
Kulik & Lazarus Consulting, Inc.

Copyright © 1997, Kulik & Lazarus Consulting, Inc.
http://www.klci.com/accelerate

Spiraling Waterfalls: A Hybrid Process Model
for the New Reality of Software Development

Author: Peter Kulik, July 1997

Abstract: JavaTM, OOD, Internet and Intranet – today’s business and technical realities are driving
fundamental change in software development processes. This white paper discusses the Hybrid process
model, which builds on the strengths of the Waterfall and Spiral models, but is optimized for the new reality
of software development. The success factors underlying this model are comprehensive architectural
design, project management, and risk management.

1. Motivation
The two “classic” process models of software
development are the Waterfall and the Spiral [1][2].
These models were developed at a time when:

• Procedural languages were prevalent – even
Assembler was in fairly common usage!

• Large, centralized systems were the norm – e.g.
large COBOL applications for MVS mainframes.

• Code/debug/fix cycles were relatively long –
time to market was often measured in years.

• Processor cycles were at a premium – and
frequently rationed.

• User interface technology was in its infancy –
think about Unix…

Since their definition, these process models have
weathered many technological changes. Although
several alternatives have been proposed and gained
some level of industry support [3][4], the Waterfall
and Spiral models continue to be the foundation for
most MIS and Software Development shops around
the world.

As early as the late 1980s and early 1990s, there was
growing recognition that PC technology was making
software development more iterative [5]. Today,
though, step-function improvements in technology
cry out for evolution of the tried-and-true Waterfall

and Spiral process models. Some of these changes
include:

• Growing prevalence of object-oriented methods

• Internet/Intranet enabling technologies;
Browsers, JavaTM, HTML, etc.

• Multi-tier client-server distributed architectures
are the choice for many applications

• Inexpensive hardware platforms – MIPS,
memory, and disk capacity are relatively cheap

• Short debug /fix cycles –measured in seconds

• Intense time to market pressure – measured in
months

• Greatly improved user interfaces and increased
emphasis on usability

According to Ian Campbell of IDC, new technology
“has replaced the old process of defining and
deciding with deploying and doing”[6]. One MIS
manager with whom we spoke described
development cycles being pushed down from 18
months to 1 to 2 months!

Today’s business and technical realities are clearly
driving a fundamental shift in software development
paradigms. This white paper describes a process
model that builds on the strengths of the Waterfall
and Spiral process models, and is optimized for the
new reality of the technological environment.

Kulik & Lazarus Consulting, Inc.

Copyright © 1997, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

2. The Waterfall

Strengths and weaknesses of the Waterfall Process
Model are shown in Figure 1.

A software industry executive once stated that the
best a product can be is 90% “right” in one pass [7];
industry experience shows this level is seldom
reached. For example, if a product is only 50% right
in its initial development, it will take four passes to
reach 90% (actually 93.75% at the end of the fourth
pass). How much chance does this product have of
market acceptance in the first two passes – probably
not much! There is a better way.

3. The Spiral

Many product
development
organizations have been
reluctant to use spiral
development processes.
Such a project is less
deterministic – from
management’s point of
view, how many
“spirals” are enough? It
is also difficult to
determine the state of
the product – in terms of
readiness for customer

deployment – at any
point in time.
Traditional process
measurement and
metrics – such as
defect density or
cumulative failure
profile – are not as
useful for project
management.
Customer
commitments are
harder to make
because it is more
difficult to predict the
level of quality the
product will have

achieved at a particular point in the future.

However, several very successful IT managers with
whom we have worked have had great success with
“spiral development”. The common element of their
success is to keep “projects” small – for example, 2-3
developers, 2-3 months in duration. This practice
demands use of a spiral development process.
However, most IT projects are different from product
development projects.

Can a process model be developed to help product
development and IT organizations realize the best of
both the Spiral and Waterfall process models? Yes.

The Waterfall Process Model

Strengths Weaknesses

• Adds structure to a potentially
unstructured process

• Limits end-customer feedback to the
beginning (gather requirements) and
end (deploy product)

• Maps well to hardware development
processes

• More efficient for larger projects –
larger risk and potential delays

• Deterministic for time-to-market
models

• Inflexible approach does not react
well to “unexpected” design or
requirements changes

• Lends itself to a phase-gate approach
for program management

• Can cause time-to-market
competitive disadvantage

Figure 1

The Spiral Model

Strengths Weaknesses

• Flexible process – more adaptable to
design and requirements changes

• Less deterministic – more complex to
manage

• Can result in faster time to market. • Hard for management to determine a
project’s status at any point in time

• Can improve quality of released
product

• Greater process risk when compared
to waterfall process model

• End result can more closely match
user requirements

• More difficult to make customer
commitments for product
deliverables

Figure 2

Kulik & Lazarus Consulting, Inc.

