
Measuring
Process
Improvement

There has been much talk in the software industry regarding software process
improvement. The emphasis has often been on passing various “tests,” such as

the ISO certification and SEI CMM Levels. If you are
taking one of these routes, you may be wondering if
you are actually improving anything—or just learning
to jump through new hoops for the purpose of an au-
dit. Process improvement doesn’t have to be academic,
or solely focused on documentation. It can, and should,

be used to solve real problems and make real gains.
This article discusses how to track progress in your process improvement program, and offers four

questions to consider as you measure your progress: Are we achieving our project goals, solving our de-
velopment problems, and making progress on our improvement action plans? What are our savings in
time and money? Are we making headway on our chosen process model or standard? What lessons have
we learned? Answering these questions lets you know how well your improvement program is going, pro-
vides visibility early for detecting problems, and gives you data to make your future plans more effective. 

We’ll also look at some examples of how companies track improvement; you can tailor these exam-
ples to fit your needs, or use them as a starting point to generate your own measurement ideas. Our intent
is to stimulate you to think about the types of measures that would be useful in your process improvement
environment.

Almost all process improvement programs—ISO, CMM, or a homegrown hybrid—are built from sim-
ilar components. For the purposes of this discussion, we’ll use the Shewhart four-step improvement cycle
for planning, executing, and managing improvement programs. It divides the process into four phases:
PLAN (planning the improvement effort), DO (executing the plan), CHECK (measuring improvements),
and ACT (acting on the data from the CHECK phase). The DO and ACT phases are subjects for other arti-
cles; here our discussion will focus on the PLAN and CHECK components.

www.s tqemagaz ine .com Sof tware  Tes t ing  & Qua l i t y  Eng inee r ing November/December  2000
42

Measurement & AnalysisMeasurement & Analysis

Tracking your project goals

by Neil Potter and Mary Sakry

QUICK LOOK

■ Keys to tracking your process
improvement program

■ Measurement based on your
project’s goals and problems

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

http://www.stqemagazine.com/
Alison Kincaid
    This artilce is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

http://www.stqemagazine.com/
http://www.sqe.com/
Alison Kincaid
This

Alison Kincaid
   This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

Alison Kincaid
 

Alison Kincaid
    This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.



November/December  2000 Sof tware  Tes t ing  & Qua l i t y  Eng inee r ing www.s tqemagaz ine .com
43

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

Plan: Defining Goals
To measure your progress in anything—a marathon, a
weight-loss regimen, or a software process improvement
program—you have to have a plan. That plan provides clear
standards and goals against which to measure your ad-
vancement. In software processes, effective improvement
planning is based on the business goals and problems of
the organization. Example goals might include the delivery
of a product, the completion of a software installation, or
the upgrade of a database.

Examining both the goals and problems of an organi-
zation can provide an effective scope for any improvement
program. This goal-problem approach starts with business
goals and focuses on eliminating the problems that keep
you from reaching those goals. The resulting goal-problem
improvement program is compelling and practical. Here
are some examples from one company:

1. Goal: Reduce product development cycle to six to nine
months.
Problem 1.1: We don’t manage changing require-
ments.
Problem 1.2: Difficult to find defects before test.

2. Goal: Successfully deliver product X.
Problem 2.1: Wrong files (e.g., DLLs) are put on

CD—unsure of the correct ones.
Problem 2.2: Defect repairs break essential product
features.

3. Goal: The core software product performance is increased
by 20 percent.
(No identified problems)

4. Goal: Developers have the essential development tools (lat-
est compiler, memory checker, debugger, and performance
analyzer).
(No identified problems)

5. Goal: Customer rating is nine out of ten on product evalua-
tion form.
Problem 5.1: Customers are unhappy. There are
approximately 300 outstanding defects that have
not been addressed. 

