reports
• End-user feedback via help-desk

and user training
D Web-shop for

consumer
product

• Undefined co-contractor
relations

• Empowered development team
• Limited financial constraints
• Team spirit

E Internet
Encyclopaed
ia

• Parallel and dependent
software development
project

• Incremental development
• Many co-contractors
• Many technical interfaces
• Usability consultant

F Internet
magazine

• Evolving requirements
• Payment delays

• Pilot study
• Process training
• Prototype walkthrough

Figure 44: Project scope, problems and characteristics

In order to get an overview of the six projects and their application domain; a
selection of problems and characteristics is listed in Figure 44 above. The selection of
problems and characteristics from the material in Appendix A is based on the
intention to extract qualitatively unique aspects. This means that problems or
characteristics listed on one project may also have been present in another project.
Some of the characteristics and features of the right column are solutions to the
problems in the problem-column. However it is not always possible to identify an
exact match between a problem and a solution - they just appear in the same projects.

The Customer-Developer Interface 81 (123)

5.4 Real World Projects vs. Best Practices
The purpose of this section is to compare the findings in the best practices with the
findings in the real life projects. At a high level it is easy to conclude that the
collected thinking of the best practices is reflected in the experience of the six
assessed projects. But the match is not perfect. Some problems identified in the real
life projects were addressed in the best practices in a rather straightforward way.
Figure 45 matches problems from Figure 44 with suggestions for practices from
Figure 43 (page 76) that address the same problem.

Problems Practice Best practices
The initial Requirements Workshop was
badly communicated to the project.

Artefact reports RUP

Customer business processes developed in
parallel with the system.

Incremental development RUP, XP, DSDM

Organisational problems on the customer
side

Unreliable customer representative ---
Workflow: business modelling
Workflow: requirements

RUPLimited end-user involvement

Marketing surveys Gaps-model
Waterfall model could not be followed Incremental development RUP, XP, DSDM
Written specifications etc could not be
validated

Prototyping DSDM

Double communication via co-contractor ---
Process training DSDMInitial problems regarding structure of

requirements UML RUP
Undefined co-contractor relations ---
Parallel and dependent software
development project

Evolving requirements Incremental development RUP, XP, DSDM
Payment delays ---

Figure 45: Problems in real life projects vs. practices from the best practices

The practices in Figure 43 address more problems than those identified in the six
projects. This does not mean that there is no need for those practices, just that the
problems they were intended to solve or mitigate were not identified as problems in
the six studied projects. If the study had covered more projects, perhaps more of the
practices had come to use.

A complication is that some of the problems identified in the real life projects were
not dealt with in the best practices. The empty spaces in Figure 45 represent real life
problems that have no clear match among the objectives and practices listed in Figure
43 (page 76). However, just because no exact match was found does not mean
projects cannot learn from using best practices. A quick and easy suggestion for
solving the equation is that a proper use of SEI Team Risk Management could have
identified the remaining problems, allowing the projects to take actions to avoid
them. The organisational problems at the customer site and the undefined co-
contractor relations could perhaps have been identified by applying RUP Business
Modelling or DSDM Business Analysis of the project actors and stakeholder
themselves, instead of just of the application domain. DSDM Process Training could

82 (123) The Customer-Developer Interface - Appendix A

perhaps force the ad-hoc customer to play an active part in monitoring and
controlling of the project and thereby enforce a better definition of the relations
between co-contractors.

Another reaction to the fact that some of the identified problems could not be
matched to a practice is to re-examine the six best practices of Section 4. If that is not
enough the search for new best practices could be re-started.

Assessment and analysis of the real world interfaces revealed new candidates for the
list of objectives for a proper customer-developer interface (Figure 43). One of them,
synthesising the three problems regarding co-contractor relations could be: Developer
understanding the project environment. The other new objective, concerning the
trustworthiness of the customer could be something like: Developer confidence in the
customer. It is possible to find ideas for solutions to these problems in the six real
world customer-developer interface of in Appendix A. But as indicated in the
beginning of Section 5.3, those practices are not validated in the same way as the
ones from the six best practices; hence it is better to let the new objectives go
unanswered.

A third reaction to the identification of new interface objectives is to highlight the
three theoretical perspectives. It was the use of the perspectives when analysing real
world cases that revealed new objectives for the customer-developer interface. This
further confirms the usability of the three theoretical perspectives when capturing,
describing and analysing customer-developer interfaces.

5.5 Summary
In order to verify the findings in the established best practices this section has showed
how six real world customer-developer interfaces has been assessed, described
(Appendix A – Cases Of Customer-Developer Interface) and analysed in the light of
the three theoretical perspectives. The findings in the real world cases were then
compared to the findings in the best practices.

Many of the problems of the real life projects were addressed in some of the best
practices. Some problems in the real life projects had no straightforward solution in
the best practices but well some indirect solutions by e.g. Team Risk Management.
Two new objectives for the customer-developer interface were extracted from real
world projects:

• Developer understanding the project environment.
• Developer confidence in the customer

The usability of the three theoretical perspectives was further verified.

The Customer-Developer Interface 83 (123)

6 Summary and Conclusions
The objective of this section is to summarise the study and its findings and to draw
conclusions by evaluating the hypothesis from Section 2.3 (page 27) and answer the
question:

Can use of the theoretical perspectives, together with lessons from the best
practices and real world customer-developer interfaces guide us to a better
understanding of how to plan the interface to ad-hoc customers?

6.1 Summary
The objective of the study was to explore the customer-developer interface in
development projects with ad-hoc customers and to summarise best practices. This
has been achieved in the following steps.

1. Three theoretical perspectives for how to capture and describe a customer-
developer interface were outlined and described:

• Process Model Perspective
• The Actors and Stakeholders Perspective
• Message Perspective

2. The objectives and practices of customer-developer interface were extracted from
the six best practices of software development:

• SEI Software Acquisition Capability Maturity Model – SA CMM
• SEI Team Risk Management
• The Gaps-model
• Rational Unified Process - RUP
• Extreme Programming - XP
• Dynamic Systems Development Method – DSDM

The main objectives for a well functioning customer-developer interface
according to the six best practices were found to be:

• Customer confidence in the development process
• Customer confidence in the product
• Customer validation of developer specification
• Customer understanding of the technical domain
• Actor understanding of roles
• Flexible project adjustment to evolving requirements
• Flexibility of customer developer interface
• Developer understanding of customer business domain
• Team spirit
• Common product vision

84 (123) The Customer-Developer Interface - Appendix A

• Close the customer’s expectation-perception-gap

Figure 43 on page 76 gives a “smorgasbord” of practices from the six best
practices that address the objectives. The three theoretical perspectives were
found to fulfil their purpose. However, matters concerning conceptual gaps
between the customer’s expectations and perception and between the customer’s
business domain and the developers technical domain could not easily be
captured by the theoretical perspectives.

