
Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

513-291-1851

Page 1

Improving Software
Development Processes –
Without Sacrificing
Projects!
Peter Kulik
Kulik & Lazarus Consulting, Inc.
April, 1996

Improving software development processes can provide
long-term benefits. However, unless managed

carefully, process improvement can have a significant
short-term cost by delaying ongoing projects.

This paper presents an approach to improving
software development processes called Rational Process

Improvement. A set of tools is also discussed which
facilitates consistent, long-term improvement.

Software development projects drive revenue or cost
reduction for a company. Processes can increase
overhead cost for a software development organization.
Process improvement has demonstrated long-term return
on investment for software development organizations
[1][2]. However, major process improvement efforts can
also disrupt existing projects, causing missed customer
commitments and weakening revenue.

This paper presents an approach called “Rational
Process Improvement” which:

• Builds on existing processes
• Accelerates completion of current projects
• Minimizes organizational turmoil
• Delivers large return on investment for small

incremental costs.

Motivation for Process Improvement
Process improvement is often catalyzed by business

imperatives, such as reducing time to market or more
consistently meeting customer commitments, or as part of
major Business Process Re-engineering efforts.
Commonly-used models for software development
process maturity and process improvement are the SEI
Capability Maturity Model [3] and SPR Assessment [4].
Both of these models are based on very large software
development organizations – 500 or more developers [5].

If yours is one of the multitude of software
development organizations with less than 100 developers,
you can certainly learn from these process models.
However, striving for improved “scores” without
carefully considering what is appropriate given the

Improving Software Development Processes – Without Sacrificing Projects!
Peter Kulik, April 1996

Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

513-291-1851

Page 2

unique characteristics of your organization can actually
increase both development time and cost. The SEI and
SPR models were designed to solve the problems of very
large organizations, which are quite different from the
problems typically encountered in smaller organizations.

Organizational Impact
Software development processes remove the need for

procedures to be re-invented when executing a project.
By enabling software development teams to focus on
completing a project – rather than on determining how to
get their job done – good processes can create significant
leverage for an organization.

Process change is a form of organizational
development. One of its effects on an organization is to
create an initial resistance to change – particularly for
step-function improvement efforts mandated over
relatively short periods of time (i.e. 12 months or less)
[6]. Over time, change management will evolve this
resistance into growing support.

The change resistance/support cycle can manifest
itself in delays to ongoing projects. Those executing
projects will begin to question the procedures they are
using to complete their tasks. They will wonder when to
use the new processes and whether or not existing
procedures are still valid.

Left unchecked, this behavior can easily disrupt
project execution. Any resulting delays can cause loss of
hundreds of thousands of dollars in opportunity costs and
missed customer commitments – negating the impact of
process improvement before the improvements can even
begin. After experiencing these negative impacts, the
author has seen process improvement efforts abandoned
and the organization left only marginally better off for all
its investment.

There is a better way – herein called Rational
Process Improvement.

Rational Process Improvement
Rational Process Improvement enables you to

improve your processes without causing project delays
and the resulting negative effects. It includes two
components:

• Principles
• Tools

Benefits of Rational Process Improvement include:

Orderly transition of process improvement
Prevention of delays to current projects
Continuous improvement from project to project
Lower cost and higher return on investment

Smaller software development organizations can
gain particular benefit from Rational Process
Improvement, often implementing high-impact changes
with a relatively small one-time investment. In some
cases, Rational Process Improvement can actually reduce
overhead cost by leveraging improved structure in
executing projects.

Principles of Rational Process Improvement
The principles of Rational Process Improvement

include:

1. Document your current processes
2. Set goals for improvement
3. Implement new processes on new projects only
4. Plan and execute each project better than the last

First, documenting your current processes is
essential; this action captures how your organization
executes projects today.

