
Measurement-Based Guidance
of Software Projects

Using Explicit Project Plans

Christopher M. Lott and H. Dieter Rombach
Arbeitsgruppe Software Engineering

Fachbereich Informatik
Universität Kaiserslautern

67653 Kaiserslautern, Germany
Email: lott@informatik.uni-kl.de,

rombach@informatik.uni-kl.de

Appeared in Information and Software Technology,
Volume 35, Number 6/7, June/July 1993.

Abstract

As first steps towards establishing software engineer-
ing as an engineering discipline, we need to create
explicit models of its building blocks, i.e., projects,
processes, products, and various quality perspectives;
organize these models for effective reuse across project
boundaries; and establish measurable criteria for project
guidance. This paper investigates the possibilities of
providing measurement-based project guidance using
explicit project plans. Following a summary of tech-
nologies developed by the process modeling and mea-
surement subcommunities of software engineering, a
method for integrating these technologies is suggested,
and the potential benefits for project guidance are dis-
cussed. Examples from the MVP Project at the Univer-
sity of Kaiserslautern are used throughout for illustra-
tion purposes.

Keywords: improvement-oriented engineering model,
measurement, explicit models, project modeling,
project guidance.

1 Introduction

Software development and maintenance projects are dif-
ficult to plan and manage [1]. Major reasons include
the lack of explicit process models, the lack of oper-
ational definitions of target qualities, and the lack of

tractable quality models.1 Major strides towards intro-
ducing more engineering discipline into the processes
of software evolution (i.e., development and mainte-
nance) have been made by the software engineering
community. The process modeling and measurement
subcommunities especially have accumulated a signifi-
cant body of knowledge and provided promising tech-
nologies [2, 3]. The purpose of this paper is to demon-
strate how integrating explicit process models and mea-
surement can offer the needed intellectual control over
software evolution projects.

Process modeling and measurement technologies of-
fer many possibleavenues towards solving the problems
of planning and managing projects. Process modeling
technology is needed to capture project goals explic-
itly; to build explicit models of existing, real-world pro-
cesses; to integrate these models with other elements
into comprehensive project plans; to guide and con-
trol project performance using explicit project plans;
to enable changes in a process to be be specified, re-
viewed and planned; and to improve project plans both
on-line (i.e., while a project is being performed) and
off-line (i.e., for future projects). A number of pro-

1An operational quality definition is an explicit, objective def-
inition that allows unambiguous differentiation between different
instances of the quality aspect in question. An operational defi-
nition typically requires measurement. A tractable quality model
is an operational definition which allows tracing of quality aspects
through all relevant stages of a project.

1



cess modeling languages have been developed [4], and
first experiences regarding their practical usefulness are
documented [5, 6, 7, 8, 9].

Measurement technology is needed to define tar-
get data values for the qualities to be achieved by a
project, to make the status of a project visible, to pro-
vide feedback that guides the performance of project
team members, to support prediction of future project
performance, and to establish baselines against which
improvement claims can be judged. A number of mea-
surement approaches have been developed based on the
idea of tying measures to project goals; one example
is explained in in [10, 11]. Experience tells that useful
measurement plans can be established and significant
improvements can be achieved based on goal-oriented
measurement approaches in local environments [12].

There is a growing understanding that useful project
plans must be based on explicit models of processes,
products, quality aspects, etc. The best process models
describing “how” a process should be performed are
useless without an operational, measurable description
of “how well” it should be performed, defined in terms
of expected characteristics of the resulting products and
the processes themselves. The reverse is also true; the
best measurement plans are useless if they are based
on incorrect assumptions regarding the performance of
the projects to be measured [9]. We suggest explicitly
integrating process modeling and measurement tech-
nologies.

This paper describes how software evolution teams
can gain intellectual control over their projects by mod-
eling a project explicitly, instrumenting it with measur-
able target values according to empirical quality models,
guiding the project according to the instrumented and
explicit project plan, collecting measurement data, and
quantifying process improvements. We describe an ap-
proach for improvement-oriented software engineering
that is suited for integrating process modeling and mea-
surement, survey existing process modeling and mea-
surement technologies, propose a method for integrat-
ing process modeling and measurement technologies,
and describe how tractable project plans can be used
to guide projects. Examples from the MVP Project at
the University of Kaiserslautern are used throughout the
paper for illustration purposes.

2 Improvement-Oriented Software En-
gineering

Software engineering involves the development and ap-
plication of explicit models of the basic components of
the discipline (e.g., processes, products, resources, qual-
ities) in order to improve the understanding, planning,
and guidance of real-world software projects. One of
the major lessons learned from many years of software
engineering experience is that such models are complex
and need to be tailored and adjusted for changing project
goals and characteristics [13]. Therefore, systematic
software engineering requires explicit support both for
continuously building new models and for improving
existing ones based on lessons learned from ongoing
projects. It also requires support for guiding ongoing
evolution projects effectively based on the reuse of ex-
isting models. The use of measurement is essential
in order to support learning from ongoing projects as
well as to support guidance of projects based on sound,
objective criteria.

2.1 The TAME Model

The Quality Improvement Paradigm (QIP) developed in
the TAME project combines support for model build-
ing with support for project guidance, and also inte-
grates measurement [10, 14]. Process improvement is
achieved by repeating the following sequence of steps
for each project:

� Characterize: The project at hand is characterized
based on available models for similar projects.

� Set goals: Project and quality improvement goals
are identified and stated in a operational way.

� Choose models: A suitable project plan is devised
in order to achieve the stated goals. This involves
the selection of suitable models and metrics suited
for measuring adherence to project goals. The
quality of the plan depends on the maturity of the
organizational set of capabilities.