3. In order to validate the findings in the best practices, six real life projects where
assessed, described and analysed in terms of three theoretical perspectives. The
findings in the real life projects were then compared to findings in the best
practices. Many of the problems of the real life projects were addressed in some
of the best practices. Some problems in the real life projects had no
straightforward solution in the best practices but some indirect solutions by e.g.
Team Risk Management. Two new objectives for the customer-developer
interface were extracted from real world projects:

• Developer understanding of the project environment.
• Developer confidence in the customer

No validated practices for achieving the new objectives were identified.

6.2 Evaluation of the Objective of the Study
One objective of the study was to explore the customer-developer interface in
software projects with ad-hoc customers. This objective has been achieved by first
describing three theoretical perspectives and then using the perspectives to assess,
describe and analyse real world projects.

The other objective was to summarise best practices of customer-developer interface.
This objective has been achieved by extracting interface-related objectives and
practices from six different best practices of software development.

6.3 Conclusion
The hypothesis from Section 2.3, page 27 was formulated:

If a customer-developer interface is described by its process model, its actors
and stakeholders and its messages, this description is all-embracing enough to
give a relevant understanding of how to plan and evaluate a customer-
developer interface.

The three theoretical perspectives were very useful when capturing, describing and
analysing the customer-developer interface even if they missed some conceptual
aspects. If what the three perspectives identify can be considered as good enough is a
matter of judgement that determines to which degree the outcome is relevant. If it is
good enough, it is clear that the use of the theoretical perspectives, together with

The Customer-Developer Interface 85 (123)

lessons from the best practices and real world customer-developer interfaces, guides
us to a better understanding of how to plan and evaluate the interface to ad-hoc
customers.

Figure 43 at page 76 lists the objectives for the planning of a customer-developer
interface. The same list is also a quick index for where to find strategies or practices
for achieving those objectives.

When waiting for further research (see Section 7.2 page 86) the two objectives found
in the real world projects could be added to the list of objectives from the best
practices. If the word “not” was put in front of each objective, the list would be an
excellent initial list of risks in a risk management activity, hopefully in tandem with
the ad-hoc customer.

Another recommendation to the account manager or project manager who plans a
development project with an ad-hoc customer is to identify and analyse the actors on
the customer side. The list of possible actors in Section 3.2 seems to be complete.
Ideas for how to find the actors are given by Workflow: business modelling in RUP.
If possible, have an on-site customer, but be aware of the risk of creating a new
interface between the on-site customer and the customer’s organisation.

The next recommendation is to understand that the needs, expectations and
requirements will change. Plan for iterative development. Make a plan together with
the customer for most of the messages identified in Appendix A.

We have been guided to a better understanding of how to plan an interface to an ad-
hoc customer. There is no explicit reason to be surprised by something that can be
clearly foreseen.

86 (123) The Customer-Developer Interface - Appendix A

7 Further Research
Answers often raise new questions. This section presents some of these questions and
argues for why it would be interesting to have them answered.

7.1 Model the Conceptual Content of the Customer-Developer
Interface

How can knowledge, ideas and visions be described in a form that is easy enough for
the customer to formulate and structured enough for the developer’s needs. The
Unified Modelling Language helps the developer to present his interpretation of the
business domain in a form that the customer is able to validate. But UML is hardly
the syntax the non-technical customer may use for presenting an initial vision for the
system. The idea of the XP Metaphor seems to be more duplex-oriented, but a very
rich common language that works within a development team may have limitations
when used for communicating with a complex business domain.

One practical and probably often used solution to this problem is to engage people
with double expertise, who will personify the conceptual interface. These are the XP
on-site customers and DSDM Ambassador Users on the developer side. They might,
on the customer’s side, be a technically skilled project manager as in Project B or a
SA-CMM level 5 acquirer. But as indicated e.g. in the books about XP [Beck 1999]
and DSDM [Stapleton 1997], those people are short in supply. For very complex
system, demanding expertise on several domains, their mission is impossible.

If it was possible to develop this unified language for ordinary people, formal
communication regarding needs, requirements, expectations, specifications and
change requests would be easier to develop. Such a system could be a part of the
developers configuration management system. It would solve problems that were
indicated in many of the real world projects of this study.

7.2 Find Practices for the Unaddressed Objectives
The comparison of the findings in the best practices and the findings in the six real
world cases ended in the discovery of two objectives for the customer-developer
interface that was not addressed by any practice identified in the best practices:

• Developer understanding of the project environment.
• Developer confidence in the customer

A suggestion for further research is to find practices for achieving them by
reinvestigating the six best practices and widen the circle of best practices.

The Customer-Developer Interface 87 (123)

7.3 Evaluate how to Quantify of the Objectives of the Interface
Every ad-hoc acquisition is by definition unique and it is possible to question the
usefulness of quantitative assessment. See Section 1.2.1 at page 15. At the same time
one has to understand that the status of being an ad-hoc customer is relative. Many of
the six leal world projects described in Appendix A run on rather long terms. What
was intended as a fast one-shot system became a relationship of many years’
duration. For this reason it would be very interesting to evaluate what aspects of the
interface objectives in Figure 43 and the two new objectives identified in the real
world projects, that is possible to quantify. If it were possible to set up quantitative
measurable objectives for the interface, it would as a consequence also be possible to
monitor and evolve the joint performance of the parties.

A second possibility that would emerge from quantifying the objectives of the
customer-developer interface could be to execute the quantitative analyses outlined in
Section 2.1 at page 23.

7.4 Structure the Messages of the Customer-Developer Interface
As a means for analysing the customer-developer interface many different types of
messages has been identified. As they are listed in the report they may serve as
inspiration or unstructured checklists of messages that are more or less likely to be
communicated during a development project. It would be very interesting to see a
more structured and compiled list of better defined messages. The list would probably
be an excellent base for the communication plan of a development project, dealing
with simple things, as which persons send and gets what messages. The strategy to
achieve the list is the same as used in object modelling: identify, compare, sort,
structure, find names for classes and categories and make sure that both senders and
receivers have the same conception of which message is what.

88 (123) The Customer-Developer Interface - Appendix A

8 References
[ArianeV96] http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html,

Date: Jan 28, 2001

[LAS 1995] http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html, Date: June 10, 2001

[Beck1999] K. Beck, “extreme Programming explained EMBRACE CHANGE”,
Addison-Wesley, 2000

[Gibbs 1994] W. Wayt Gibbs, ”Software's Chronic Chrisis”, Scientific American,
September 1994, pp. 86-95

[CMMI 1.02d] CMMI SM for Systems Engineering/Software Engineering/Integrated
Product and Process Development/Acquisition, Version 1.02d DRAFT
CMMI SM -SE/SW/IPPD/A, V1.02d DRAFT

[CMU/SEI-94-SR-5] P. R. Higuera, A. J. Dorofee, J. A. Walker, R. C. Williams “Team Risk
Management: A New Model for Customer-Supplier Relationships”,
Special Report CMU/SEI-94-SR-5, July 1994

[CS 1999:10] K. Karlsén “Missuppfattning äventyrar pensionssystemet”, Computer
Sweden 1999:10