Copyright © 1997, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

4. Putting it Together in the New Reality
Our experience has shown that the key determinants
of appropriate process models are the duration of the
code/test/fix cycle, and the complexity of the
component being implemented (see figure 3).

Software modules with low or medium complexity,
and that are implemented using technologies with a
short or medium code/debug/fix cycle, are more
suited to the Spiral process model. Modules with
inherently high complexity or which must use
technologies that have a long code/debug/fix cycle,
are more suited for the Waterfall process model.

New technologies such as JavaTM and HTML have
increasingly shorter code/test/fix cycles. Object-
oriented approaches can increase reuse and reduce
development cycles. Client-server applications can
be developed much more quickly than can host-based
applications. Use of these technologies makes it
possible for more projects to implement and realize
the benefits of spiral development processes.

In reality, however, many software projects will be a
mix of technologies. Traditional and alternative
process models have ignored the mix of complexity
and technologies in many projects.

The Hybrid process model,
shown in Figure 4, enables
a project to realize the
benefits of Spiral and
Waterfall development
processes, plus some
additional benefits:

• Adds structure for
more deterministic project
management
• Allows frequent
customer input during
development

• More flexible to adapt to requirements and
design changes

• Fits well with customer-funded development
business strategies

• End-product can be of higher quality and more
closely meet end-customer needs

• Can be implemented within phase-gate process
models

This Hybrid process model has three key sections:

1. Architecture and planning

2. Iterative development and deployment of
most major components

3. Linear development of those components
which cannot be developed iteratively

Architecture and planning (including requirements
gathering) must be completed first; these form the
foundation for subsequent project activities. Iterative
development literally “runs circles around” the linear
development component. Executing these activities
in parallel minimizes time to market.

The following sections describe these process
components in more detail.

Duration of Code/Debug/Fix Cycle
Short Medium Long

Low Spiral Spiral Waterfall

Medium Spiral Spiral Waterfall

C
om

pl
ex

ity

High Waterfall Waterfall Waterfall

Figure 3

Figure 4

DeployPlanArchitect Design Implement Test

Kulik & Lazarus Consulting, Inc.

Copyright © 1997, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

4.1. Architecture and Planning
Architectural design provides the technical
foundation for all project modules. It ensures that the
modules will “fit together” when they are integrated
to form the final projects. Software modules
implemented iteratively can be integrated as part of
each iteration, although linearly developed modules
will not be available until complete. Therefore, a
well-described common architecture helps ensure that
iteratively developed software modules will integrate
well with linearly developed software modules and
other project components.

Requirements gathering occurs in parallel with
Architecture and Planning activities.

Software development is an inherently complex
undertaking. Both technical and project planning are
essential to optimize quality, schedule, and cost for
the project. Some key planning decisions unique to
the Hybrid process model include:

• Which components can be developed
iteratively versus linearly

• What target feature/functionality will be
implemented in each iteration

• How many iterations will be completed

• To what extent will modules be deployed at
the conclusion of each iteration

The more components that can be implemented
iteratively, the greater the benefits that will be seen
by the project. A well-designed architecture can
greatly reduce the complexity of many software
modules – increasing the number that can be
implemented iteratively.

The number of iterations to be completed can be set
based on two factors:

• The duration of an iteration

• The duration of the linear project component

We would suggest three moderately effective
iterations would produce a high-quality product that
very closely meets end-customer requirements. For
example, if each iteration is 75% successful at
realizing end-customer requirements, the product will
have achieved more than 98.4% at the conclusion of
the third iteration. This compares to 90% as the
theoretical limit for a single iteration! Project
execution will be most efficient where the duration of
an iteration is set to one-third the duration of the
linear project component.

4.2. Iterative Development
Iterative development is performed on software
modules selected according to Section 4.1. Each
iteration should follow five general steps:

1. Design
2. Implement
3. Test
4. Assess
5. Plan

First, detailed design of each software module should
be completed. Note that the complexity of the design
effort should match the complexity of the module’s
feature/functionality to be implemented as part of the
current iteration – to the greatest extent possible.

Design is followed by implementation of the target
feature/functionality for the iteration. After
implementation, it must be tested – both by itself and
integrated with other iteratively developed
components.