� Perform project: The project is performed accord-
ing to plan, data are collected, and project-specific
feedback for planning and management is pro-
vided.

� Analyze: The project is assessed upon completion
and lessons thereby learned are extracted for future

2



Project

Product
attribute
models

models

(Re-)use

Experience factory

Project organizations

Planning

Process
models

Performance

plan

(Quality)Resource
models

(Re-) package

Record

- construct
- monitor
- provide

- characterize
- set goals
- choose models

Project
goals and
charac. feedback

Lessons
learned

Analyze and package

Experience base

Figure 1: Improvement-oriented organizational structure

projects.

� Package: Based on feedback from each project,
existing models are reconsidered. If needed, mod-
els are excluded, added, modified, or repackaged
in order to improve their effectiveness for future
projects.

Figure 1 depicts an improvement-oriented structure
for a software organization based on the QIP. This
structure divides responsibility for QIP steps between
project-specific entities (i.e., project organizations), and
the Experience Factory organization. The Experi-
ence Factory is solely in charge of preserving and re-
packaging models of existing experience. Both intra-
project and inter-project feedback are supported by
recording and reuse activities. All experience accumu-
lated in a project, including measurement data, may be
recorded. Reuse of existing models takes place during
the planning stage of a project (where suitable models
are chosen for given project goals and characteristics)
as well as the performance stage of a project (where
actual data are compared to historical baseline mod-
els in order to achieve guidance). Re-packaging refers

to all activities aimed at improving the reuse potential
of existing experience (includes generalizing, tailoring,
formalizing) [14].

In the remainder of the paper we will use the follow-
ing terminology:

� Descriptive (or “as-is”) modeling: the activities
aimed at explicitly capturing some aspect(s) of an
existing software project.

� Prescriptive (or “to-be”) modeling: the activities
aimed at creating an explicit model of some as-
pect(s) to be achieved or followed in a future
project.

� Performance tracking and guidance: the activi-
ties aimed at comparing actual project performance
with prescriptive project plans in order to recog-
nize deviations, to suggest alternate performance
patterns for achieving project goals, and to initiate
replanning activities.

3



dp :
Write_design

tp :
Test_code

cp :
Write_code

cf :
Feedback

df :
Feedback

cd :
Code_

document

dd :
Design_

document

td :
Test_

document

rd :
Req’nts

document

tf :
Feedback

Figure 2: Product flow in DCT1 example

2.2 Example project plan

The following descriptive process model, abstracted
and simplified from [15], is used throughout the pa-
per. The product-flow view of this example appears
in Figure 2. A development project, named the DCT1
project, is modeled as consisting solely of the three pro-
cesses “Write design,” “Write code,” and “Test code.”
Each process consumes and produces a single product
document. Forward product flow is modeled as a sin-
gle document produced by each process and consumed
by its logical successor. Feedback among processes is
produced and consumed similarly, but in the opposite
direction. Control flow is modeled as iterative cycles
through the set of processes. The environment condi-
tions in which this project was performed are as follows:
the technical experience of the development team was
average for the environment (4 years); the implemen-
tation language was Ada; the application domain was
satellite control systems; the reliability requirements
on the software were average for the environment (0.5
faults per developed KSLOC was acceptable); and the
primary goal was to deliver the product on schedule.

2.3 Descriptive Modeling

Descriptive modeling aims to improve the understand-
ing of some aspect of a real-world software project.
Starting from some partial or low-confidence models,
we instrument a software project in order to improve
these models. For example, if we have only limited un-

derstanding of how resources are used throughout the
DCT1 project, we could instrument its project plan in
order to capture resource data (e.g., amount of effort
in staff hours per process of the project plan). Assume
that post-project analysis of the collected measurement
data shows that resources were used at a rate of 30%
for writing design, 40% for writing code, and 30% for
testing. Similarly, assume that post-project analysis of
error data shows that code faults were detected at the
rate of 0 in writing design, 4 per KSLOC in writing
code, and 2 in testing. These characteristic numbers
form simple quantitative models which can be used as
baselines in future projects.

2.4 Prescriptive Modeling

Prescriptive modeling involves choosing the appropri-
ate project plan from a library of such plans and choos-
ing the appropriate supporting tools when given a set
of project goals and characteristics (see also Figure 1).
This requires that project goals and characteristics are
defined in a measurable way, and that candidate mod-
els are available in the experience factory together with
information on their effectiveness relative to the project
goals and characteristics in question [14]. Consider
an example instantiation of the descriptive project plan
described above for a second project called DCT2, in
which the characteristics match those of DCT1. The
goals of DCT2 are to use not more than 1,000 staff-
hours and to stay within the characteristic fault detec-
tion rate of project DCT1. Thus for the writing code
activity, not more than 400 staff-hours (40% of 1,000)
should be expended. This example instantiated a project
plan without any changes. A more realistic case is that
the goals of the project do not have exact matches in
the library of models, which is the general reuse prob-
lem [14].

2.5 Project Tracking and Guidance

Project tracking is a prerequisite for a posteriori de-
tection or a priori prevention of project performance
problems, and for recognizing the need for replanning.
Project guidance consists of suggesting alternate per-
formance patterns to avoid reaching undesirable states.
Assume that the DCT2 project has completed their writ-
ing code process but has exceeded their resource limit by
50 staff-hours and has detected only 3 faults per KSLOC
instead of the expected 4. In this case, there are three

4



possibilities. First, the project can ignore the fact that
they have violated the expectations as expressed in the
project plan and continue. Second, the team can force
a redo of the code process. Although the resource limit
can never again be satisfied, perhaps additional unit test-
ing will detect more faults. Third, the team can replan
the project; essentially this recognizes that the plan as
stated is unattainable. In this example, deviation from
the project plan was detected only after a failure state
was reached. It is desirable to predict possible plan vi-
olations as early as possible and take preventive actions
before a failure state is reached. In the example given
above, the deviation could have been predicted at the
very moment when the resource limit was exceeded.

