

Software Development

A Practical
Approach to
Software
Metrics

COPYRIGHT 2000 BY THE INSTITUTE OF ELECTRICAL AND

ELECTRONICS ENGINEERS INC. ALL RIGHTS RESERVED.

ABSTRACTING IS PERMITTED WITH CREDIT TO THE SOURCE.

PUBLISHED IN IT Professional, VOLUME 2, NUMBER 1,

JANUARY/FEBRUARY 2000.

Peter Kulik

Metrics programs that create meaningful change in software
practice must start with business goals in mind.

What are the benefits of using metrics? How do I go about starting a new
metrics program or improving current practices and what should I do with the
data once it’s been collected? These are some of the questions that IT
managers face when they consider software metrics. There are many good
reasons to keep metrics for software projects, yet many programs cause
managers to lose their focus or get caught up in “measurement for

Software metrics are quantitative standards of measurement for various

aspects of software projects. A well-designed metrics program will support
decision making by management and enhance return on the IT investment.
There are many aspects of software projects that can be measured, but not all
aspects are worth measuring.

Starting a new metrics program or improving a current program consists of
five steps:

• identify business goals,
• select metrics,
• gather historical data,
• automate measurement procedures, and
• use metrics in decision-making.

IDENTIFY BUSINESS GOALS
Of the five steps, identifying business goals is the most important. Well-

defined business goals will

• enable a metrics program to enhance business results,
• reduce cost by keeping a program well-defined and focused, and
• ensure a basis for improving a business’ return on investment for IT.

It can be difficult to gain support for metrics, particularly when
nontechnical managers are part of the decision-making. For example, if your
CEO asks why he should invest in something that isn’t producing more
software, it may not help to tell him that most software organizations are
doing it and it seems like a good idea. Rather, you should be prepared to say
something like “Software metrics will help us reduce the number of faults
reported in newly-deployed software by 25 percent without increasing project
schedules. The resulting savings in support costs should drive a 150 percent
return on investment in the first year.” Having a rationale along these lines is
much more likely to convince a business manager to invest in software
metrics.

This rationale is where the business goals come in. A focus on business
goals will help “sell” software metrics to the chief information officer, vice
president of engineering, or CEO. The first step is to identify relevant
business goals. Some companies already publish annual business objectives.
Some CIOs or engineering vice presidents will translate these into divisional
goals. If you don’t know your company’s business goals and related IT goals,
ask senior managers. If you find it hard to identify business goals that can be
addressed by a metrics program, propose some. The sidebar, “Common IT
Business Goals,” offers suggestions.

Common IT

Business Goals

Ø Improve the quality of installed software.

Ø Make achievable project commitments.

Ø Reduce postinstallation support costs.

Ø Prevent schedule and cost overruns.

Ø Do more with the same number of people.

Ø More quickly estimate software projects.

Ø Deliver new products to customers sooner.

SELECT METRICS
Once you’ve identified business goals, the next step is to select metrics that

support them. The following commonly used metrics are a good place to
start, although other metrics are certainly possible to measure and may be
more appropriate on the basis of your organization’s business goals.

Schedule metrics

This data can help prevent schedule and cost overruns by providing early
warning of schedule problems. Schedule metrics can include measurements
such as the number of tasks completed on schedule, the number of tasks
completed late, and the number of tasks rescheduled.

Requirements metrics
This data can help serve as a leading indicator for schedule and cost

overruns. It includes measurements of the number or percentage of changed
requirements and the number or percentage of new requirements. It requires a
formal request-for-change procedure to capture appropriate data. See the
example in Figure 1.

Test coverage percentage
This metric describes the fraction of lines of code “covered” by testing.

Various industry studies have shown that testing without measuring code
coverage covers only 50 to 60 percent of code—leaving a significant amount
of code that can harbor latent faults. Testing with measurement and tracking
of test coverage can motivate development of additional test cases that will
typically drive test coverage to 90 percent or more of the code. As a result,
more of the faults in the code will be discovered by testers rather than by
users. Fixing these faults prior to deployment can dramatically improve the
quality of installed software and reduce support costs.

