
Copyright © 1998, KLCI, Inc.
http://www.klci.com/accelerate

888-664-0484 (+1-937-433-5502)

How to Prevent Surprises
in Software Projects

Peter Kulik
KLCI, Inc.
August, 1998

1. Abstract

Software projects often experience "surprises" –
tasks not completed when expected, resources
available late, unexpected problems in integration
testing, etc. Schedule delays and cost overruns, the
bane of software organizations worldwide, can be
directly attributed to these causes. While all surprises
cannot be avoided, many can be predicted ahead of
time. This paper describes proven practices that can
be used to create an “early warning system” –
allowing software organizations to anticipate
problems before they occur, to help prevent schedule
delays and cost overruns.

2. Introduction

In a 1994 study of more than 8000 Information
Technology projects, only 16% completed on time,
within budget, and to specification [1]. All projects
encounter “surprises” – situations where events do
not transpire as planned or as expected. For software
projects, surprises can cause even the best project
plans to become quickly obsolete.

Research has shown that the majority of causes
of schedule slips and cost overruns are either related
to project planning and monitoring, or can be
anticipated by management [2]. For example, some
surprises which cause project plans to become out-of-
date can include:

• Tasks completed late
• Activities not started on time
• Test systems in use by another project
• Unexpected problems upon first integration

of software modules
• A technology with less functionality than

promised

Due to the low rate of project success, it is
important for software organizations to effectively
manage and prevent surprises that can cause schedule

delays, cost overruns, and functional compromises. A
recent study that I completed showed providing "early
warning of problems" was on the top of the
improvement "wish list" for software organizations [3].
 The importance of planning to prevent surprises
has been well understood, literally for centuries.
Consider the following axiom of Sun Tzu:

Now the general who wins a battle makes many
calculations in his temple ere the battle is fought.
The general who loses a battle makes but few
calculations beforehand. Thus do many
calculations lead to victory, and few calculations
to defeat. [4]

The low success rate of software projects does
not mean that planning is futile. A recent study of
project managers emphasized the strong positive
impact of "project execution planning" on project
success [5]. Planning by itself is not sufficient,
however; effective monitoring of project execution
can provide advance warning of problems - if
software organizations know where and how to look.

This paper discusses a proven “early warning
system” to detect surprises - before they impact a
project. With advance warning, software managers
can proactively take action to prevent problems – such
as lining up alternative technologies or reallocating
resources to problem areas. My “early warning
system” for software projects includes the following:

• GANTT Schedules
• Software Metrics
• Software Risk Management

The practices discussed are based on more than
150 surveys and interviews of software organizations
conducted in late 1997 and early 1998, plus industry
research and my own experience managing software
projects and conducting risk assessments.

How to Prevent Surprises in Software Development

Copyright © 1998, KLCI, Inc. Page 2
http://www.klci.com/accelerate

888-664-0484 (+1-937-433-5502)

3. Tutorial
3.1. GANTT Schedules

Work Breakdown Structures and PERT
schedules (see Figure 1) are important planning tools
for projects of all types [6][7]. PERT schedules help
project managers view relationships between tasks
and project activity flow. However, in my
experience, GANTT schedules are superior for
project monitoring during execution.

GANTT schedules (see Figure 2) allow project
managers to view projects in the context of time –
critical for monitoring project activities to stay “on-
schedule”. GANTT schedules constructed and
monitored according to the guidelines in Table 1 can
be a powerful “early-warning” tool.

• Task granularity should be one week or less
• Update and review schedules weekly
• Monitor the critical path daily
• Ensure the schedule reflects the reality of project

execution

Table 1 – Project Schedule Guidelines

The degree of early warning that can be achieved
from a project schedule is determined by the
maximum duration of tasks in the schedule. For
example, if a month-long task slips in the first week
of activity, the slip may not become visible until the
end of the month. However, if this same month-long
task is broken up into four weeklong tasks, a slip in
the first week will certainly be visible at the end of
the first week – early enough for a project manager to
take action and possibly prevent slips in the overall
project. Setting the granularity of tasks to one week

or less therefore provides visibility where little
existed before.