3 Existing Process Modeling and Mea-
surement Technology

This section presents lessons learned about process
modeling and measurement technologies and introduces
the specific technologies developed and used in the
MVP Project.

3.1 Existing Process Modeling Technology

Process modeling notations share a common purpose
of building models of real-world processes, but oth-
erwise differ widely. Some were designed to auto-
mate processes to the extent possible and others to aid
understanding. Numerous examples of notations for
building formal process models are surveyed in [2].
Lessons learned over the past five years of process re-
search [2, 16] include the following:

� Descriptive versus prescriptive models: Processes
already exist in software evolution organizations,
so it is natural to begin modeling them. Starting
from the current situation establishes the necessary
baselines against which any future improvements
must be measured. The case for descriptive mod-
eling is consistent with the initial characterization
step of the Quality Improvement Paradigm as dis-
cussed above. In the past, too little emphasis has
been placed on descriptive modeling.

� Goal-oriented versus algorithmic models: To
guide a project, descriptions of process and project
goals (what should be achieved) and algorithms
(how the goals can be achieved) are needed.

Project goal definitions help in selecting the ap-
propriate processes to match the given goals and
also motivate project personnel in terms of what is
expected. Algorithms are used to guide the perfor-
mance of project members in terms of what they
should do. With the exception of [17], too little
emphasis has been placed on explicitly modeling
project and process goals.

� In-the-large versus in-the-small models: Projects
are typically performed by teams of developers.
We distinguish between process modeling in-the-
small (describing the process aspects concerning
an individual team member) and process model-
ing in-the-large (the interfaces between different
team members). Experience tells that the most
leverage for improvement can be expected from
a better understanding of the interfaces between
team members. In the past, too much emphasis
has been placed on modeling in-the-small.

� Off-Line versus on-line support: A project plan
can be used off-line, as a reference document, or
on-line, as the basis of a support environment to
guide the performance of individual team mem-
bers. Simply capturing and understanding process
goals and measurement plans off-line can be help-
ful for teams, while on-line support can automate
data collection and project tracking activities. We
feel that too much emphasis has been given to
on-line support of fully automatable tasks, at the
expense of understanding deeper issues of team
coordination and process guidance to provide suit-
able support for creative evolution activities.

� Guiding versus controlling projects: A variety of
interaction models between team members and ex-
plicit project plans have been proposed for on-line
use of such plans. The fundamental question is
whether the human activity is controlled or guided.
Creative tasks must remain under the control of the
user, but guidance from a process-centered envi-
ronment is useful. Mechanizable tasks can be con-
trolled by the project plan; for example, by fully
automating data collection from software artifacts.
Guidance has received little emphasis in the past,
in part because of the focus on the mechanizable,
back-end activities of evolving programs such as
compiling and linking.

5



� Static versus dynamic project plans: Projects are
performed by humans, which means that project
performance is inherently nondeterministic. Soft-
ware projects are actually infinitely nondetermin-
istic, meaning that it is impossible to model a
finite set of plausible alternatives for the project
that will be sufficient to perform the work success-
fully. There will always be unforeseen problems
that must be handled during project performance.
Therefore, static (unchangeable) project plans are
not acceptable for guiding software projects. Lit-
tle previous work (again an exception is [17]) has
addressed the need for changeable plans.

3.1.1 The Process Modeling Language MVP-L

In the MVP Project, we developed the process notation
called MVP–L [18]. Our notation was designed for mod-
eling processes in-the-large, including building compre-
hensible specifications and designs of processes, prod-
ucts, and resources, and supporting the instantiation and
execution of these models for the purposes of analysis,
simulation, and project guidance. MVP–L project plans
are composed of elementary process, product, resource,
and attribute building blocks. Goals of a project are
specified for individual processes using entry and exit
criteria (rules). Algorithms of a project are optionally
given for individual processes using an algorithmic lan-
guage. Execution of MVP–L project plans for project
simulation and performance guidance is based on the
notion of project state and state transitions.

3.2 Existing Measurement Technology

Measurement is aimed at capturing some aspect of a
software object in a quantitative form. In the past, the
word “measurement” was synonymous with “metrics.”
Only recently have we learned that metrics need to be
defined and interpreted in the context of a project en-
vironment. Lessons learned over the past 15 years of
measurement research include the following:

� Measurement involves the specification, collec-
tion, and interpretation of measurement data for
various purposes.

� Measurement is oriented towards better under-
standing (building baselines), better planning and
management (prediction), and better quality and
productivity (improvement).

� Various improvement approaches exist, include
Deming’s Plan-Do-Check-Act approach [19],
Basili’s Quality Improvement Paradigm [10], and
the SEI’s Capability Maturity Model (CMM) [20].

� There is no generally accepted set of process met-
rics, because processes, perspectives, roles, needs,
and expectations vary too much.

� Owners of to-be-measured processes should be in-
volved in defining goals of measurement, metrics,
and interpretation of data (i.e., model building).

� We are capable of building models with strong
predictive powers for local environments [12, 21].

� We are only starting to understand the impact of en-
vironmental factors on empirical models [12, 21].

� Measurement needs to be top-down or goal-
oriented; objectives determine the choice of met-
rics [10].

� Various goal-oriented measurement approaches
exist, including Murine and McCall’s SQM [22],
Akao’s QFD [23], and Basili’s G/Q/M [10, 11].

� Empirical research studies need to be based on
sound principles [24].