6. Goal: Profit remains 15 percent (costs remain the same as
last year).
(No identified problems)

Measurable improvement plans should clearly describe the
goals, the reasons behind those goals, and the actions re-
quired to achieve them. The sample improvement plan
shown in Figure 1 illustrates these components for our first

Goal and Purpose of Goal Actions Sequence/
Intermediate Goals (Why do you want Priority
(The results you want) to achieve the goal?) ( *=essential )

GOAL 1: REDUCE PRODUCT INCREASE MARKET
DEVELOPMENT CYCLE TO 6–9 SHARE BY DELIVERING
MONTHS PRODUCT X

Intermediate Goal: Only allow changes to the application interface, 1*
Manage changing requirements not the kernel routines.
(based on problem 1.1)

Establish a group with the authority for managing 2*
the project’s software baselines [from SEI CMM 
Level 2].

Review the initial requirements and changes before 3
they are incorporated into the project plan [from SEI 
CMM Level 2].

Buy a requirements management tool. 4

Record and track change requests and problem 5
reports for all configuration items/units [from SEI 
CMM Level 2].

Improve the library control system to minimize 6
version control errors.

Intermediate Goal: Hold formal inspections of the seven critical 1*
Find defects before test code areas currently delaying the product.
(based on problem 1.2)

FIGURE 1 Sample improvement plan

http://www.stqemagazine.com/
Alison Kincaid
This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

http://www.stqemagazine.com/
http://www.sqe.com/


goal (from the list above).
The first column lays out the primary and intermediate

goals of the improvement project, deriving the intermediate
goals from the problem statements (2.1 and 2.2). The next
column describes the primary goal’s purpose, answering
the question “Why do I want to achieve this goal?” or “What
benefit does it provide?” The third column lists all the ac-
tions that will contribute to the intermediate goals; note
that the more involved action steps
will need a higher level of detail. 

The fourth column records the
sequence and priority of your ac-
tions. Your focus should be on
achieving the intermediate goal you
stated, not necessarily on doing all
of the actions—so assign “essential”
status to no more than 20 percent of
each intermediate goal’s actions, fo-
cusing on the ones that you believe
will help you make the greatest
progress toward the goal.

Check: Measuring
Your Progress
If you’ve laid a clear groundwork of goals in your planning
phase, you’ve made the later phases—including the stages
at which you’ll be checking your progress using
measurements—much easier.

As you enter your CHECK phase, your first task is to
determine the few high-priority measures you care the most
about. Do you care only that progress is being made toward
the business goals? Do you also care about which problems
are being addressed, or how much money you are spending
on each goal? Let’s examine the four key questions to ask
as you compare your progress to your goals.

1. Are we making progress on the goals,
problems, and action plan?

Goal completion: Business goals were the
reason for developing the improvement
plan during the planning stage.
Checking progress toward the
completion of each goal determines
how effective your improvement effort
has been. Checking the goals for
achievement is straightforward. Simply
check them off on the improvement
plan as they are completed.

Goals that looked clear when
initially written often seem ambiguous
when checked for completion. When
you check the goal it might need further
clarification before anyone can say
whether it is complete or not. For
example, a goal stating, “Keep
customers happy,” is difficult to verify.
The goal, “Customer rating is nine out
of ten,” is easier to verify. Do not be

surprised if you must tweak the goal during the CHECK
phase. With practice, you will be able to write clearer goals
the first time. 

What if the goal is not yet completed? Some of the
goals you check will not have been reached yet. For exam-
ple, the improvement actions for the goal “Successfully de-
liver product X” might be completed, but the software prod-
uct might not be ready for delivery. Since the goal is not

completed, determine if any other improve-
ments are needed to accelerate the goal, or
to make it more likely to succeed.

If it’s not measurable, make it measurable: If you
want to track your goals numerically, select
metrics that are representative of the goal
and ones for which you can obtain data. For
example, one of our clients wished to in-
crease the productivity of their employees.
Productivity is defined as the output per unit
of time invested in an activity, which is typi-
cally measured in size per unit of effort. It
can be very difficult to use this measure of
productivity across an organization where
some people produce design documents,
some produce project plans, and others sup-
port a help desk. Realizing this problem, the

company tracked gross sales per employee. This was some-
thing that they considered important and could easily mea-
sure. It was also something on which they had existing data.