Software size
Software size is a fundamental driver of schedule duration, effort, and cost

for a software development project. Lines of code and function points are the
most commonly used software size metrics, although there are also several
proprietary, object-oriented software size measures. The lines-of-code
measure allows managers to make reasonably accurate top-down projections,
and is recommended for most IT organizations. Function points allow more
precise top-down projections of effort and cost, but are much more difficult to
calculate and require specialized expertise.

In this project, developers prepared an early prototype and reviewed it with users over
the first three weeks shown. At the end of the period shown, requirements had
stabilized and the group froze them, preventing submission of further requests for
comment.

 Code lines should be counted excluding comment lines; this measure is
called non-comment source statements (NCSS), or thousands of noncomment
source statements (KNCSS). Many industry rules of thumb describe

Figure 1. Sample plot of metric for the
number of RFCs per week.

3

2

4

2

1 1

0

1 1

0 0
0

1

2

3

4

5

30
-O

ct

6-
N

ov

13
-N

ov

20
-N

ov

27
-N

ov

4-
D

ec

11
-D

ec

18
-D

ec

25
-D

ec

1-
Ja

n

8-
Ja

n

Week Ending

o

f
R

F
C

s

programmer productivity in terms of lines of code, for example 350 NCSS
per engineering-month of effort. Top-down estimates for a new project can be
completed quickly using an estimate for the NCSS to be developed and such
rules of thumb. The NCSS to be developed can be estimated based on
historical data for previous projects that are similar to the new project.
Measuring programmer productivity—and putting practices in place to
improve it—can help an organization do more with the same number of
people.
 For example, the size of the project shown in Figures 2 and 3 was
approximately 19 KNCSS. At an average staffing level of five, this was an
approximately 10-month project.

Fault density
The number of unresolved faults per KNCSS is a basic measure of software

quality. Some organizations define standards for software release based on
fault density—for example, no more than 0.25 faults per 1 KNCSS. Industry
data shows that most software organizations discover around seven faults per
1,000 lines of code during testing. This measure can be used as a benchmark
of quality, as illustrated by the example in Figure 2.

For example, one IT organization was able to reduce postrelease support
costs by establishing deployment standards based on fault density. With
measurably higher software quality at the start of deployment, users
discovered fewer latent faults in operation, and less maintenance effort was
required.

Fault arrival and close rates
A robust mechanism to determine when software is “ready to deploy,”

fault arrival and close rates measure the number of faults found and closed in
a given period, usually per day or per week. Measuring fault arrival and close
rates can help deliver software sooner by indicating lapses in testing when the
fault discovery rate prematurely drops to zero and by focusing on improving
the close rate.

 This plot shows the fault density metric for the twelve-week system test of an
approximately 19-KNCSS project. Fault density in the first two weeks was very low;
however, the test team had not yet executed most of the test cases. In the twelveth
week, fault density fell below 0.25 faults/KNCSS, all test cases had been executed
successfully, and the team determined that the system was ready to deploy.

Figure 2. Sample fault density metric plot.

0.22

0.270.27
0.44

0.93

1.141.20

1.63

2.01

0.49

1.25

1.52

0.00

0.50

1.00

1.50

2.00

2.50

2-
A

pr

9-
A

pr

16
-A

pr

23
-A

pr

30
-A

pr

7-
M

ay

14
-M

ay

21
-M

ay

28
-M

ay

4-
Ju

n

11
-J

un

18
-J

un

Week Ending

F
au

lt
s

p
er

 K
L

O
C

These fault arrival and close rates are for the same project as in Figure 2. For the last
six weeks of testing, the close rate was greater than the arrival rate, and the arrival rate
converged to zero while testing continued through the end of the 12th week. As in most
software devlopment projects, close rate paced the duration of system test.

 Close rate—rather than fault arrival—often paces completion of the test
phase because it is generally easier to find faults than to fix them. So that’s

measures.
Measuring fault arrival and close rates also helps prevent over-testing. Both

fault arrival and close rates will converge to zero when the software is ready
to deploy; see the example in Figure 3.

For example, one IT organization found themselves in the midst of system
test for a large software project with more than 200 faults open and no way to
predict when the system would be ready for deployment. By measuring and
tracking arrival and close rates, they were able to make a commitment for
deployment readiness. Then, by taking action to improve the close rate, they
were able to meet this commitment despite some surprises in testing.