� Process measurement requires an explicit model of
the process object to be measured [6, 9].

� Process data are owned by individuals and only
explicitly released for well-specified purposes.

A comprehensive state-of-the-art review of measure-
ment and empirical research appears in [16].

3.2.1 The Goal/Question/Metric Paradigm

The Goal/Question/Metric paradigm (G/Q/M), which
provides a framework for constructing a measurement
plan and interpreting measurement results [10, 11, 25],
is used in the MVP Project. G/Q/M supports both a
top-down, definitional approach, in which goals are re-
fined in a traceable way into metrics, and a bottom-up,
interpretational approach, in which measurement data
are interpreted in the context of the high-level goals.
In the top-down approach, high-level goals are recur-
sively refined into questions, and those questions are
in turn refined into a series of atomic metrics. In the

6



bottom-up approach, measurement data gathered for the
chosen metrics is used to answer the questions posed for
each goal, and the answers are used to satisfy the goals.
It is possible to validate the completeness of a set of
metrics before data collection begins based on whether
all questions can be answered. Additional features of
this measurement paradigm is that people interested in
achieving the goal can own and influence the measure-
ment plan, and that the privacy of the data gathered to
meet the goal can be preserved. An example of a high-
level goal is “to analyze the cost-effectiveness of the
unit-test process in order to understand it from a project
manager’s viewpoint in the organization’s development
unit.”

4 Integrating Modeling and Measure-
ment Technologies

Quality models are an integral part of any real-world
project plan. In our opinion, a major problem with most
process modeling notations is that they fail to reflect
the necessary synergy between process modeling and
measurement aspects. Most notations lack the facilities
to describe how quality models relate to project goals
and process algorithms, how measurement data can be
collected, and how measurement-based analysis results
can be fed back to guide project performance. We
describe related work as well as the specific approach
for integrating modeling and measurement technologies
that was developed in the MVP Project.

4.1 Related Work

Research activities in the past have established mea-
surement plans without process models and have built
process models without incorporating target measure-
ment values. However, recent trends emphasize the
integration of these technologies; examples include the
SEI’s Capability Maturity Model (CMM) [26] and the
most recent ESPRIT Call for Proposals [27]. The
CMM combines process modeling with measurement
of projects, products, and processes. The ESPRIT CFP
calls for integration of processes and measurement to
build process-centered environments. Currently, there
seems to exist general agreement on the following three
issues:

� Systematic planning and performance tracking of
projects is only possible when project goals are

defined objectively.

� Processes are specialized for each project’s
needs [10]. Needs in this sense may be any re-
quirement imposed on the project organization, in-
cluding product properties such as reliability and
process properties such as resource consumption.

� Metric collection efforts depend on a sound, objec-
tive, unambiguous understanding of the processes
from which data is collected [6, 9].

There is no general agreement as to how metrics and
quantitative models of quality aspects should be techni-
cally integrated into process models.

4.2 In the MVP Project

We have developed a measurement-based process mod-
eling technology by integrating the G/Q/M measurement
technology and the MVP–L process modeling technol-
ogy at the level of measurable data items. In MVP–L,
measurable data items are represented as process, prod-
uct, and resource object attributes, and in G/Q/M as met-
rics at the base of a G/Q/M plan. An MVP–L project
plan can be integrated with a G/Q/M measurement and
quality assessment plan by mapping G/Q/M metrics onto
MVP–L attributes. These MVP–L attributes are used to
connect with measurement tools for data collection dur-
ing project performance and to define entry/ exit criteria
(i.e., goals) of the project and individual processes. The
eventual collection of data as demanded by the project
plan and the evaluation according to quality criteria set
out in the measurement plan can be accomplished in the
context of a process guidance system.

A simple example of using our technology to in-
tegrate modeling and measurement activities is given
next, using the DCT1 project and a G/Q/M measurement
plan that measures the quality aspect of detecting defects
in the requirements document. The example G/Q/M-
goal is “to analyze the detection of requirements defects
in order to understand it from the development team’s
viewpoint in the development organization.” This goal
is refined into questions that map directly into metrics,
namely the number of requirements defects that were
detected in the three processes of writing requirements,
writing code, and testing code. To integrate these views,
each metric is mapped onto an MVP–L attribute of the
process models. Both how and when metric data should
be collected and how the data should be interpreted in

7



the context of the process are thereby specified explic-
itly.

Next we propose a simple, iterative method for build-
ing a prescriptive project plan that integrates many
project views, including but not limited to control flow,
product flow, and measurement:

� Develop the multiple views of the project sepa-
rately,

� Integrate the multiple views with each other, and

� Initialize target values in the project plan according
to existing, local quality models.

Developing multiple views includes representing pro-
cesses using MVP–L and writing measurement and data
interpretation plans using G/Q/M. Integration of mea-
surement views and project plans is achieved by map-
ping metrics onto project-plan attributes. Iteration be-
tween the first two steps will inevitably be required to
achieve consistency among the multiple views. Finally,
initializing target values in a project plan was illus-
trated earlier, when the expected resource allocation of
the DCT2 project was assigned according to the 30%,
40%, 30% allocation scheme from the re-used project
plan.

Further research is needed to define a general the-
ory of consistency between an MVP–L process model
and a G/Q/M measurement plan. Two simple types of
consistency are defined next:

� A G/Q/M measurement plan and a MVP–L process
model are definitionally consistent if every G/Q/M
metric is mapped to an MVP–L attribute and their
respective type definitions are equivalent.

� A G/Q/M measurement plan and a MVP–L process
model are feedback consistent if all G/Q/M metrics
which are intended to guide or manage a project
occur in entry and exit criteria of the MVP–L process
model.