To achieve early warning, experience has shown
that GANTT schedules must be tracked regularly.
One successful project manager with whom we spoke
credited his project’s on-time completion to “intense
focus” on schedules – and the few tasks that did slip
were directly attributed to the lack of attention these
tasks received in schedule reviews.

Schedule review should follow the guidelines in
Table 2, and focus on validating the following:

• Tasks that should have completed or should
have started have actually done so.

• Tasks that should soon complete or should
soon start are on-track to do so.

When issues are identified, the “early-warning” from
regular schedule review enables team members to
work together to prevent schedule delays – for
example reallocating resources or switching the order
of tasks to compensate for interdependencies. An
additional benefit of regular schedule reviews is
regular reaffirmation of team members’ commitment
to the project schedule.

The duration of the critical path is the duration of
a project. Projects that have developed detailed
schedules according to the guidelines in Table 1 can
readily identify the specific tasks that make up the
project’s critical path (sometimes the assistance of
simulation tools can be useful to identify critical path
tasks [8]). If these critical path tasks slip – the whole
project slips. For most projects, weekly review of
critical path tasks is too seldom – any surprises
affecting the critical path need to be identified
immediately for the software manager to have a

Figure 1 - PERT Schedule

• Focus on a two week window centered at the review date

• Highlight those tasks that are:
3 Scheduled to finish in this window
3 Scheduled to start in this window

• Use a team approach to schedule review to monitor task dependencies
Table 2 – Schedule Review Guidelines

Figure 2 - GANTT Schedule

How to Prevent Surprises in Software Development

Copyright © 1998, KLCI, Inc. Page 3
http://www.klci.com/accelerate

888-664-0484 (+1-937-433-5502)

chance to prevent schedule slips. As long as
management attention does not detract from
executing critical path tasks, daily monitoring of the
critical path can enable software managers to prevent
slips in the overall schedule.

For example, testing is typically on the critical
path for a software project. Conceptually, this is easy
to understand, but it is not actionable. Identifying the
specific testing tasks that are on the critical path will
enable the software manager to focus her attention
appropriately. For example, one project which I
analyzed had allowed test system setup and user
documentation to unnecessarily fall onto the critical
path - meaning that delays setting up test systems or
writing user documentation would slip project
completion! Understanding the specific tasks on the
critical path provides early warning of potential
problems such as these – and once understood, the
software manager can easily take action to prevent
them.

Finally, experience has shown that the above
guidelines require schedules which “reflect the reality
of project execution” – the scheduled tasks, duration,

sequence, and dependencies reflect the way that the
project is actually being executed. It is not unusual to
make changes to the schedule as a project progresses;
changes should be made as often as needed so that
the project can be monitored effectively. Otherwise,
software managers can suffer from GIGO (Garbage
In, Garbage Out) in their efforts to manage project
schedules.

3.2. Software Metrics

Table 3 shows the most common metrics usage
found in my recent study of software metrics
practices [3]. Of these metrics, several can be a key
part of an early-warning system for software
development – and provide warning of high post-
release support costs.

Lines of Code –the amount of software to be
developed is a leading indicator to the project
schedule and resources needed. To be applied,
however, an organization must understand the

relationship between the variables – how the amount
of software to be developed influences project
schedule and resources. One relatively easy way to
accomplish this is through “rules of thumb” [9]
which associate these variables. For example,
knowing that an average project can deliver 350 lines
of code per “programmer-month” can help a manager
easily put bounds around project schedule and
resources needed based on an estimate of lines of
code. By tracking metrics over time, a software
manager can develop his own “rules of thumb” based
on his organization’s capability. While more
"precise" measures than lines of code do exist, most
software managers seem to have found lines of code
sufficiently accurate for their purposes.

Test coverage and fault density – by setting targets
and measuring test coverage, software managers can
ensure comprehensive testing of typical operation,
boundary conditions, and exceptions. The use of test
coverage tools can reduce fault density earlier in the
project schedule, preventing problems in later testing
activities. Conversely, high fault density measured
early in testing activities can provide advance
warning of quality problems that could delay test
phase completion.