Overall Project Risk metric
The likelihood of achieving a particular schedule date is expressed as a

percentage, or level of confidence. Calculating this metric during project
planning, as shown in Figure 4, for example, is a powerful top-down
estimation method and can prevent bad commitments (such as those only 10
percent likely to be achieved). For example, one IT organization has used
this method to calculate "schedule contingency" to ensure that commitments
are achievable.

While a project is in progress, the Overall Project Risk metric can highlight
projects most in need of management attention. For example, projects with
less than a 50 percent level of confidence likely need management attention to
prevent cost and schedule overruns.

Figure 3. Fault arrival and close rates for the
project shown in Figure 2.

0

5

10

15

20

25

30

2-
A

pr

9-
A

pr

16
-A

pr

23
-A

pr

30
-A

pr

7-
M

ay

14
-M

ay

21
-M

ay

28
-M

ay

4-
Ju

n

11
-J

un

18
-J

un

Week Ending

N
o

. o
f

fa
u

lt
s No. of faults closed

No. of faults found

Overall Project Risk describes the level of confidence for various ready for deployment
dates. In this example, the project is 10 percent likely to be ready for deployment on 12
February. However, the level of confidence rises to 90 percent by 18 June.

GATHER HISTORICAL DATA
The third step in establishing or improving a metrics program is to gather

historical data for the selected metrics. Many software metrics do not have
intrinsic value, but can offer insights only when normalized within the context
of historical data. You can glean some historical data from records of
completed projects while other data requires building a database over time.

For example, lines of code is quite easy to measure for previous projects,
using readily available source code measurement tools. With historical data
for lines of code, predicting the number of lines of code for new projects will
be much easier. Also, with data about the amount of effort that went into
completing previous projects, managers can estimate historical programmer
productivity and use that information as an in-house rule of thumb for
schedule estimating.

Sources of historical data that are readily produced by your current
processes can include

• source code,
• project schedules,
• request-for-change records,
• management reports and presentations, and
• new product support data (which products got the most customer

inquiries and for what reasons).

AUTOMATE MEASUREMENT PROCEDURES
After you’ve selected metrics and gathered historical data, you can begin

taking measurements. It can be as simple as requiring project leaders or
project managers to report on chosen metrics, or as complex as hiring a new
staff person to implement a measurement tool.

A management mandate is useful but not usually sufficient to support a
sustainable metrics program. While you should identify a metrics champion
within an organization, it is often not necessarily a full-time role. All IT staff
should have tools to implement the program, including

• knowledge (through training and other communication efforts),
• paper-based templates (sheets to record metric data on, such as number

Figure 4. Overall Project Risk measures
confidence in ready-for-deployment date.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1-
Ja

n

15
-J

an

29
-J

an

12
-F

eb

26
-F

eb

12
-M

ar

26
-M

ar

9-
A

pr

23
-A

pr

7-
M

ay

21
-M

ay

4-
Ju

n

18
-J

un

2-
Ju

l

16
-J

ul

30
-J

ul

13
-A

ug

27
-A

ug

Ready-for-deployment date

L
ev

el
 o

f
co

n
fi

d
en

ce
 (

%
)

of faults found per day by severity)
• spreadsheets,
• predefined reports, and
• software tools.

In general, you should automate as much measurement as possible. This
will reduce the effort required to gather metrics and improve return on
investment. You can obtain basic automation, such as that afforded by simple
spreadsheet tools, for a relatively small investment.

It is not unusual to encounter resistance to metrics by those being
measured. Training and communication can minimize resistance as long as
you include the affected software developers and testers. They should
understand the business objectives these metrics address. Assure them that the
metrics are not personal performance measures but, rather, measures of the
software process. Metrics chosen based on business objectives should be
accepted more readily by a software organization—especially if they meet the
criteria in the “Metrics Checklist” sidebar.

Metrics Checklist

My company's 1999 survey of software metrics best
practices (http://www.klci.com) found that effective
metrics have five key attributes. To make an impact,
metrics must be

ü understood by management,
ü easy to implement,
ü understood by software developers,
ü consistent measures across multiple projects, and
ü real insights into project activities.