These basically syntactical definitions of consistency
must be supplemented by considerations of the seman-
tics of this integration. We work towards establishing
rules for semantic consistency of multiple measurement
plans in the context of a single project plan.

5 Using Tractable Project Plans

The primary goal of using tractable project plans is
guiding software projects to achieve the needed intel-
lectual control. Providing in-project guidance requires
a project plan that meets our definition of tractable;
i.e., it is useful for tracking project performance in the
course of the project. Guidance may be purely off-line,
i.e., in the form of a project handbook, purely on-line,
i.e., encoded into a software engineering environment,
or somewhere in between the extremes. The major dif-
ferences along the spectrum between pure off-line and
wholly on-line guidance lie in the following issues:

� How can deviations from the project plan be de-
tected?

� How is inter-role communication supported?

� To what extent can actions be performed automat-
ically?

� To what extent can reliable measurement data be
collected?

� What quality of guidance can be provided?

This list of differences helps us explain the advan-
tages and required investments involved in using the
MVP technology to guide projects. We identify five
levels of integrating MVP’s process modeling and mea-
surement technology into a conventional software evo-
lution environment and discuss the above list of dif-
ferences for each level. These levels range from the
state of the practice to our ultimate research goals, and
are by no means the only possibilities. A conventional
environment consisting of software construction tools
is assumed as the foundation for all of the following
levels:

1. No explicit project plan or measurement plan
(predominant state of the practice).

2. Explicit project plan and a documented measure-
ment plan
(purely off-line documents).

3a. On-line project plan and a static, off-line measure-
ment plan.

3b. Static, off-line project plan and an on-line mea-
surement plan.

8



Products

Software
evolution
tool

H
um

an
H

C
I

C
om

pu
te

r

Figure 3: Level 1, No project or measurement plan

4. On-line project plan with an integrated measure-
ment plan
(our goal, a process-centered environment).

5.1 Level 1: No project plan or measurement
plan

This level of technology, as illustrated in Figure 3, re-
flects state-of-the-practice SEEs and serves as a baseline
against which we compare the following levels. Activi-
ties performed by individual project members are shown
at the top, and actions carried out by a machine are
shown below. The interface between project personnel
and the software engineering environment is based on
the invocation of software tools. A clear understanding
of project goals and requirements is necessary for the
tools to be used effectively; however, these goals and

requirements are only implicitly defined in the minds
of the engineers. Because there is no explicit project
plan, there is no support in such an environment for de-
tecting plan deviations, supporting inter-role commu-
nication, performing actions automatically, collecting
reliable measurement data, or providing quality guid-
ance.

5.2 Level 2: Explicit project plan and mea-
surement plan

The next technology increment, as illustrated in Fig-
ure 4, reflects current trends in software organizations.
Activities are represented using MVP–L project plans,
which describe the constructive and analytic process
steps. Measurement plans defining project goals are
written according to the G/Q/M paradigm, as sketched on
the right. Deviations from plan are detected by project
personnel by invoking measurement tools and compar-
ing the results thus obtained with the project plan. The
project plan may help a team member realize that he
or she introduced inconsistency into the project, and
that he or she must explicitly notify all affected team
members. There is no support for performing actions
automatically; all actions must be triggered by explicit
user invocations of tools. The measurement plan clearly
defines what data is required and when it should be col-
lected, but the physical collection of measurement data
requires effort on the project of project personnel to
fill out forms. Because such data-collection activities
are often postponed or otherwise delayed until the end
of the week or month to reduce their overhead, wide
variances in data quality may result. Finally, quality
guidance may only be provided to the project through
the efforts of individuals who track the project state,
read the project plan, and monitor the measurement
data. There is no guarantee that the project proceeded
in accordance with the project plan, which makes static
use of the project plan even more difficult.

By using the MVP technology off-line, a project
may realize the advantages of improved understand-
ing of their processes, quantitative definition of the cri-
teria necessary for project success, and a clearly de-
fined method by which project state can be monitored.
Reaching this level requires an organization to devote
considerable effort towards defining its processes and
constructing a measurement plan. An example of writ-
ing and using explicit project plans, although not using
exactly those notations developed in the MVP Project,

9



Measurement plans

Project plan

Products

Meas’t

Meas’t
tool

Software
evolution
tool

Understanding

data

H
um

an
H

C
I

C
om

pu
te

r

Figure 4: Level 2, Explicit, off-line project plan and measurement plan

10



is discussed in [28].
Next we describe two real-world examples of having

used the MVP technology off-line. NASA’s Software
Engineering Laboratory used project plans off-line to
understand a maintenance process [6, 9]. A first attempt
to collect data on maintenance processes in this envi-
ronment failed because the process model implicit in
the minds of the leaders of the study was not consistent
with the existing processes. After views of maintenance
personnel were iteratively captured, represented using
MVP–L, and reviewed until conflicts were resolved, data
collection efforts yielded interesting and meaningful re-
sults.

The second example is a case study which we per-
formed in cooperation with TRW [8]. TRW person-
nel used their natural-language description of a pro-
posed reuse-oriented development process to build a
project plan using the MVP–L language, analyzed the
MVP–L representation for completeness and consistency,
changed the representation to fix problems and improve
it, and finally rewrote an improved natural-language
description. TRW personnel were able to understand
MVP–L constructs easily and write meaningful process
representations after minimal instruction. The payoff
to the users at TRW was an improved understanding of
their process and generation of an internally consistent
process representation.