Problems (intermediate goals) and action plan completion: Prob-
lems (described by the intermediate goals) and actions can
be checked off the plan as they are completed. Additionally,
a trend chart can be used to show the rate of progress (see
Figure 2). We recommend that you only chart the number
of completed goals and intermediate goals, since charting
at an action-item level can be overwhelming.

In Figure 2, we can see that by month eight it is unlike-
ly that the improvement project, consisting of eleven goals
and intermediate goals, will be complete by the desired

10

8

6

4

2

2

Goals/Intermediate Goals Completed (of 11)

4 6 8 10 12 14 16

Today Original
Deadline

Month

Planned
Actual

FIGURE 2 Trend diagram tracking goal and intermediate goal completion

www.s tqemagaz ine .com Sof tware  Tes t ing  & Qua l i t y  Eng inee r ing November/December  2000
44

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

If you’ve laid a clear  

groundwork of goals in your

planning phase, you’ve made

the later phases—including 

the stages at which you’ll be 

checking your progress using

measurements—much easier. 

A
N

N
IE

 B
IS

S
E

T
T

http://www.stqemagazine.com/
Alison Kincaid
   This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

http://www.stqemagazine.com/
http://www.sqe.com/


November/December  2000 Sof tware  Tes t ing  & Qua l i t y  Eng inee r ing www.s tqemagaz ine .com
45

deadline of sixteen months. A new plan is needed based on
current performance.

2. What are the savings in time or money?
Calculating the savings in time or money helps determine if
the time and money invested so far have been valuable. We
define savings as:

The benefit of time or money from 
achieving a goal (or fixing a problem)

–minus –
The investment of time or money in 

achieving a goal (or fixing a problem)

In the action plan illustrated in Figure 1, one of the prob-
lems identified for goal #1 was the organization’s need to
find defects before test (problem 1.2). An action was in-
cluded in the plan to inspect selected code.

The chart in Figure 3 shows a team’s speed in finding
coding defects using inspection compared to system test.
For each piece of code that was inspected, the number of
defects found per effort-hour of inspection (find rate) was
calculated. The find rate is defined as:

Number of major defects found 
during inspection

–divided by–
Total number of effort-hours used in inspection 

preparation and inspection logging phase 

The average find rate was 1.6 defects per effort-hour, or
one defect every 38 effort-minutes of inspection. On aver-
age, system test found 0.3 defects per effort-hour, or one
defect every 200 minutes. In this case, the team invested
US$5,600 and two days’ training to learn the inspection
process.

The project was able to determine the benefit of this
new practice by taking some simple measures. Cost-benefit
calculations, similar to the simple one described, allow

teams to make informed decisions on which improvements
are effective and where they should be applied in the proj-
ect. In this case, inspections were used to clean up the code
going into system test.

When you calculate the savings, keep your calculations
simple. Calculate the investments and returns on a small
scale and then extrapolate the data based on the duration of
the improvement and the number of people impacted by
the change. Keep your projections conservative and mea-
sure the savings as you deploy the new technique. Since
any data you produce is very easy for others to attack, en-
sure that you list all of your important assumptions.

3. Are we making progress on the
process model or standard, if one is
being used?
If you have adopted a process improvement model or stan-
dard, you will need a method of checking your progress.
There are two easy ways to do this. First, by counting the
actions completed in the action plan that came from the
improvement model or standard. Second, by performing a
more thorough check called a “mini-assessment.”

Counting the completed actions: To check progress against a
process model or standard, determine which model- or
standard-related actions are complete. Progress can be
measured by counting these actions as a percentage of all
the actions required for the model or standard. In the plan
shown in Figure 1, three of the actions are SEI CMM Lev-
el 2 activities.