[CS 1999:49] K-J. Bytner “Pensionssystemet ses som högrisk project”, Computer
Sweden 2000:49

[CS 2000:38] K-J. Bytner “PPM satsar på egenutvecklat system”, Computer Sweden
2000:38

[DeMarco 1982] T. DeMarco, “Controlling Software Projects. Management Measurements
& Estimations” Prentice-Hall, 1982

[Holme 1997] I. M. Holme, B. K. Solvang, “Forskningsmetodik. Om Kvantitativa och
kvalitativa metoder”, Studentlitteratur, 1997

[Humphrey 1995] W. S. Humphrey, “A Discipline for Software Engineering”, Addison-
Wesley, 1995

[IEEE std 1062-1993] “IEEE Recommended Practice for Software Acquisition”, IEEE, 1993

[Kruchten 1999] P. Kruchten, ”The Rational Unified Process – an introduction”, Addison-
Wesley, 1999

[Leveson 1995] N. G. Leveson, “Safeware system safety and computers”, Addison-
Wesley, 1995

[Marciniak 1994] J. J. Marciniak, "Software Acquisition", Encyclopedia of Software
Engineering, edited by J. J. Marciniak, John Wiley & Sons, 1994, pp. 4-44

[McFeely 1996] B. McFeely, “IDEALSM: A User’s Guide to Software Process
Improvement”, Introduction chapter, pp. 15-24, Technical Report
CMU/SEI-96-HB-001, Software Engineering Institute, 1996,
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb001.96.pdf

[Paulk 1993] M. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber, “Capability Maturity
Model for Software, Version 1.1”, Technical Report CMU/SEI-93-TR-24,
Software Engineering Institute, 1993.

[Paulk 1997] M. Paulk, B. Curtis, M. B. Chrissis, C. V. Weber, “Capability Maturity
Model: Guidelines for Improving the Software Process, Addison Wesley,
1997.

http://www.esrin.esa.it/htdocs/tidc/Press/Press96/ariane5rep.html
http://www.cs.ucl.ac.uk/staff/A.Finkelstein/las.html
http://www.sei.cmu.edu/pub/documents/96.reports/pdf/hb001.96.pdf

The Customer-Developer Interface 89 (123)

[PPM 99-63] “Tids- och åtgärdsplan för säkerställande av uppbyggnad av
kontoadministrativt system”, Premiepensionsmyndigheten, Promemoria
99-63, 1999

[Rational 2001] http://www.rational.com/corpinfo/, Date: May 9, 2001

[SA-CMM 1.01] SEI Carnegie Mellon University, “Software Acquisition Capability
Maturity Model, Version 1.01”, 1996

[Sommerville 2001] I. Sommerville, “Software Engineering”, Addison-Wesley, 2001

[SPICE] http://www.esi.es/Projects/SPICE.html, Date: Date: May 17, 2001

[Stapleton 1997] J. Stapleton “DSDM Dynamic Systems Development Method”, Addison-
Wesley, 1997

[Stevens 2000] P. Stevens, R. Pooly, “Using ULM: Software Engineering with Objects
and Components”, Addison-Wesley, 2000

[Zeithamal 1996] V. A. Zeithamal, M. J. Bitner, “Service Marketing”, McGrawhill, 1996

8.1 Interviews
Date Name Company Project

April 3, 2001 Annika Halldén Netch Technologies AB A

April 3, 2001 Per Hökfeldt Netch Technologies AB B

April 11, 2001 Lars Rasch Netch Technologies AB C

April 17, 2001 Tobias Dahlskog Netch Technologies AB D

April 24, 2001 Mats Byback Sigma Exallon Information AB E

April 24, 2001 Gregory Urich Sigma Exallon Information AB F

http://www.rational.com/corpinfo/
http://www.esi.es/Projects/SPICE.html

90 (123) The Customer-Developer Interface - Appendix A

A. Appendix A – Cases Of Customer-Developer Interface
This appendix consists of descriptions of six different real world historic customer-
developer interfaces in software projects. The structure of each case is as follows:

1. An initial abstract of the project shortly describing:
• the customer
• the purpose of the software that was developed during the project
• some comprehensive characteristics of the customer-developer interface and the

development process.
2. A description of the process model of the customer developer-interface
3. A description of the actors and stakeholders and their roles and most frequent

interconnections during the project.
4. A description of the most frequent or most important messages identified during the

project.
5. An analysis of problems, risks and solutions that can be related to the customer-

developer interface during the project.

The Customer-Developer Interface - Appendix A 91 (123)

A.1 Customer-developer interface in project A

A.1.1 Project abstract
The customer of the project was a head-hunting and employment agency. The objective
for the project was to develop an Internet-based tool for the labour market with the key
features:
• Recruitment advertises and possibility to search for CV’s at the customer’s web site
• Development of customer’s internal organisation and processes
• Possibility to introduce the system as tool for internal recruiting in the organisations

of the customer’s customers

A.1.2 The customer developer interface
Different perspectives of the customer-developer interface is described by the following
figures and tables:

Figure 46: Project A organisation of increment according to development plan
Figure 47: Actors and roles in project A
Figure 48: Actors in project A and their most frequent interconnections
Figure 49: Identified classes of important or frequent messages between customer and
developer in project A
Figure 50: Schematic description of major interface activities during project A

92 (123) The Customer-Developer Interface - Appendix A

The development project was to be done in four specified increments during a period of
two months in late 1999. Each increment was partitioned into four specified and
scheduled activities:
• Specification of increment
• Development of increment
• Delivery of increment
• Acceptance test of increment
A single increment of the development process is illustrated in Figure 46 below. The
inner organisation of Development - what happens inside the development box - is not
considered.

Figure 46: Project A organisation of increment according to development plan

Development

DelivererCustomer

Acceptance
test

Debugging

Delivery

Acknowledgement

Outline idea

Specification

Software
system

The Customer-Developer Interface - Appendix A 93 (123)

Actor Role
Customer
Project
Sponsor

Provide capital and other resources for the customer part of the project on demand from
the Head Project Manager
Order new features for the system
Acknowledge delivery of increment
Accept increment on behalf of the customer

Customer
Project
Manager

Decide on requirements
Inform concerned parts at customer side about decisions made with developer
Co-ordinate opinions of the Reference Group and the Project Sponsor about specifications
and formulate the specification for delivery to Customer
Create support for the development process within the Customer Project Group
Allocate resources within the customer organisation for the project
Communicate customer decisions to the developer

Customer
Reference
group

Communicate customer needs according work process to Customer Project Manager
Schedule work time according to the project schedule made by the Customer Project
Manager

Customer Test
Group

Make acceptance tests of the increments and report defects and problems to the developer

Layer Prepare legal actions
Key Account
Manager

Preserve a good spirit in the contact to the customer
Communicate with the Customer Project Sponsor on major decisions

Project
Manager

Be responsible for that the project reaches its objectives
Receive orders from the Customer Project Sponsor
Communicate to Customer Project Manager
Communicate to Development