5.3 Level 3a: On-line project plan, off-line
measurement plan

The possibility of a process-centered environment in
which tool use is mediated by a project plan, but without
measurement support, is illustrated in Figure 5. Such a
system is the first step towards offering project person-
nel a role-specific, process-centered interface through
which they accomplish their work. Because this level
of technology offers no on-line support for represent-
ing and using the quantitative criteria that define project
success, we claim that this level represents no signifi-
cant progress over use of a sophisticated version con-
trol system. The project plan is essentially limited to
evaluating process entry and exit criteria in terms of
product flow. Deviations from the project plan can be
detected when products are changed or not produced
as expected. Inter-role communication is provided in
the sense that the version control system tracks user’s
actions and prevents conflicting actions. Actions can
be performed automatically exactly when users inter-

act with the revision control system. The collection of
reliable measurement data is not supported on-line, so
it is subject to the same problems discussed in level
2. Finally, the quality of guidance that can be offered
based on product availability is mostly limited to in-
forming project personnel of processes that can begin
and notifying processes of changes in input products.

Nonetheless, this technology increment offers many
advantages over level 2. Some conflicting actions can
be detected automatically, deviations from the plan can
be reported, and rudimentary guidance is possible. Fur-
ther, because we believe that all of these benefits accrue
through the use of version control technology, the in-
vestment required of an organization to achieve this
level is moderate. Version control systems such as
RCS [29] are well understood and freely available.

5.4 Level 3b: Off-Line project plan, on-line
measurement plan

The possibility of an environment that supports on-line
collection and interpretation of measurement data, but
does not incorporate a project plan, is depicted in Fig-
ure 6. Although the project plan is not automated, it is
explicitly defined. Every measurement plan implicitly
assumes some process standard. If project performance
deviates from that implicit standard, then misinterpre-
tations of the data are inevitable. Any detections of
project performance deviations are purely accidental in
this environment. In this level of technology, there is
no support for inter-role communication. Many trivial
activities pertaining to measurement may be automated,
especially the routine collection of measurement data.
Automated support for data collection can be expected
to yield much higher quality data than that which is
collected by hand. Finally, limited guidance can be
provided if empirical models for the process and envi-
ronment are available.

The main advantage of this level of technology use
is that many trivial activities involved in gathering mea-
surement data can be automated using existing tools.
Our hypothesis is that this increased automation will
dramatically improve the reliability of the collected
data. The immediate return on investment to an orga-
nization that achieves this level of integration is higher
than at level 3a, primarily because the extra work re-
quired by measurement activities can be partially of-
floaded onto automated tools. As was discussed earlier
in this paper, a paradigm like G/Q/M is absolutely neces-

11



Project plan

Products

Meas’t

Meas’t
tool

Software
evolution
tool

data

H
um

an
C

om
pu

te
r

H
C

I

Measurement plans

Understanding

Figure 5: Level 3a, On-Line project plan, off-line measurement plan

12



Products

Meas’t

Meas’t
tool

Software
evolution
tool

data

H
um

an
C

om
pu

te
r

H
C

I

Project plan

Understanding

Measurement plans

Figure 6: Level 3b, Off-Line project plan, on-line measurement plan

13



sary to guide the organization to construct a data collec-
tion plan, develop baseline models of the organization,
and interpret the data.

This level of technology has been implemented in
NASA’s Software Engineering Laboratory [30, 15]. The
Software Management Environment (SME), developed
in this organization, offers one example of on-line use
of a measurement program [31]. SME accesses large
quantities of data captured from the current project and
compares that data to models of the typical and target
values for each metric in their environment. When cur-
rent project data deviates from the baselines, the system
can offer possible interpretations for the deviations.

5.5 Level 4: Process-centered environment

Our ultimate goal, a system in which quantitative cri-
teria for project success are integrated into an explicit
project plan and used to guide a project, is shown in Fig-
ure 7. This interface offers indirect access to the usual
software evolution tools, and represents a paradigm shift
from unmonitored access of software evolution tools to
guided, process-oriented access of the same tools. Lines
in the figure between the G/Q/M measurement plan and
the MVP–L project plan represent the integration of tar-
gets and baselines with process models to form a project
plan, as discussed in the previous section. The system
interface will gather quantitative data and offer guidance
according to the collected data and the project plan. By
providing such an interface, a project plan serves as
an integration mechanism for a software engineering
environment [32].

User-initiated evaluations of project state remain pos-
sible, but deviations may additionally be detected and
reported to project personnel asynchronously; i.e., with-
out explicit user action.

Project personnel are kept informed about which ac-
tivities are possible, which activities are currently being
performed, and which activities have been affected by
the unexpected results of a connected activity. Activities
as used here are not fine-grained tasks such as compiling
a code module, but coarse-grained tasks such as design-
ing a subsystem or conducting a major review. This
type of guidance helps teams coordinate their actions
among each other and detect when independent actions
have come into conflict with each other.

Actions such as periodic data collection or other
mechanizable tasks such as compilation may be per-
formed automatically. Such actions may be triggered

by changes in project state initiated by project personnel
(e.g., starting a process) or by the tracking system (e.g.,
passage of time).

Data can be collected on a timely basis and an on-line
support system can further guarantee the consistency of
the project state with the plan. Some types of mea-
surements lend themselves to automatic collection. A
simple example is static source-code metrics, which can
be collected from a version-control library. Other types
of measurements are available only from project per-
sonnel. Examples are resources consumed by review
activities, characterizations of defects removed, and fi-
nal completion dates of processes. In all of these cases,
automated support of data collection can be provided
using something like a forms-based tool to reduce pa-
perwork and encourage timely collection of data. It
cannot be overemphasized that automated support for
data collection must work harmoniously with project
personnel to reduce the costs of this activity, not to
check up on personnel.