• If each project in your organization is run
differently – writing different specifications,
developing prototypes on some projects and not on
other similar projects, declaring readiness for sale

Projects Processes
Generate revenue or cost savings Can increase software project overhead costs
Single instance of a process Tangible only as part of project execution
Each project is unique Prevents reinvention of “how-to” complete a project
Limited collective memory of project team members Provide a mechanism to learn from previous projects
Directly measurable return on investment in terms of
income or cost savings

Return on investment measured in terms of improved
efficiency and effectiveness of project execution

Improving Software Development Processes – Without Sacrificing Projects!
Peter Kulik, April 1996

Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

513-291-1851

Page 3

based on different criteria, etc. – then you need to
select a project which has been the best-executed
and document what was done on that project. This
will become a tool to develop consistency in
project execution, essential to long-term
improvement.

• If your projects are currently consistent in their
execution – not necessarily good or bad, but
consistent – this step will formalize your informal
process. Once formalized, you will be able to
pragmatically evaluate opportunities for
improvement.

Documenting your current process needs to be general
enough to enable duplication on different projects. The
value of a process lies in preventing those executing a
project from having to reinvent “how” to get their job
done on each project. In the author’s experience, “less is
more” in software development process documentation;
less detail generally gives a process more adaptability to
the unique attributes of an individual project. Teams
should be empowered to decide not to follow parts of a
process that do not make business sense for their project.

Once your process is documented, you need to set
goals for improvement. A number of tools are available
to identify high-impact opportunities for improvement in
current processes, discussed in the following section.
Industry research can also provide insights into specific
process aspects which can be improved. All process
improvement objectives should be evaluated from a
return on investment perspective . If a particular process
step, task, or technique does not make sense in the
context of the unique characteristics of your organization
or your projects – do not implement it!

After goals have been set and process improvement
opportunities selected, process changes should be
implemented on new projects only. This principle is
critical to preventing delays to ongoing projects.
Implementing new processes only on new projects will
effectively isolate process changes and control the
disruption which can be caused by organizational
change. Using this strategy, new projects can factor
process changes into their planning, preventing over-
commitments due to the learning curve for new
processes.

The final principle is to implement each project
better than the last. Although this principle sounds

rhetorical, a number of practical tools are available to
facilitate its implementation. Realizing benefits from this
principle requires a commitment to repeat what worked
well in previous projects, and improve what worked
poorly.

Tools for Rational Process Improvement
Rational process improvement may appear easy in

principle, but in practice both commitment and practical
tools are required. Some of the tools available to
facilitate its implementation include:

• Formal Project Management Methods
• Software Development Risk Assessment
• Cross-Functional Teaming
• Post-Project Assessment

Note that these tools are all project-oriented.
Considering a project as a single instance of software
development processes, impacting project execution is an
excellent way to impact processes. Repeating process
elements found successful on one project will improve
overall execution over time on a number of projects.

Formal Project Management Methods
For organizations whose current project management

is informal, formal project management methods usually
provide the most impact at the lowest investment.
Organizations of all sizes can benefit from project
management methods such as:

• Project planning
• Task and resource scheduling
• Work breakdown structures
• Critical path management
• Risk management

The complexity of project management methods
implemented should correspond to project complexity;
simple projects do not need nearly as detailed planning
and scheduling, for example, as highly complex projects.

Of these tools, critical path management (CPM) is
probably the least understood for software development –
CPM techniques which work in industries such as
construction do not necessarily work in software
development. For this reason, Kulik & Lazarus
Consulting, Inc. has developed a set of CPM
principles specifically for software development.

Improving Software Development Processes – Without Sacrificing Projects!
Peter Kulik, April 1996

Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

513-291-1851

Page 4

Software Development Risk Assessment
Software risk management techniques can prevent

schedule delays to projects which are executing new
processes, and highlight opportunities to accelerate
project completion. Risk is an inevitable part of all
software development efforts. Risk identification is the
first step in enabling a project to proactively reduce its
overall risk.

There are many risk assessment methodologies, such
as SEI’s Taxonomy-Based Risk Identification [7], PMI’s
Risk Assessment Methodology [8], and Kulik &
Lazarus Consulting, Inc.’s Detailed Risk
AssessmentSM [9]. In particular, the latter helps drive
Rational Process Improvement by identifying specific
project acceleration actions. Repeating these actions on
subsequent projects will improve overall processes.

Cross-Functional Teaming
Projects are typically developed by teams. In some

organizations, the team is implicit – evolving naturally to
address the challenges inherent in a particular project.
Some companies are small enough that explicitly
creating a “team” would be redundant. In others, teams
are a basic building-block of the organization.