Development Implementation
System testing

Web Host Hosting the system after deployment

Figure 47: Actors and roles in project A

Test Group

Lawyer

Project Sponsor

Project Manager

Customer Developer

Reference Group

Key Account
Manager

Project Manager

Development

Figure 48: Actors in project A and their most frequent interconnections

94 (123) The Customer-Developer Interface - Appendix A

Product information: Source To When Media
Increment specification Project Manager Customer Project

Manager
On start up Written document

New feature Customer Project
Manager

Project Manager On demand By phone, mail or
meeting

Increment/feature specification
OK

Customer Project
Manager Project Manager On new feature Fax

Increment/ feature specification
not OK

Customer Project
Manager Project Manager On new feature Fax

Request for clarification of
requirement

Project Manager
Customer Project

Manager On demand Phone, mail, fax

Delivery walk through and
presentation

Project manager
Customer Project

Manager
Before increment

delivery Meeting

Increment delivery Development Customer Project
Manager

Executable software
on the Internet

Increment delivery notification Project Manager Customer Project
Manager

Phone and mail

Increment delivery
acknowledgement

Customer Project
Manager

Head Project
Manager Meeting

Problem report on increment Customer Test
Group

Development Web based form

Debugged increment delivery
notification

Project Manager
Customer Project

Manager By mail

Increment accepted Customer Project
Sponsor

Head Project
Manager

Fax, mail, phone or
meeting

Process information
Flying (initial Brainstorm) Customer Project

Sponsor
Key Account

Manager Before Project Conference

Fax delivery notification Project Manager Customer Project
Manager

When faxing Phone

Fax delivery acknowledgement Customer Project
Manager

Project Manager On received fax Phone

Project Specification Project manager Customer Project
Manager

At start up

Project Communication Policy Project manager Customer Project
Manager

After increment one

Project meetings Project manager Customer Project
Manager

Weekly
On conflicts

Project status report Developer Customer 14 day intervals Written document

Event report from Customer Project
Manager

Developer Weekly irregular on
demand

Written document

Figure 49: Identified classes of important or frequent messages between customer and developer in
project A

A.1.3 Problem areas related to the customer interface and deviations
from plan identified by the developer

Major problems:
• The customer representative in form of the Customer Project Manager did not master

the problem domain and did not consult the Customer Reference Group. The
consequences of this were that when the acceptance test of the first increment started,
the test group found many defects and requested a changed high level design.

• There was no thoroughly gone through, written and signed contract concerning what
was to be developed, resulting in conflicts and misunderstandings between the parties
through the whole projects. Lawyers where involved twice.

• Customer Project Sponsor ignored, or did not understand the consequences of, signed
deals regarding product and process specifications.

• Conflicts inside the customer organisation concerning who was to decide what, when
and how led to double messages and inconsistencies.

• The customer developed its business processes in parallel with the software project.

The Customer-Developer Interface - Appendix A 95 (123)

• The only person from the developer that participated in the initial brainstorm (flying)
from was the key account manager, who left the project at an early stage. The
consequence was that it was only the customer that had a clear picture of the initial
vision of the system.

• The development team or the developers project manager was not experienced

Chosen solution:
• After the development of the first increment the parties formulated and signed a

communication plan according formal communication and decision rules for the rest
of the project. Some, but not al, of the organisational problems at the customer site
remained. Figure 50 describes major interface activities during the project.

96 (123) The Customer-Developer Interface - Appendix A

Project A: Major activities in actual project interface

DevelopmentDeveloper Projekt
Manager

Key Account
Manager

Customer Project
Manager

Customer
Sponsor

Customer Test
Group

Customer
Lawyer

Visions
Ideas
Needs

Requirements
Design

Media: Phone,
fax and meetings

Request for
validation

Media:Fax, meeting

Specification

Flying

Specification
and

development

Initial outline

Flying

Description

Verbal agreement

Increment 1 Delivery

Acceptance
Testing DebuggingProblems, New features by webbased problem report form

Debugged System

Acceptance
Testing

Negotiation

Wrong System

Communication
plan

Negotiation

Wrong System
Threat for legal actions

Increment 1 Acceptance

Acceptanc
e

OK

Requirements

Media: E-mail

Request for
validation

Media:

Specification
and

development

SpecificationDescriptionDecision

New features Negotiation

Feature not OK

New feature OK

Increment 2 Delivery

Problems, New features by webbased problem report formAcceptance
Testing Debugging

Debugged System

NegotiationNegotiation

Threat for legal actions

Acceptance 2 Delivery

Distribute
defects

Figure 50: Schematic description of major interface activities during project A

The Customer-Developer Interface - Appendix A 97 (123)

A.2 Customer-developer interface in project B

A.2.1 Project abstract
The customer in the project is a department for internal services at a local site of a global
industry company. The purpose of the system is to make company internal services
concerning conferences, transports, and locals etc. available for ordering from the other
departments (the customers’ customer) of the company. The system is divided into seven
different head-services. The first phase of the development aims at developing and
deploying a common technical and interface platform for the services, together with one
of the head services. According to the plan, the subsequent six services will be developed
in parallel, in a second phase.

A.2.2 The customer developer interface

The following figures and tables describe different perspectives of the customer-
developer interface:

Figure 51: Project B organisation of development of the first service and the
technical/graphical platform according to development plan.
Figure 52: Actors and roles in project B
Figure 53: Actors in project B and their most frequent interconnections
Figure 54: Identified classes of important or frequent messages between customer
and developer in project B

98 (123) The Customer-Developer Interface - Appendix A

Figure 51: Project B organisation of development of the first service and the technical/graphical
platform according to development plan.

Developer

Needs &
Requirements

Requirements
elicitation

Customer

System

Specification
validation

Specification

Design

Implementation

Integration test

Acceptance

Contract

Requirements
elicitation
service 2-7

partly in
parallel

Needs &
Requirements

The Customer-Developer Interface - Appendix A 99 (123)

Actor Role
Customer
project
sponsor

Sponsor of the project Signs contract. Breaks high-level conflicts together with the Key
Account Manager.

Customer
project
Manager

Co-ordinator of sub-projects on customer site. Signs specifications
Accepts the system
Resolves conflicts within the customer organisation

Service
responsible

One sub-project leader for each of the seven head service

Expert user One responsible for, or expert on, the supply of one of fourteen service component
Customer
interface
expert

Responsible for graphical and textual quality an constancy

Reference
group

The customer’s customer, representatives of the end-user

Customer IT
responsible

Responsible for the customer’s technical system environment

Key Account
Manager

Business responsible. Signs Contract. Breaks high-level conflicts together with the Project
Sponsor

Developer
head project
manager

Responsible for day-to-day customer relations, project economy, staffing contract etc

Project
Manager

Responsible for technical implementation of the platform and the services. In the second
project phase there will be several project managers, each responsible for one service

Development Specification, Design, Implementation, Integration Test
Head Project
manager

External management consultant and advisor for customer and developer in the project
paid by both parties
Has the casting vote in conflicts between customer and developer

Web designer External consultant and co-contractor, responsible for user interface