Schedule, Quality, and Cost tradeoffs – the triple
constraints of project management are nowhere more
evident than in software development.
Understanding a team's or an organization's tradeoff
preferences for these constraints can provide a
leading indicator to project results. For example, an
organization that is readily willing to sacrifice quality
to meet schedule objectives is more likely to meet
their schedules with poorly functioning software. A
team that is just the opposite - quality driven to the
exclusion of all other factors - may never complete
their projects while striving for ever-increasing levels
of quality. As these extreme examples show, balance
is important to meet the triple constraints of schedule,
quality, and cost. Identification of imbalances can
provide early warning of project problems during
execution.

Code Complexity – although not mentioned as one of
the most commonly measured metrics, Code
Complexity can be an excellent leading indicator for
software bugs, difficulties in integration, and high
support costs. Studies have shown that software
modules with cyclomatic complexity greater than 10
have higher defect density than less complex modules
[9]. Identifying these modules, and re-coding if
possible, can prevent problems later in project
execution and deployment.

1. Lines of code
2. Scheduled tasks completed on time
3. Scheduled tasks completed late
4. Test coverage
5. Resource adequacy
6. Fault density
7. System operational availability
8. Time to market
9. Schedule, quality, and cost tradeoffs

Table 3 - Most Commonly-Measured Metrics

How to Prevent Surprises in Software Development

Copyright © 1998, KLCI, Inc. Page 4
http://www.klci.com/accelerate

888-664-0484 (+1-937-433-5502)

3.3. Software Risk Management

According to the Software Engineering Institute,
"Today's risks are tomorrow's problems". The benefits
of Software Risk Management have been understood
since at least the late 1980s [10]. According to Tim
Lister, “Risk management tailors a project to fit the
risk, unlike the Capability Maturity Model, which
tailors a project to fit the process… 90% of managing
risk is recognizing it” [11]. Fundamentally, risk
management is composed of three steps - Identify,
Act, and Evaluate (see figure 3).

Identify
To manage risks, software organizations must

first be aware of them. Typically, risk identification
is accomplished one of the following ways:

• Team brainstorming - leverages the varied
perspectives of team members to identify
risks. This approach has proven useful, but
is subject to organizational "blind spots" -
risks may be missed because team members
will not be aware of certain issues [12].

• Formal risk assessment - accomplished by
an independent team of experienced
personnel, who evaluate a project with the
cooperation of a project team. This
approach has the advantage of leveraging a

broad, multi-organizational perspective of
senior personnel. A recent trend in
companies such as AT&T, Hewlett-Packard,
IBM, and NCR is the addition of the risk
assessment function to Project Offices [13].

Risk assessment tools - offer a structured
approach and broad perspective for risk
identification, at significantly less cost than
formal risk assessment. The Project Self-
Assessment Kit from KLCI Inc.
(http://www.klci.com/accelerate) is one such
tool. This tool also measures overall project
risk, as shown in Figure 4.

Traditional Risk
Assessment Self-Assessment

• Can take weeks or
months to complete

• Can complete in
hours and get nearly
immediate results

• Requires special
expertise to conduct

• Any project or
technical manager
can conduct

• Cost-effective for
very large projects
only (usually >$US
5M R&D budget

• Cost-effective for all
medium and small
projects (>$US
500K R&D Budget)

• In-depth analysis of
cause-and-effect

• First-level analysis
to highlight areas
needing particular
focus

• Simulation and quantitative methods - given
project schedules built according to the
guidelines in Table 1, simulation or other
quantitative methods can be helpful to
identify specific tasks that are at risk [14].

Act
Risk identification by itself will have little

impact on a project. "The goals of risk
management… are to identify project risks and
develop strategies that either significantly reduce
them or take steps to avoid them altogether." [15].
The key to risk management is developing strategies

1. Complete risk identification during project planning - or as soon as possible for projects which
are past this phase

2. Prioritize risks to focus on those risks with the most potential impact on the project. In my
experience, an A-B-C prioritization is effective and time-efficient.