Finally, given that a deviation from the project plan
has been detected, and the project team has not chosen
to ignore the deviation, the system can provide facilities
to estimate how much work must be redone or to sug-
gest how to replan the project. For example, backward
chaining can be used to estimate how far the work must
be rolled back in order to restore consistency with the
project plan. The ideal process guidance system would
warn project personnel well in advance; i.e., before a
project state inconsistent with the plan is ever reached.

The capabilities of a process-centered environment
can be best understood in the context of an example.
We use the DCT1 example to show how a team member
responsible for maintaining the consistency of the on-
line project plan with the current project state requests
information and enters changes in project state.

Assume that the members of the DCT1 project have
completed their writing design process and intend to
start the writing code process. To keep this example
simple, assume that the two processes do not overlap.
The responsible team member indicates to the system
that the design process is complete. The system re-
sponds by collecting information. Data for the design
quality aspects of coupling and information hiding is
collected using a design-measurement tool, and data
regarding resource consumption for the design activity
and requirements defects found during the design pro-
cess is requested from the team member using a forms-
based tool. The data are then used to evaluate the exit

14



Measurement plansProject plan

Products

Meas’t

Meas’t
tool

Software
evolution
tool

data

H
um

an
C

om
pu

te
r

H
C

I

Figure 7: Level 4, A Process-centered environment

15



criteria for the design process. In this case, assume that
the design team has consumed 105% of their resource
allocation. This fact is reported. Defect detection data
is substantially below the baseline value, and this fact
is noted.

Because the exit criteria are not fulfilled due to the ex-
cess resource consumption, the user has three options,
as discussed earlier. One, ignore the problem; two, re-
peat the process; or three, replan. Because the resource
limit was only exceeded by 5%, the team member de-
cides to ignore the problem and marks the process as
complete. The completion of the writing design pro-
cess fulfills the entry criteria of the writing code pro-
cess, meaning that it can be started. Because project
state is constantly visible to project personnel, this fact
is immediately reported. The team member initiates a
second change in project state, namely by notifying the
tracking system that the team intends to start the writing
code process. Because that process’s entry criteria are
true, this change is accepted. The system’s project state
is thus made consistent with the fact that team members
are proceeding with the writing code process.

5.6 Requirements for Process-Centered SEEs

The discussion of planned capabilities of a process guid-
ance system given above allows us to derive a num-
ber of requirements necessary for constructing process-
centered software engineering environments. We di-
vide these requirements into two parts, namely those for
model building and those for providing in-project guid-
ance. The fundamental concept that we believe must be
supported is the systematic definition, collection, use,
and evaluation of measurement data.

The modeling machine must contain mechanisms for:

� Defining metrics

� Defining events triggering data collection

� Connecting events with measurement tools

� Analyzing project plans for internal consistency

The execution machine must contain mechanisms for:

� Defining and making project state visible

� Changing project state, such as starting or com-
pleting processes

� Querying project state, such as evaluating mea-
surement goals on demand

� Automatically collecting data using tools

� Requesting data from project personnel in a timely
manner

� Evaluating all baselines and goals defined for the
project automatically to detect deviations

� Maintaining consistency of project state with ac-
tual project performance

� Supporting replanning activities in the middle of
project performance.

Maintaining the consistency of the project state and
supporting replanning are two issues that deserve brief
discussion. Project guidance wholly depends on a
model of the project that exists only in the support
system. Expectations of processes are expressed in
the project plan and communicated to personnel. The
support system must trust personnel to meet those ex-
pectations, and if those expectations cannot be met, then
replanning is generally needed.

We understand the term “replanning” to involve
changes to a project plan that must be done by peo-
ple. Following such a replanning process, the altered
project plan must be used to restart the guidance system
with a project state as close as possible to the one that
was current when replanning activities were initiated.
Certain types of changes in the project plan, such as
deleting subprocesses, will require substantial work to
fit the new project plan together with the old project
state and allow guidance to continue.

6 Conclusions

Intellectual control over software evolution projects re-
quires the creation of a comprehensive project plan
during the planning stage of a project and intelligent
support for guiding project performance according to
the plan. It is essential to integrate measurable cri-
teria into such plans. We demonstrated in this paper
that the currently available process modeling and mea-
surement technologies hold promise for gaining intel-
lectual control over software evolution projects in the
context of an improvement-oriented software engineer-
ing framework. We suggested one possible integration
of process and quality models into measurement-based
project plans, both in general and in terms of the tech-
nology developed in our MVP Project. Finally, the ben-
efits of explicit measurement-based project plans were

16



discussed depending on whether such plans are used
as off-line reference documents only or whether they
are incorporated into a software engineering environ-
ment. Our final conclusion is that there is reason to
expect qualitative improvements by building so-called
process-centered environments. Such environments are
based on a change of paradigm regarding the interac-
tion between developers and software engineering envi-
ronments (from tool-oriented to process-oriented) and
promise more intelligent guidance of individual team
members and better support for effective software engi-
neering than off-line use of project plans.

References

[1] Frederick P. Brooks, Jr. The Mythical Man-Month.
Addison Wesley, 1978.

[2] Proceedings of the International Software Process
Workshop, 1984–1993.

[3] Proceedings of the International Conference on
the Software Process. IEEE Computer Society
Press, 1992–1993.

[4] Marc I. Kellner and H. Dieter Rombach. Ses-
sion summary: Comparisons of software process
descriptions. In Takuya Katayama, editor, Pro-
ceedings of the 6th International Software Process
Workshop, pages 7–18. IEEE Press, October 1990.

[5] Mark I. Kellner. Software process modeling: value
and experience. In SEI Technical Review, pages
23–54. Software Engineering Institute, Pittsburgh,
Pennsylvania 15213, 1989.

[6] H. Dieter Rombach and Bradford T. Ulery. Im-
proving software maintenance through measure-
ment. Proceedings of the IEEE, 77(4), 1989.