Figure 52: Actors and roles in project B

100 (123) The Customer-Developer Interface - Appendix A

Project Manager

Expert User

IT Responsible

Service Responsible

Interface expert

Head project
manager

Design bureau

Head Project
Manager

Development

Project Manager
Reference group

Customer

Consultant

Developer

Co-contractor

Co-
ordination

group

Project Sponsor

Key Account
Manager

Steering
group

Figure 53: Actors in project B and their most frequent interconnections

The Customer-Developer Interface - Appendix A 101 (123)

Product information Source To When Media
Specification: Use Case
Specification: User Interface
Specification: Requirements

Paper media

Specification: Dynamic
prototype

Developer Customer On update

Live on computer

Request for clarifications of
requirement

Developer Customer

Request for validation of
requirement

Developer Customer

New feature or request for
change of feature

Customer Developer

Mail, meeting,
phone

The software product Developer Customer Acceptance
test

Executable
software

Problem report Customer Developer On
acceptance Web form

Release accepted Customer Developer

Process information:
Project specification Start up Paper
Running four week schedule Weekly Excel chart
Co-ordination meeting Friday

Steering group meeting Monthly

Project meeting On demand

Release lunch On release

Reference group meeting On demand

Project Dinners Quarterly

Figure 54: Identified classes of important or frequent messages between customer and developer in
project B

A.2.3 Problems areas related to the customer interface and deviations
from plan identified by the developer

1. Problem: The customer did not fully understand the consequences of the agreed
specification. When the development team was supposed to implement the system on
their own and contacted the customer for smaller adjustments and clarifications, it
became clear that the business processes and needs of the customer was not fully
understood on neither side.
Chosen solution: Consequences of this were that the design and implementation
phases had to be prolonged and interleaved with continuos and integrated business
modelling and requirement elicitation activities. The planned waterfall model
converted to prototyping.

2. Problem: Specification aspects of written minutes from co-ordination group meetings
and e.g. updated use-cases could not be fully understood and validated by the
customer. The developer tried to prevent the problem by educating the customer
representatives in how to work with use cases. The problem remained.
Chosen solution: Specifications and prototypes are personally presented to the
customer representative.

102 (123) The Customer-Developer Interface - Appendix A

3. Problem: If a customer representative presents an idea, new features or new variants
of existing functions to the developer. The developer answers by specifying the idea
in form of a prototype, a modified use-case or a textual specification to the customer
representative. Frequently the customer representative does not recognise the received
specification as a correct interpretation of the initial idea and thus requests a new
specification. This scenario may iterate very many times until the developer gets
desperate or the customer gets really tired.
Chosen solution: The developers try to gather all new ideas and suggestions in order
to handle them together in a structured way. Planned releases are introduced. Both the
customer ideas and the developer’s interpretation of the ideas mature over time.
Anyhow, the implementation activities will be less disturbed.

4. Problem: When a developer needs a simple elucidation of a requirement the formal
way of handling this is, in worst case, to go the whole chain: Developer – Project
Manager – Head Project Manager – Customer Project Manager – Service Responsible
– Expert User. This is costly in terms of time, money and project energy.
Chosen solution: Developer Head Project Manager gives the Developer and Expert
User commissions to resolve the issue on their own (with the risk of consistency
problems on a higher system level).

5. Problem: Double messages/requirements according the system interface because of
limited contact between developer and interface consultant.
Chosen solution: The interface consultant attends the Friday meetings.

The Customer-Developer Interface - Appendix A 103 (123)

A.3 Customer-developer interface in project C

A.3.1 Project abstract
The customer of the project is a logistic function in a large high technological system
development industry. The objective of the system is to let the customer’s customer –
communication service providers – compose tailored communication systems by
selecting, putting together and finally order components from a number of company
internal production units within the customer. The production units then dispatch the
orders. In short – the system is a business to business web-shop for communication
system components.

Initially the customer had planned for only one version of the system. Since then 10
planed releases have been made. The following description and analysis of the customer-
developer interface is made a year after the first public system release. In the beginning
of the project there were some uncertainties concerning roles and responsibilities of the
parties. The relationship between the customer and the developer can now be considered
as stable and mature.

A.3.2 The customer developer interface
Different perspectives of the customer-developer interface is described by the following
figures and tables:

Figure 55: Project C development process in a standard increment
Figure 56: Actors and roles in project C
Figure 57: Actors in project C and their most frequent interconnections
Figure 58: Identified classes of important or frequent messages between customer and

developer in Project C

104 (123) The Customer-Developer Interface - Appendix A

Figure 55: Project C development process in a standard increment

Developer

Ideas for new features from
end-users, helpdesk, logistics,

market unit

Preliminary
estimation of
time & costs

Customer

Internal release

Feature
suggestion

Specification

Design

Implementation

Integration test

Acceptance
test

Wanted features for
next increment

Debugging

Choice of features
for next release

Specification
validation

Deployment

Acceptance test
specification

Public releaseSystem usage

Feedback
New ideas

User training

The Customer-Developer Interface - Appendix A 105 (123)

Actor Role
Customer
Project
Sponsor

Project sponsor. Signs general agreement.
Break high-level conflicts together with the Key Account Manager.

Customer
Market Unit

Responsible for contract with customer’s customer
Accepts system.

Component
deliverer

Produces and delivers components and systems to the end-user.
Responsible for the internal technical interface of the system.

Customer
Project
Manager

Co-ordinates customer activities. Breaks conflicts within the customer organisation
Negotiates and decides on features and specifications.

User training
and manuals

End user training
Writes user manuals and guidelines.

End-user Customer’s customer. Web shoppers.
Helpdesk Assists end-users in how to use the system.

Provides ideas for future releases.
Key Account
Manager

Business responsible. Signs Contract. Break high-level conflicts together with the
Customer Project Sponsor.

Project
Manager

Project planning. Time and cost estimations based on feature suggestions. Responsible for
technical implementation. Project staffing .

Development Specification. Design. Implementation. Integration Test

Figure 56: Actors and roles in project C

106 (123) The Customer-Developer Interface - Appendix A

HelpdeskUser Training

Market Unit

Project Manager

Customer

Developer

End-user

Key Account
Manager

Project Manager

Development

Component
Deliverer

Project Sponsor

Figure 57: Actors in project C and their most frequent interconnections

The Customer-Developer Interface - Appendix A 107 (123)

Product information: Source To When Media
Feature outline Customer Developer Increment start up Paper document

Feature specification Developer Customer Paper document

Choice of features Customer Developer Phone, mail, meeting

Request for clarification of
feature

Developer Customer Phone, mail, meeting

Request for feature validation Developer Customer Phone, mail, meeting

Specification OK/Not OK Customer Developer Phone, mail, meeting

Software product Developer Customer Executable software

Problem report Customer Developer Structured mail

Increment acceptance Project Sponsor Developer Phone, mail, meeting

Process information:
Feature implementation time &
cost estimate

Developer Customer Paper document

Increment release date Customer Developer

Project meetings On demand

Figure 58: Identified classes of important or frequent messages between customer and developer in
Project C

A.3.3 Problem areas related to the customer interface and deviations
from plan identified by the developer

Problem: In the beginning of the project, the customer’s description of the features
described a lot of ideas for solutions in favour of functional requirements. The customer
considered the requirement ready for implementation. This led to a lot of discussions
about the form of the customer requirements.