3. Use a team approach to brainstorm proactive actions to mitigate top-priority risks
4. Put these actions on the project schedule, and track them weekly with other tasks
5. Evaluate risk management actions at major project milestones (e.g. design complete, start of

integration test)

Table 4 - Recommended Risk Management Guidelines

IdentifyAct

Evaluate

Figure 3 - Risk Management Activities

How to Prevent Surprises in Software Development

Copyright © 1998, KLCI, Inc. Page 5
http://www.klci.com/accelerate

888-664-0484 (+1-937-433-5502)

and taking proactive action to mitigate risks. To
achieve this, we recommend the guidelines shown in
Table 4.

Evaluate
Finally, because projects change as they

progress, re-assessment of project risks measures the
impact of risk mitigation actions and identifies risks
that could not be evident earlier in the project. This
step helps software organizations maintain their
early-warning system - and prevent surprises -
throughout project execution. In my experience, re-
evaluation at major project milestones is usually
sufficient - as long as the other guidelines in Table 4
are being followed.

For example, one project manager with whom
we spoke used team brainstorming to identify project
risks. This team put proactive actions in place to
mitigate risks, in conjunction with detailed project
schedules and regular review. The result - "we really
didn't have any surprises", and the project was
finished on time, on budget.

4. Summary and Conclusions

By predicting surprises before they occur, many
can be prevented - preventing schedule delays and
cost overruns. While not all surprises can be
avoided, it is possible to construct an "early warning"
system using proven tools and practices, including:

• GANTT Schedules
• Software Metrics
• Software Risk Management

By implementing these practices and appropriate
tools - as part of their existing software development
processes - software managers can anticipate
problems and take action to prevent impact to their
projects.

5. References

[1] Standish Group International, "Chaos,
Charting the Seas of Information Technology",
1994.

[2] van Genuchten, Michiel, “Why is Software
Late? An Empirical Study of Reasons for
Delay in Software Development”, IEEE
Transactions on Software Engineering, Vol.
17, No. 6, June 1991.

[3] Kulik, Peter J., “Software Metrics Best
Practices”, Software Q/A Magazine, Vol.5
No.2, April/May 1998.

[4] Tzu, Sun, The Art of War, translated from
the Chinese by Lionel Giles, M.A. (1910)

[5] Zimmerer, Thomas W., and Yasin,
Mahmoud M., "A Leadership Profile of

American Project Managers", Project Management Journal,
Volume 29, Number 1, March 1998.

[6] Charette, Wilfred, and Halverson, Walter S., "Tools of
Project Management", published in The Implementation of
Project Management: The Professional's Handbook,
Addison-Wesley Publishing Company, Thirteenth printing,
1996.

[7] Kiewel, Brad, "Measuring Progress in Software
Development", PM Network, January 1998.

[8] Gump, Alan, "Scheduling High-Tech Projects", PM
Network, July 1997.

[9] Grady, Robert B., "Practical Rules of Thumb for
Software Managers", Hewlett-Packard Software
Engineering Productivity Conference Proceedings, August
1990, pages 647-651.

[10] Boehm, Barry, Software Risk Management, IEEE
Computer Society, 1989.

[11] Interview with Tim Lister, IEEE Software,
March/April 1997.

[12] Kulik, Peter J., “Team-Based Risk Management for
Software Development”, AT&T GIS Journal, December
1994.

[13] Frame, J. Davidson, "Risk Assessment Groups: Key
component of Project Offices", PM Network, March 1998

[14] Weiler, Chris, “Risk-Based Scheduling and Analysis”,
PM Network, February 1998

[15] Wideman, R. Max, Project and Program Risk
Management, a Guide to Managing Project Risks and
Opportunities, Project Management Institute, 1992.

About the Author: Peter Kulik is Managing
Partner of KLCI, Inc. He can be reached via e-
mail at pkulik@klci.com, or phone at 888-664-
0484 (+1-937-435-5502).

Ju
l-9

6

A
ug

-9
6

S
ep

-9
6

O
ct

-9
6

N
ov

-9
6

D
ec

-9
6

Ja
n-

97

F
eb

-9
7

M
ar

-9
7

A
pr

-9
7

M
ay

-9
7

Ju
n-

97

Ju
l-9

7

A
ug

-9
7

S 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L

ev
el

 o
f

C
o

n
fi

d
en

ce

Project Completion Date

TDMschedule Risk Profile

Figure 4 - Statistical Risk Profile