[7] Maria H. Penedo and Christine Shu. Acquiring ex-
perience with the modeling and implementation of
the project life–cycle process. IEE Software Engi-
neering Journal, 6(5):259–274, September 1991.

[8] C. D. Klingler, M. Neviaser, A. Marmor-Squires,
C. M. Lott, and H. D. Rombach. A case study in
process representation using MVP–L. In Proceed-
ings of the 7th Annual Conference on Computer
Assurance (COMPASS 92), pages 137–146, June
1992.

[9] H. Dieter Rombach, Bradford T. Ulery, and Jon
Valett. Toward full life cycle control: Adding
maintenance measurement to the SEL. Journal of
Systems and Software, 18(2):125–138, May 1992.

[10] Victor R. Basili and H. Dieter Rombach. The
TAME project: Towards improvement–oriented
software environments. IEEE Transactions on
Software Engineering, SE-14(6):758–773, June
1988.

[11] Victor R. Basili. Software development: A
paradigm for the future. In Proceedings of the
13th Annual International Computer Software and
Application Conference (COMPSAC), pages 471–
485, Orlando, Florida, September 1989.

[12] Frank E. McGarry. Results of 15 years of mea-
surement in the SEL. In Proceedings of the 15th

Annual Software Engineering Workshop. NASA
Goddard Space Flight Center, Greenbelt MD
20771, November 1990.

[13] Victor R. Basili and H. Dieter Rombach. Tailoring
the software process to project goals and environ-
ments. In Proceedings of the 9th International
Conference on Software Engineering, pages 345–
357. IEEE, March 1987.

[14] Victor R. Basili and H. Dieter Rombach. Support
for comprehensive reuse. IEE Software Engineer-
ing Journal, 6(5):303–316, September 1991.

[15] National Aeronautics and Space Administration.
Manager’s handbook for software development.
Technical Report SEL-84-101, NASA Goddard
Space Flight Center, Greenbelt MD 20771, 1991.

[16] H. Dieter Rombach, Victor R. Basili, and
Richard W. Selby, editors. Experimental Soft-
ware Engineering Issues: A critical assessment
and future directions. Lecture Notes in Computer
Science Nr. 706, Springer-Verlag, 1993.

[17] Karen Huff and Viktor Lesser. A plan–based in-
telligent assistant that supports the software de-
velopment process. In Peter Henderson, editor,
Proceedings of the 3rd ACM SIGSoft/SIGPLAN
Symposium on Practical Software Development
Environments, pages 97–106, November 1988.
Appeared as ACM SIGSoft Software Engineering
Notes 13(5), November 1988.

17



[18] Alfred Bröckers, Christopher M. Lott, H. Di-
eter Rombach, and Martin Verlage. MVP Lan-
guage Report. Technical Report 229/92, Fachbere-
ich Informatik, Universität Kaiserslautern, 67653
Kaiserslautern, Germany, December 1992.

[19] W. Edwards Deming. Out of the crisis. Mas-
sachusetts Institute of Technology, Cambridge,
Mass., 1986.

[20] Watts S. Humphrey. Managing the Software Pro-
cess. Addison Wesley, Reading, Massachusetts,
1989.

[21] Frank E. McGarry and R. Pajerski. Towards un-
derstanding software - 15 years in the SEL. In
Proceedings of the 15th Annual Software Engi-
neering Workshop. NASA Goddard Space Flight
Center, Greenbelt MD 20771, November 1990.

[22] J. A. McCall, P. K. Richards, and G. F. Wal-
ters. Factors in software quality. Technical Re-
port RADC-TR-77-369, Rome Laboratory, Griffis
AFB, NY, 13441, 1977.

[23] M. Kogure and Y. Akao. Quality function de-
ployment and CWQC in Japan. Quality Progress,
October 1983.

[24] Victor R. Basili, Richard W. Selby, and David H.
Hutchens. Experimentation in software engineer-
ing. IEEE Transactions on Software Engineering,
SE-12(7):733–743, July 1986.

[25] H. Dieter Rombach. Practical benefits of goal-
oriented measurement. In N. Fenton and B. Little-
wood, editors, Software Reliability and Metrics.
Elsevier Applied Science, London, 1991.

[26] Watts S. Humphrey, David H. Kitson, and Tim C.
Kasse. The state of software engineering practice:
A preliminary report. In Proceedings of the 11th

International Conference on Software Engineer-
ing, pages 277–288. IEEE, May 1989.

[27] ESPRIT. Specific research and technological de-
velopment programme in the field of information
technology. Draft Work Programme for 1993-94,
Directorate General XIII, Commission of the Eu-
ropean Communities, B-1049 Brussels, Belgium,
1993.

[28] Watts S. Humphrey, Terry R. Snyder, and
Ronald R. Willis. Software process improvement
at Hughes Aircraft. IEEE Software, pages 11–23,
July 1991.

[29] Walter Tichy. Rcs–a system for version control.
Software–Practice and Experience, 15(7):637–
654, July 1985.

[30] National Aeronautics and Space Administration.
Software engineering laboratory (SEL) relation-
ships, models, and management rules. Technical
Report SEL-91-001, NASA Goddard Space Flight
Center, Greenbelt MD 20771, February 1991.

[31] W. Decker and Jon Valett. Software manage-
ment environment (SME) concepts and architec-
ture. Technical Report SEL-89-103, NASA God-
dard Space Flight Center, Greenbelt MD 20771,
September 1992.

[32] Kurt C. Wallnau and Peter H. Feiler. Tool integra-
tion and environment architectures. Technical Re-
port CMU/SEI-91-TR-11, Software Engineering
Institute, Carnegie Mellon University, May 1991.

18