Chosen solution: Successively the customer learned to write more functionality-oriented
requirements (What the system was supposed to accomplish) in favour of solution-
oriented requirements (How the system should be built). Based on these requirements the
developer made implementable specifications of the features. These specifications were
then sent to the customer, who after discussion and modifications accepted the
specification.

108 (123) The Customer-Developer Interface - Appendix A

A.4 Customer-developer interface in project D

A.4.1 Project abstract
The customer of the project is a web-shop for consumer products. The project has been
running for several years, with e.g. updates of graphical interface, re-factoring and
introduction of new features or new categories of articles. In the project there are two co-
contractors. One co-contractor is responsible for the hardware platform and to host the
system. The other co-contractor is responsible for the database solutions. The database
responsible and the developer discuss common technical interfaces and split the
development workload between themselves without involving the customer.

Almost all the involved persons at the four parties have worked in the project for several
years, knowing each other and the product very well. Some people have changed
employer while still working in the project. The developer has exchanged project
manager several times. The current project manager has worked with the project for 6
months. During a typical year the system undergoes some minor changes, for instance
according new categories of products or graphical re-designs. One or two major releases
are also made. For those major releases it is, for marketing reasons, important that they
are released at specific dates.

The project can be described as innovative and successful but not structured.

A.4.2 The customer developer interface
Different perspectives of the customer-developer interface is described by the following
figures and tables:
Figure 59: Project D development process for a feature or major release
Figure 60: Actors and roles in project D
Figure 61: Actors in project D and their most frequent interconnections
Figure 62: Identified classes of important or frequent messages between customer and
developer in project D

The Customer-Developer Interface - Appendix A 109 (123)

Figure 59: Project D development process for a feature or major release

Developer

Outline for new features from
IT-responsible

Preliminary
estimation of
time & costs

Customer

Design
Implementation

Integration
Test

Debugging

Negotiation
according the
distribution of

work

Decision to start

Negotiation
according time,

cost and
functionality

User interface
design

Deployment

Software systemSystem usage

Co-contractor

Release date
Preliminary

estimation of
time & costs

Design
Implementation

Integration
Test

Debugging

110 (123) The Customer-Developer Interface - Appendix A

Actor Role
Customer
Market Unit

Communicates problems and marketing concept ideas to IT Responsible.

Customer IT
Responsible

Project manager at the customer side. Co-ordinates customer activities according the
project. Communicates visions and feature outlines to the developer. Negotiates and
decides on features and specifications. Accepts a feature or increment.

Customer Web
Design

Designs and develops passive parts of the end-user interface.

Customer
Helpdesk

Receives feedback from the End-user: customer

End-User:
Wholesaler

Delivers consumer products to the customer. Defines a technical interface for product
catalogues and product orders towards the system.

End-user:
Customer

Customer’s customer. Buys consumer products through the system.

Project
Manager

Project planning. Time and cost estimations based on feature suggestions. Responsible for
technical implementation, project staffing and customer relations.

Development Specification. Design. Implementation. Integration. Test.
Co-contractor:
Data-base

Responsible for design of the customer and product databases.

Co-contractor:
Hardware &
Host

Responsible for the hardware platform and the hosting of the system.

Figure 60: Actors and roles in project D

The Customer-Developer Interface - Appendix A 111 (123)

Project manager

Development

Marketing Unit

IT Responsible

Web design

Help Desk

Database

Hardware & Host

Co-contractor

Developer

Co-contractor

Customer

Wholesaler interface

End-user

Customer

End-user

Figure 61: Actors in project D and their most frequent interconnections

112 (123) The Customer-Developer Interface - Appendix A

Product information: Source To When Media
Feature outline

IT Responsible
Project Manager

Development
team

Mail, meeting

Problem report IT Responsible
Web design

Co-contractor

Project Manager
Development

team
During development Phone, mail, meeting

Process information:
Meeting according project over
al status

IT responsible, Project Manager Monthly

Meeting according features IT responsible, Project Manager Weekly during major
releases

Time report Project Manager IT-responsible Weekly Mail

Release date Customer Developer Mail

Decision to start development IT Responsible Project Manager Mail

Party Customer, developer, co-contractor Now & then

Figure 62: Identified classes of important or frequent messages between customer and developer in
project D

A.4.3 Risk and problem areas related to the customer interface and
deviations from plan identified by the developer

Risks: There are several different risks of the customer-developer interface of the project
that could have evolved to problems. Some of the most obvious are listed below:
• In the project there is very little documentation concerning agreements, the project

processes or the software system. Most of the documentation that does exist is in the
form of sporadic mail messages. This means that the whole system is very dependent
of the people that works or has worked with the development.

• During the development of minor features or major releases there has been a lot of
communication regarding modifications, clarifications or new features directly
between customer representatives and individual members of the development team.
If the involved developers were less familiar to the system, this could have caused
problems according the consistency of the system.

• In practice, the development team decides in what way an outlined feature is to be
interpreted. The influence on both costs and functionality from the customer
organisation is thereby reduced.

• Since all three co-contractors work on current account there is no short time
incitement to reduce the workload or to plan the development in a detailed way. In the
nearness of the technical interface between the co-contractor’s applications, double
work sometimes is done.

Despite these problematic aspects of the interface, the system works and the customer of
the project is successful on its business domain. The main explanation to why the project
works is probably that:
1. many of the persons involved in the project have been there since the beginning. They

know each other, the system and the business domain of the system very well. The

The Customer-Developer Interface - Appendix A 113 (123)

need for communication regarding what to do and when it should be done is thereby
limited.

2. The financial strength of the customer has so far been good. Thereby there have not
been any economic incitements for more structured development and communication
processes.

Problem: Recently there has been a shift in ownership of the customer, who from now
on is a regional part of a global actor. The new owner possesses several different and
competing technical platforms with the same main features as the one developed by
project D. The new owner is likely to look for possible rationalisations by reducing the
number of different platforms. Since the customer still is doing economically well, there
is a possible chance for the developer, with or without the co-contractors, to widen the
market for the system. This chance would probably be strengthened if the product, the
development process and the organisational interface towards customer where better
structured.

Chosen solution: The current project manager has introduced a more structured customer
interface, contending the following activities and rules:
• All communication with the customer has to pass the project manager.
• The developer tries to transform the co-contractors into sub-contractors in order to

reduce the number of communication lines in the project.
• All decisions about economy, features, acceptance and release dates are to be

communicated from the IT responsible to the project manager by mail.
• On a weekly basis the project manager sends a time report to the customer
• Once a month the project leader and the IT-responsible hold a meeting.