USE METRICS IN DECISION MAKING
Metrics will not drive a return on investment unless managers use them for

decision making. Some decisions in which software metrics can play a role
include

• product readiness to ship/deploy,
• cost and schedule for a custom project,
• how much contingency to include in cost and schedule estimates,
• where to invest for the biggest payback in process improvement, and
• when to begin user training.

Managers should demand supporting metrics data before making decisions
such as these. For example, they can use fault-arrival-and-close-rate data
when deciding readiness to deploy. Knowing the Overall Project Risk can
help managers decide how much contingency to include in cost and schedule
estimates.

The final aspect to consider is tracking the results of your metrics program.
You should track results in terms of the original business objectives. For
example, if the objective was a 25 percent reduction in the number of faults
reported in installed modules, track this data and use it to measure the
metrics program’s success. Documented results help ensure that, as business
goals evolve, metrics remain a relevant and vital part of software projects.

LOOKING BACK
Imagine that you are looking back on the first year of your software metrics

program. You identified key business goals and implemented three metrics
that supported them: code coverage; fault arrival and close rates; and Overall
Project Risk.

You presented your report to management: System test was shortened by
two weeks on average, service calls on new deployments are down 10
percent, and your idea about risk-based contingency reduced schedule
slippage by 50 percent. The president and chief financial officer congratulate
you. Your boss calls you into her office to talk about that promotion you’ve
wanted.

While software metrics is not a “silver bullet,” choosing metrics based on
business goals and implementing them properly can have a measurable impact
on business results. Following the five steps described in this article will help
you gain new insight into software development processes, as well as find and
eliminate root causes of recurring problems. The potential bottom line is
enhanced return on IT investment for your company. n

Peter Kulik is managing partner of KLCI Inc., a software risk management
and metrics firm. Contact him at pkulik@klci.com.

Resources

Recent articles

• “Using Metrics to Justify Investment in IT,” Elliot Chikofsky and Howard Rubin,
IT Professional, Mar./Apr. 1999.

• “Tame Your Process with Metrics,” Carol A. Dekkers, Enterprise Development,
June 1999.

• “Software Metrics Best Practices,” Peter J. Kulik, Software Q/A Magazine,
Apr./May 1998.

• “Quality meets the CEO,” Jeffery E. Payne, Software Testing & Quality
Engineering, May/June 1999.

• “A Software Metrics Primer,” Karl Weigers, Software Development, July 1999.

Classic texts

Software Metrics: Establishing a Company-Wide Program, Robert B. Grady and
Deborah L. Caswell, Prentice-Hall, Inc., 1987. Detailed study of software
metrics and their usefulness, used in many graduate-level courses on software
engineering.

Measures for Excellence, Lawrence H. Putnam and Ware Myers, Prentice Hall,
1992. Excellent discusson of quantative metrics throughout the software life cycle
and applications for estimation and management.

COPYRIGHT 2000 BY THE INSTITUTE OF ELECTRICAL AND
ELECTRONICS ENGINEERS INC. ALL RIGHTS RESERVED. ABSTRACTING
IS PERMITTED WITH CREDIT TO THE SOURCE. LIBRARIES ARE
PERMITTED TO PHOTOCOPY BEYOND THE LIMITS OF US COPYRIGHT
LAW FOR PRIVATE USE OF PATRONS: (1) THOSE POST-1977 ARTICLES
THAT CARRY A CODE AT THE BOTTOM OF THE FIRST PAGE, PROVIDED
THE PER-COPY FEE INDICATED IN THE CODE IS PAID THROUGH THE
COPYRIGHT CLEARANCE CENTER, 222 ROSEWOOD DR., DANVERS, MA
01923; (2) PRE-1978 ARTICLES WITHOUT FEE. FOR OTHER COPYING,
REPRINT, OR REPUBLICATION PERMISSION, WRITE TO COPYRIGHTS AND
PERMISSIONS DEPARTMENT, IEEE PUBLICATIONS ADMINISTRATION, 445
HOES LANE, P.O. BOX 1331, PISCATAWAY, NJ 08855-1331.