Mini-assessment: Another method of tracking progress of
an organization against a process model or standard is a
mini-assessment. A mini-assessment obtains a quick snap-
shot of the improvement program. The results show
which practices are being adopted and which are not. A
mini-assessment is not an audit or a full process assess-
ment, but a friendly check to determine progress.

Before a mini-assessment is conducted, it is impor-
tant to decide what practices will be
checked for adoption. This could in-
clude the activities described by the
organization’s development life cycle,
SEI CMM, or ISO9001. A list of ques-
tions is developed based on these cri-
teria. For example, does your team:

■ Perform inspections or walk-throughs for key
work products (e.g., code, design, test cases,
plans)?

■ Perform black-box testing?

■ Perform white-box testing?

■ Perform configuration management of all
work products (from plans to code)?

■ Have adequate computer network stability
(compared to the problem reported in the last
assessment)?

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

Major Defects Found per Effort-Hour

4

3

2

1

Session 1 Session 2 Session 3 Session 4 Session 5 Session 6 Session 7

3.7

1.5

1.9

1.0

1.5

0.1

1.3

Inspection Session of Unique Code Modules

Typical Find Rate
for System Test

FIGURE 3 Inspection find rate (for seven different code segments) compared to
system testA
N

N
IE

 B
IS

S
E

T
T

http://www.stqemagazine.com/
Alison Kincaid
 

Alison Kincaid
                   This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

http://www.stqemagazine.com/
http://www.sqe.com/


www.s tqemagaz ine .com Sof tware  Tes t ing  & Qua l i t y  Eng inee r ing November/December  2000
46

In Figure 4, one organization
has tabulated its mini-assess-
ment data to show progress to-
ward achieving SEI CMM Level
2, broken down into 154 indi-
vidual elements. The responses
fall into five categories to show
partial satisfaction of the CMM
components:

■ Not Applicable

■ None (little or no verbal or written
evidence)

■ Weak (current practice or plans are
weak or inadequate)

■ Some (project is approaching intent of Key Process Area [KPA] prac-
tice)

■ Strong (generally speaking, project fulfills CMM intent)

The rough prediction line on the graph predicts that all 154
elements might be complete by the first half of 2004 based
on actual progress since 1998. The improvement plan (see
“Projected SPI Plan 1.0” on Figure 4), developed for the
first half of 2000, shows that more elements will be adopt-
ed within the next six months. The rough prediction line is
an early warning device to the organization. Its precision is
not important in this example; it is clear that the original
target date for CMM Level 2, which was April 2000, is im-
possible to meet.

The mini-assessment process is an effective way to un-
derstand which practices have been adopted and which
have not. The information is used to understand current
gaps, obtain insight on problems with deployment, and pro-
vide a basis for replanning the improvement effort. 

4. What lessons have we
learned so far?
If you want to learn how well things
are going overall with your improve-
ment program, you need to talk to the
people who are being asked to change
their behaviors and adopt new prac-
tices. This might include managers,
developers, and testers. Lessons-
learned data is not numeric, but it can
provide actionable ideas that comple-
ment the data from the first three mea-
sures.

Lessons-learned data comes from
interviewing individuals or using dis-
cussion groups. While a lesson-learned
session can be conducted any time,
three specific times are particularly
useful: when a primary goal has been
reached, when an intermediate goal
has been reached, and when the im-
provement effort hits an obstacle.

Lessons learned are determined using the
following steps:

■ Clarify the scope of the session (e.g., lessons for the
deployment of test tool in division Y)

■ Determine what went right Brainstorm items (ac-
tions) that went well

■ Determine areas for improvement Brainstorm items
(actions) that could be improved next time

■ Set priorities (e.g., high, medium, low)

■ Assign responsibilities

The process can take between two and four
hours, depending on the scope being discussed.

As a rule of thumb, break the session into two-hour seg-
ments.

When using group interviews, construct the groups to
encourage the discussion to be uninhibited. Invite people
who are willing to be frank and candid. Select a good objec-
tive facilitator—someone not in charge of the improvement
effort.