114 (123) The Customer-Developer Interface - Appendix A

A.5 Customer-developer interface in project E

A.5.1 Project abstract
The customer of the project is a publishing house that saw a market in distributing articles
from an encyclopaedia by an Internet subscription service. The starting point was a
database of the encyclopaedia articles and the experience of a multimedia version of the
encyclopaedia on CD-ROM. The software has several technical interfaces and the
development included co-operation with several co-contractors. Some of the technical
interfaces were developed in parallel, which made the design and the implementation
more complex. Internal users of the system are the article editors and the marketing unit.

The development process followed an instance of Rational Unified Process (RUP). The
commitment part of the contract and the functional requirements were based on use-
cases. After an initial inception and elaboration phase, the project went through three
major increments. Each increment consisted of the implementation of specific use-cases
and ended with an installation that the customer could start to use. The last increment
ended with an opening of the service.

The project was completed within budget and on scheduled time. After the service was
opened for the subscribers, the developer has made three minor revisions of the system.

A.5.2 The customer developer interface
The following figures and tables describe different perspectives of the customer-
developer interface:
Figure 63: Development process of project E
Figure 64: Actors and roles in project E
Figure 65: Actors in project E and their most frequent interconnections
Figure 66: Identified classes of important or frequent messages between the customer and

the developer in project E

The Customer-Developer Interface - Appendix A 115 (123)

Figure 63: Development process of project E

Developer

Requirements:
Use-cases

Pilot study

Customer

Vision

Analysis and
design

Increment of
software systemAcceptance

Inception
Elaboration

Contract

Project plan

Test

Deployment

Implementation

Validation

System usage Running System Modification

Ideas for revision

116 (123) The Customer-Developer Interface - Appendix A

Actor Role
Customer
Project
Sponsor

President of the customer company. Member of project steering group. Project sponsor.

Customer
Project
Manager

Co-ordinates activities of the customer organisation. Breaks conflicts with CRM System
Project Manager

Customer IT
Manager

Responsible for customer internal technical infrastructure. Responsible for the acquisition
of hosting and thereby the contacts with Co-contractor: Hardware & Host

Customer
Market Unit

Responsible for the business goals and the contacts with internal user: Article editors

Customer :
Article editors

Internal user, edits articles for the encyclopaedia

CRM System
Project
Manager

Customer project manager for the parallel development of a CRM-system.

Developer
President

President of the developer company. Member of the project steering group.

Project
Manager

Project planning. Time and cost estimations based on feature suggestions. Responsible for
technical implementation, project staffing and customer relations.

System
Architect

Chief system designer. Defines and negotiates technical interfaces to CRM-system, Data
Transformation, Multimedia Interface and Web interface

Development Implementation. Integration. Test.
Graphic
design

Graphic design

Usability
design

Usability design

Parallel
Customer
project: CRM-
system
Co-contractor:
Hardware &
Host

Responsible for the hardware platform and the hosting of the system.

Co-contractor:
Data
Transformation
Co-contractor:
Multimedia
Interface
Co-contractor:
Usability
Consultant

Validation of usability.

Co-contractor:
Web Interface

Initial graphic design

Figure 64: Actors and roles in project E

The Customer-Developer Interface - Appendix A 117 (123)

Project manager

Architect

Marketing Unit Project manager

CRM Project
Manager

Data
Transformation

CRM system

Co-contractor

DeveloperCustomer

Web
Interface

Co-contractor

Parallel project

Project Sponsor

Multimedia
Interface

Co-contractor

Development

Usability

Graphic design

IT Manager

President

Usability
Consultant

Co-contractor

End User: Article
editor

Service Consumer

End-user

Hardware & Host

Co-contractor

Steering
Group

Figure 65: Actors in project E and their most frequent interconnections

118 (123) The Customer-Developer Interface - Appendix A

Product information Source To When Media
Vision document Customer Developer Initially
Requirements: Use Cases Developer Customer
Validation Customer Developer
New Features Customer Developer
Change Request

Customer Developer
Phone
Mail

Web form
Request for Clarification Developer Customer
Interface Specification Co-contractor Customer
Problem Report

Customer Developer
Phone
Mail

Web form
Prototypes

Increment/feature accepted Customer Developer

Process information:
Contract
Steering group meetings

Customer
developer

Reference group meetings
Project Meetings

Customer
Developer

Co-contractors
On demand

Project plan Developer Customer

Figure 66: Identified classes of important or frequent messages between the customer and the
developer in project E

A.5.3 Problem areas related to the customer interface or deviations from
plan identified by the developer

Problem: The parallel development of the CRM-system and the complications in the
technical interface towards the Data Transformation System, led to complex negotiations
according functionality and solutions. The communication with the co-contractor
responsible for the Data Transformation System could be managed directly between the
co-contractors. The communication regarding the CRM-system sometimes had to pass
through the project managers for the respective system at the customer side. A practical
consequence of these problems was that the implementation of some of the use-cases had
to be postponed to later increments.

Problem: In the early party of the project the developer tried to make the customer
communicate problems, change requests and new ideas through a structured word-form.
The messages that arrived in those forms was not very structured and had to be
complemented by phone or mail anyway.

Chosen solution: In the later part of the project the structured word-form was exchanged
to more informal excel-chart. The developer took a greater responsibility for structuring
the contents of the messages.

The Customer-Developer Interface - Appendix A 119 (123)

A.6 Customer-developer interface in project F

A.6.1 Project abstract
The customer of the project is an Internet site for a large and well-defined target
audience. The activities were to be financed by commercial advertises. The product to be
developed was a web-publishing tool with features for treating memberships,
advertisements, chat forum, a flexible graphical design etc.

After a pilot study the developer found that the desired system would cost more than the
customer could afford. Since the technology to be used was partly new to developer and
the developer saw possibilities for re-use of vital parts, the developer agreed to run the
project at an economic loss. This loss became heavier than planned.

Initially the development was planned to be done as a pilot study followed by three
increments. Delays in the project reduced the number of increments to two.

A.6.2 The customer developer interface
Different perspectives of the customer-developer interface is described by the following
figures and tables:
Figure 67: Project F development process
Figure 68: Actors and roles in project F
Figure 69: Actors in project F and their most frequent interconnections
Figure 70: Identified classes of important or frequent messages between customer and

developer in project F

120 (123) The Customer-Developer Interface - Appendix A

Figure 67: Project F development process

Developer

Vision

Evaluation of
tender

Customer

Validation

Pilot study

Implementation
Integration

Test
Deployment
DebuggingSoftware

system

Acceptance
test

Data model

Requirement
elicitation

Use-case refinement
User interface

design

Technical specification

Use-cases

Tender

System Usage

Public release
Support and

evolution

Requirements
workshop

The Customer-Developer Interface - Appendix A 121 (123)

Actor Role
Project
Sponsors

Finances the project by contributing venture capital.

President of
the customer
company

Project Manager at the customer side. Chief editor of the web site. Only customer actor in
the first increment. Employer of the internal users.

Customer
Internal users

Creates and publishes material for the web site. Administrates the web site. Runs
acceptance test during the learning of the system after the deployment of the first
increment. Report problems.