Effective teaming is a very powerful way to execute
projects. Cross-functional teaming presents even more
opportunities, by bringing widely-varying perspectives to
bear on anticipating and resolving issues. Through the
action of completing a project, cross-functional teams
will discover incrementally more effective ways to
execute parts of a process. By repeating these
discoveries, cross-functional teams can drive continuous
process improvement.

Cross-functional teaming is not without its
challenges, however. Effective team leadership is critical
for cross-functional teams to realize their potential; this

skill is typically very hard to find. The training required
to “grow” teaming skills and the overhead structure to
support cross-functional teams can be costly.

Post-Project Assessment
An extremely powerful tool for Rational Process

Improvement is the post-project assessment, or “post-
mortem”. The objective of a post-project assessment is to
determine:

1. What worked well on a project
2. What did not work
3. How future projects can be improved

Conducting a post-project assessment soon after a project
has been completed – typically immediately after it has
achieved the first end-customer delivery milestone – can
identify excellent process improvement opportunities.
Subsequent projects can repeat what worked, and actively
try to avoid what clearly did not work. In addition, ideas
for improvement can be tested by implementing them on
a new project, then reviewing their effectiveness after the
project is completed.

Conclusion
Rational Process Improvement enables processes to

be improved without causing organizational disruption or
delaying completion of existing projects. By following
the principles described in this paper, continuous process
improvement can become an integral part of your
organization’s software development activity. Tools such
as formal project management methods, software
development risk management, cross-functional teaming,
and post-project assessment greatly facilitate Rational
Process Improvement. Over time, your organization will
cost-effectively evolve to reduce cycle times, improve
predictability, and consistently meet commitments.

Peter Kulik is Managing Partner of Kulik & Lazarus Consulting, Inc. With more than 10 years
experience in all aspects of software development, he holds an MS in Engineering Management with the thesis
“Practical Quantitative Methods for Software Development Process Management”, a Certificate in Economics and
Finance, and a BS in Electrical Engineering. He can be reached via e-mail at pkulik@klci.com.

Kulik & Lazarus Consulting, Inc. focuses on enabling software development organizations to accelerate
completion of their projects. Leveraging more than 25 years practical experience, we use innovative tools to apply
leading-edge critical path and risk management methodologies in an action-oriented framework. Our services enable
clients to identify, quantify, and proactively address opportunities to improve their project completion dates on projects
of five to fifty people. Contact us at 513-291-1851, or visit us on the World Wide Web at http://www.klci.com.

Improving Software Development Processes – Without Sacrificing Projects!
Peter Kulik, April 1996

Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com

513-291-1851

Page 5

References

1. Humphrey, Watts S., “Improving the Software
Development Process”, Datamation, pp. 28-30, April
1, 1989.

2. Kulik, Peter J., “Practical Quantitative Methods for
Software Development Process Management”, MS
Thesis, Engineering Management, National
Technological University, June 1993.

3. Paulk, Mark C., Curtis, Bill, Chrissis, Mary Beth,
Weber, Charles V., The Capability Maturity Model
For Software, Version 1.1 , Software Engineering
Institute, Carnegie Mellon University, 1991.

4. Jones, Capers, Assessment and Control of Software
Risks, Prentice Hall, Inc., 1994.

5. ibid., pp 5, 9.

6. Nadler, David A., “Managing Organizational
Change: an Integrative Perspective”, The Journal of
Applied Behavioral Science 17, no. 2, pp 191-211,
1981.

7. Carr, Marvin J., Konda, Suresh L., Monarch, Ira,
Ulrich, F. Carol, Walker, Clay F., “Taxonomy-Based
Risk Identification”, Technical Report, CMU/SEI-93-
TR-6, ESC-TR-93-183, Software Engineering
Institute, June 1993.

8. Wideman, R. Max, Project and Program Risk
Management, a Guide to Managing Project Risks and
Opportunities, Project Management Institute, 1992.

9. Contact Kulik & Lazarus Consulting, Inc.
directly for information about the Detailed Risk
AssessmentSM methodology, or visit the World
Wide Web site at http://www.klci.com.