To stimulate the discussion, ask the following addition-
al questions: 

■ How are the current improvement activities tied to business goals?

■ How are the current improvement activities tied to actual problems ex-
perienced by the organization?

■ What efforts have you seen invested to adopt the new or improved
techniques?

■ Have the practices been appropriately tailored? Were pilot projects
used to ensure their appropriateness?

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

FIGURE 4 Graph from mini-assessment data showing improvement progress

160

120

80

40

1998 1999 2000 2001 2002 2003 2004 2005

Key Process Area Practices and Goals (154 elements)

Time

Not Applicable
None: little or no verbal or written evidence
Weak: current practice or plans weak or inadequate
Some: project is approaching intent of KPA practice
Strong: generally speaking, project fulfills CMM intent

Today

Fo
rm

al 
Ass

es
sm

en
t

Mini
-A

ss
es

sm
en

t

Mini
-A

ss
es

sm
en

t

Mini
-A

ss
es

sm
en

t

Proj
ec

ted
 SPI P

lan
 1.

0

“Rough”
Prediction

Line

A
N

N
IE

 B
IS

S
E

T
T

If you want to learn how 

well things are going overall 

with your improvement 

program, you need to talk 

to the people who are  

being asked to   

change their behaviors.

http://www.stqemagazine.com/
Alison Kincaid
 

Alison Kincaid
                                 This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

http://www.stqemagazine.com/
http://www.sqe.com/


November/December  2000 Sof tware  Tes t ing  & Qua l i t y  Eng inee r ing www.s tqemagaz ine .com
47

■ Is there evidence that things are improving? This can include anecdo-
tal stories as well as some simple metrics.

In Summary
Measuring improvement is essential to providing the orga-
nization with feedback while pursuing business goals and
solving problems. The resulting data allows for early
problem detection, early correction, and improved visibil-
ity.

When you establish your measures, consider the fol-
lowing guidelines:

■ Look at the goals and problems of your projects. What information do
you need to assess where you are with respect to those goals and
problems?

■ Measure only items you care about.

■ Use trend charts to show progress toward each goal.

■ Don’t overly rely on numerical data. Regularly look at the benefits and
lessons learned by the members of the organization.

Making improvement takes time. But by following a Plan-
Do-Check-Act cycle and tracking progress, you can make
course corrections as you go and increase your chances of
meeting your business goals. STQE

Neil Potter and Mary Sakry are co-founders of The
Process Group (help@processgroup.com), a company
that consults on software engineering process improve-
ment. Mary Sakry has twenty-three years of experience
in software development, project management, and
software process improvement. Neil Potter has fourteen
years of experience in software design, engineering,
and process management.

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

Measurement Side Effects

When you measure something, behaviors might change inappropriately be-
cause you are taking a measurement. For example, if you measure the num-

ber of trouble reports, the number may start going down artificially because peo-
ple perceive that this information is important and assume you want the number to
go down. If you look closely, some people might have started combining reports,
and the same number of unfixed problems are still in the product. Similarly, if you
measure the number of lines of code developed each day, people might assume
that the volume should go up. We once saw a programmer copy dummy code into
programs and add jumps around it just to make the productivity figures rise; clear-
ly not what was intended when the measure was instituted.

However you measure progress, it is suggested that all project improvement
data be sanitized before being made public. The focus of management should be
on the published, organization-wide trends. Removing project names from the
data helps avoid some of the bizarre behaviors that occur when individuals opti-
mize their “score.” Each team can obtain data about its own progress for the pur-
pose of its own improvement.

Be careful when choosing your measures, communicate their intended use,
and be aware of the side effects you might be introducing.

http://www.stqemagazine.com/
Alison Kincaid
                                This article is provided courtesy of STQE magazine. STQE magazine is produced by STQE Publishing, a division of Software Quality Engineering.

http://www.stqemagazine.com/
http://www.sqe.com/