Customer
Responsible

Creator of the tender.

Project
Manager

Project planning. Responsible for the user-interface. Responsible for technical
implementation, project staffing and the relations to the customer president.

Development Specification. Design. Implementation. Integration. Test.
Advertising
Agency

Initiates the initial contact to the customer. Outlines the graphical design.

Figure 68: Actors and roles in project F

DeveloperCustomer

President
Chief Editor

Development

Internal Users

Project Manager

Web Design

Co-contractor

Sponsors

Customer
Responsible

Figure 69: Actors in project F and their most frequent interconnections

122 (123) The Customer-Developer Interface - Appendix A

Product information: Source To When Media
Vision Customer Developer Initial Textual and oral

description

Requirements workshop Customer
Developer

Requirements
elicitation

Meeting

Use-case Developer Customer Textual description

Interface prototype Developer Customer Paper illustration

Prototype walk-through Developer Customer Use-case validation Paper illustration
and meeting

Use-case OK Customer Developer

Problem report/change request Customer Developer Acceptance test
System usage

Excel-chart, mail,
phone

Increment OK Customer Developer

Process information:
Tender Developer Customer

Project Specification/Plan Developer Customer

Project meetings On demand

Figure 70: Identified classes of important or frequent messages between customer and developer in
project F

A.6.3 Problem areas related to the customer interface and deviations
from plan identified by the developer

1. Problems: The customer changed and evolved the requirements during the
development of the first increment, at the same time denying doing so. The project
manager got partly stuck between the joint-risk-characteristic of the project and the
need to charge extra for new features.

Chosen solution: The cost of implementing new features was split between the
parties.

Suggested solution: Train the customer representative in the consequences of the
decided development process as an attempt to give a picture of which problems that
probably will arise at different phases of the project and how those problems best can
be handled.

2. Problem: The developer tried to make the customer communicate new features,
change requests or problems via a structured excel-chart. This formal approach did
not work since the customer often bypassed the excel-chart by mail or phone.
Alternatively the customer was not capable of describing the problem/change in a
form that was useful for the developer.

Solution: Frequent discussions regarding features, use-cases and prototypes.

3. Problems: Lack of developers in combination with evolving requirements resulted in
a two weeks delay of the first increment

Chosen solution: Argue that the delay was caused partly by customer-evolution of
the requirements and therefore to some extent compensate the delay with extended
functionality.

The Customer-Developer Interface - Appendix A 123 (123)

4. Problems: The customer did not fulfil the payment schedule. In fact the customer did
not pay at all. This economical aspect of the project was not discovered until the
project was in the middle of the second increment. The basic reasons for the delays
were probably to find in conflicts between the external project sponsors and the
customer.

Chosen solution: Since the developer had a self-interest in the project and since one
of the external sponsors also had a direct owning interest in the development
company the project was finished and the system successfully released to the Internet.
Until payment is settled, the developer will not give any support to the customer nor
participate in any system evolution.

	Abstract
	Acknowledgements
	Table of contents
	Table of Figures
	Introduction
	Background
	The PPM Story

	Objective
	On the Control of Software Processes

	The Problem Domain Terminology
	Customer
	Developer
	Software

	Limitations
	The Maturity of the Actors
	The customer and developer organisation
	Section of software lifecycle
	Factors affecting the customer-developer interface
	Scientific Perspectives on the Interface

	Outline of the Report
	Section 1: Introduction
	Section 2: Methodology
	Section 3: Theoretical Perspectives of the Customer-Developer Interface
	Section 4: The Customer-Developer Interface According to Best Practices of Software Development
	Section 5: Customer-Developer Interfaces in Real Life Projects
	Section 6: Summary and Conclusions
	Section 7: Further Research

	Methodology
	Outline for a Quantitative Approach
	Arguments for a Qualitative Approach
	Outline of a Qualitative Approach
	Summary

	Theoretical Perspectives of the Customer-Developer Interface
	Process Model Perspective
	Waterfall Model
	Evolutionary Development
	Formal Systems Development
	Reuse-oriented development
	The Waterfall-Evolutionary Axis

	The Actors and Stakeholders Perspective
	Actors in the Customer Organisation
	Actors in the Development Organisation
	The Actors and their Interconnections

	Message Perspective
	The Sending and Receiving Actors
	Message Contents
	The Media
	The Level of Surprise
	Conflict between process models and messges

	Summary

	The Customer-Developer Interface According to Best Practices of Software Development
	Capability Maturity Model
	Generic Description of CMM
	The Customer-Developer Interface According to Software Acquisition CMM
	Process model of SA CMM
	Actors and stakeholders of SA-CMM
	Messages of SA-CMM
	Analysis and Summary

	The Customer-Developer Interface According to SEI Team Risk Management
	Process Model of Team Risk Management
	Actors in Team Risk Management
	Messages in Team Risk Management
	Analysis and Summary

	The Gap-model of Service Quality
	Process Models of the Gaps-model
	Actors and Stakeholders of the Gaps-model
	Messages of the Gaps-model
	Analysis and Summary

	The Rational Unified Process – RUP
	Process Model of the Rational Unified Process
	Actors and Stakeholders in the Rational Unified Process
	Messages in the Rational Unified Procesess
	Analysis and Summary

	Extreme Programming – XP
	Process Model of the Extreme Programming
	Actors and Stakeholders in Extreme Programming
	Messages in Extreme Programming
	Analysis and Summary

	Dynamic System Development Method – DSDM
	Process Model of the DSDM
	Actors and Stakeholders of DSDM
	Messages in DSDM
	Analysis and Summary

	Summary and Evaluation of the Customer-Developer Interface According to the Best Practices

	Customer-Developer Interfaces in Real Life Projects
	Choice of Projects
	Assessment Methods
	The Projects
	Real World Projects vs. Best Practices
	Summary

	Summary and Conclusions
	Summary
	Evaluation of the Objective of the Study
	Conclusion

	Further Research
	Model the Conceptual Content of the Customer-Developer Interface
	Find Practices for the Unaddressed Objectives
	Evaluate how to Quantify of the Objectives of the Interface
	Structure the Messages of the Customer-Developer Interface

	References
	Interviews

	Appendix A – Cases Of Customer-Developer Interface
	Customer-developer interface in project A
	Project abstract
	The customer developer interface
	Problem areas related to the customer interface and deviations from plan identified by the developer

	Customer-developer interface in project B
	Project abstract
	The customer developer interface
	Problems areas related to the customer interface and deviations from plan identified by the developer

	Customer-developer interface in project C
	Project abstract
	The customer developer interface
	Problem areas related to the customer interface and deviations from plan identified by the developer

	Customer-developer interface in project D
	Project abstract
	The customer developer interface
	Risk and problem areas related to the customer interface and deviations from plan identified by the developer

	Customer-developer interface in project E
	Project abstract
	The customer developer interface
	Problem areas related to the customer interface or deviations from plan identified by the developer

	Customer-developer interface in project F
	Project abstract
	The customer developer interface
	Problem areas related to the customer interface and deviations from plan identified by the developer