After testing, assessment should be completed to
gather end-customer feedback. Note that assessment
can be performed by deploying – in a controlled
manner – developed software. Controls should allow
feedback to be gathered in a structured way that
allows it to be incorporated into the next iteration.
After feedback is gathered, it can be used in
conjunction with the overall project plan to plan the
next iteration – in essence, completing a project plan
focused on the next iteration.

4.3. Linear Development
Linearly developed modules are implemented using
the traditional waterfall sequence to design,
implement, and test the required functionality. Since
other modules are being implemented iteratively,
however, there may be some unique considerations.
For example, simulation or “stub” modules may need
to be implemented to allow the iteratively developed
modules to function on each iteration.

5. Success Factors
Successful use of the Hybrid process model puts
more emphasis three key areas:

• Architecture
• Project management
• Risk management

A well designed, unified architecture is essential for
successful implementation of the Hybrid process
model. Because of a higher degree of parallel
implementation, there is greater risk of serious
problems when the modules are integrated. A unified

Kulik & Lazarus Consulting, Inc.

Copyright © 1997, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

architecture will significantly reduce this risk. A
properly designed architecture will also reduce the
complexity of each software module – which will
allow more modules to be implemented iteratively,
and increase the level of parallel implementation that
can be realized. Ultimately, the impact can be to
reduce time to market.

Project management is the second key success factor
for implementation of the Hybrid process module. At
any point in the project, there will be quite a bit of
diverse activity occurring concurrently – for example,
implementation and end-customer validation. Strong
project management is essential to manage this
activity and keep the project under control. The first
key activity is initial planning, prior to the start of
iterative development. Continuous monitoring and
adjustment is required both on the iterative portion of
the project, and the linear portion. In addition, at the
conclusion of each iteration, planning for the next
iteration needs to be completed – which should be
linked with the linear portion of the project.

Risk management is the key final success factor for
the Hybrid process model. As with architecture and
project management, risk management is a key
success factor for any software project. Aggressive,
proactive risk management will prevent problems
before they occur, reduce the time needed for “fire-
fighting”, and ultimately reduce time to market.
Effective risk management will help project teams
optimize the Hybrid process model to their project,
and minimize the impact of process changes.

Several risk management tools fit well with the
Hybrid process model. For example, the Project
Self-Assessment Kit from Kulik &
Lazarus Consulting, Inc ., can be used on
both the iterative and linear components for
measurement of key project success factors.

6. Conclusion
Relatively recent technological advantages are
driving fundamental change in software
development. JavaTM, Object-Oriented methods, the
Internet, Intranets, etc., are changing both the
economics and underlying foundation of how
software is developed. The two prevalent software
development process models – the Waterfall and
Spiral models – are generally well understood by

many software organizations. Both have their
strengths and weaknesses, but neither provides
optimal performance in the reality of today’s business
and technological environment.

The Hybrid process model is a powerful way to
manage today’s software projects. With a well-
constructed architecture, most complex systems will
include components that lend themselves to iterative
development, and other components that are more
suited for linear development. The Hybrid process
model enables an organization to implement as many
components as possible using iterative development,
aligned with a linear development activity other
components.

Success factors for implementing the Hybrid process
model include:

• Unified architectural design
• Effective project management
• Aggressive, proactive risk management

Proper attention to these success factors will insure
optimal implementation of the Hybrid process model,
reducing time to market, improving quality, and
enhancing product acceptance by end-customers.

7. References
1. Boehm, Barry W., “A Spiral Model of Software

Development and Enhancement”, IEEE
Computer, May 1988.

2. Royce, W.W., “Managing the Development of
Large Software Systems: Concepts and
Techniques”, Proc. ICSE 9, Computer Society
Press, 1987.

3. Parnas discusses an Incremental Software
Development Model in IEEE Transactions on
Software Engineering, March 1979.

4. Mills, H.D., Dyer, M., and Linger, R.C.,
“Cleanroom Software Engineering”, IEEE
Software, September 1987.

5. Hanna, Mary Alice, “Beyond the Waterfall Lies
a Brave New World”, Software Magazine, June
1991.

6. Campbell, Ian, “The Intranet: Slashing the Cost
of Business”, International Data Corporation,
1997.

7. Phil Neches, Teradata Corporation, on or about
1985.

Peter Kulik is Managing Partner of Kulik & Lazarus Consulting, Inc. With more than 10 years
experience in all aspects of software development, he holds an MS in Engineering Management with the thesis
“Practical Quantitative Methods for Software Development Process Management”, a Certificate in Economics
and Finance, and a BS in Electrical Engineering. He can be reached via e-mail at pkulik@klci.com.

