Software Development
Rules of Thumb

Peter Kulik

Kulik & Lazarus Consulting, Inc.

February, 1996

Many software devel opment rules of thumb are easy to
use and highly relevant. Application of rules of thumb
in planning can significantly improve project
estimation and therefore reduce project risk.

This paper summarizes rules of thumb that
have proven highly useful to address the challenges of
managing software development.

Rules of thumb for software development can be
applied effectively to most software development projects.
Applying rules of thumb is usually quite straightforward,
and has benefits including:

Improved project estimation

Reduced project risk.

Industry context for project planning
Foundation for data-based decision-making

In combination with assumptions about staffing and
costs, rules of thumb provide an easy and effective way
for project teams to estimate key project parameters such
as overall duration, duration of the test phase, expected
errors to be discovered, etc.

Project risk can be reduced most dramatically during
planning — before project execution has begun. Rules of
thumb treat software development from a “top-down”
perspective, providing a context consistent with industry
experience for project planning. An individual
organization can decide if they are better or worse than
industry experience based on interna factors, usage of
rules of thumb ensures this is a conscious decision.

Rules of thumb also enable project planning teams to
make decisions based on data. For project planning
teams with a strong experiential foundation, rules of
thumb are an extremely valuable supplement to this
experience. Where the data and experience aign, the
team’'s decisions are reinforced. Where data and
experience are different, rules of thumb catayze
important examination of underlying factors and root

Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com
513-291-1851

Page 1



Softwar e Development Rules of Thumb
Peter Kulik, February 1996

Project percentage by phase: [2]
Specification 18%
Design 19%
Coding 34%
Test 29%

Projects created primarily from reused software take about
1/4 the time and resources of new software. [2]

"B0% to 75% of al design errors can be found with
inspections.”" [2]

"An average project ddivers about 350 NCSS per
engineering month (engineering time includes al design,
implementation, and test to produce al deliverable NCSS
for aproject)." [2]

Modules with a cyclomatic complexity greater than 10 are
more difficult to understand and have higher defect density
than modules with smaller values. [2]

"Typical testing without measuring code coverage only
exercises around 50% of the code. With code coverage
instrumentation, this can be raised to at least 80% without
excessive additional effort." [2]

"Projects created primarily from reused software experience
only about 1/3 the defect density (defects/size) of those that
arenew." [2]

"You will find about one defect post-release for every ten
defects that you find prerkease during test." [2]

"The time to fix defects in large mature software systems is
4-10 times the time to make fixes before, or shortly after,
initial release of asystems." [2]

10.

Defect correction rates:[3]

25% of defects are found and fixed in 2 hours/defect
50% of defects are found and fixed in 5 hours/defect
20% of defects are found and fixed in 10 hours/defect
4% of defects are found and fixed in 20 hours/defect
1% of defects are found and fixed in 50 hours/defect

11

"HP historical data shows that projects that don't use the

certification process experi ence an average of around 7 de-
fectsKNCSS before release of a prod uct." [3] We have
found an average of 7 to 10 defectsKNSS in a variety of

organizations.

12.

Based on the Rayleigh distribution, "to reach the 99-percent
level...takes about 1.25 the time it takes to reach the 95
percent level...; to reach the 99.9-per cent level...takes about
1.50 the time to reach the 95-percent level." [1]

Table 1: Relevant rules of thumb for project estimation.

causes. For project teams without a strong experience
base, rules of thumb provide a framework within which
to evaluate project planning assumptions and results.

While rules of thumb provide an important data
point to al project planning teams, they are generally a
single data point and will not substitute for good project
planning techniques. The author has found rules of
thumb to be most effective in combination with both
guantitative models and software risk management tools
and techniques. This portfolio of tools provides potent
solutions for planning and optimization of project
execution.

Sour ces of Rules of Thumb

A number of software development organizations
track internal software development productivity and key
process factors. The resulting database, built up over at
least two to three years and many projects, enables
companies to:

B Develop internal rules of thumb
B Measure and track improvement over time

Any software development organization can capture
metrics from which rules of thumb can be derived. All
that is required is consistent measurement of key
software development parameters over time and a
number of projects.

Since rules of thumb are based on individua
characteristics of the organization which creates them,
they will be dightly different from organization to
organization. For example, programmer productivity has
been found to vary greatly between individuals. An
organization’s programming productivity is a function of
the productivity of the individuals within the
organization. One organization that is lucky enough to
have several highly productive programmers can and
should use a different productivity rule of thumb than
another organization with less productive individuals.

This organization-specific behavior of rules of
thumb needs to considered by project teams in
organizations substantially different than the rule of
thumb’s source. For example, many of the rules of
thumb in Table 1 are derived from Hewlett-Packard.
Organizations substantially different from Hewlett-
Packard need to consider the applicability of these rules
of thumb. In all but the most extreme cases, the author’s
experience has been that these rules of thumb are

Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com
513-291-1851

Page 2



Softwar e Development Rules of Thumb
Peter Kulik, February 1996

extremely useful — but generally in combination with
other methods.

Note that the rules of thumb in Table 1 are based on
a Lines-of-Code sizing methodology. Rules of thumb for
other sizing methodologies (such as Function Points) do
exist, but are beyond the scope of this paper.

Examples
Top-down project planning requires estimation of
several key project parameters:

B Overal project duration
B Project development staffing
B Resources required for testing

Overdl project duration can be estimated by first
estimating the size of a project in terms of lines of code
(non-comment source statements (NCSS)), then applying
rule of thumb #4 from Table 1 (programmer
productivity). Reuse can be factored in by calculating a
value for “effective NCSS’ in the project using rule of
thumb #2 (savings from code reuse). The impact of
inspections and code coverage measurements can be
considered using rules of thumb #3 (design inspections)
and #6 (code coverage tools). The duration of project
phases can be estimated by applying rule of thumb #1
(project percentage by phase) to the overal project
duration.

Project duration is a function of both productivity
and staffing. Project staffing is estimated when applying
Rule of Thumb #4 (programmer productivity) to estimate
overall project duration, as described in the preceding
paragraph.

Required testing resources is a function of the test
phase duration and the number of defects expected to be
discovered. The latter can be estimated using rule of
thumb #11 (expected defect density); in addition, rule of

thumb #7 (reused code defect density) can be invoked to
reflect the impact of code reuse, and #6 (code coverage
tools) to reflect the impact of code coverage tools.

Based on the number of defects expected to be
discovered, rule of thumb #10 (defect correction rates)
can be used to describe test duration as a function of
resources — people and equipment. The number of test
systems for parallel testing, number of testers, and — most
importantly — the number of developers required to
support bug fixing can be planned effectively to
maximize the fix rate and optimize the duration of
testing.

Conclusion

Rules of thumb are relevant, easy-to-apply, and
effective tools for project planning. As a supplement to a
project team’s experiential foundation, they lay the
groundwork for data-based decision-making. Since rules
of thumb consider software development from a “top-
down” perspective, they do not enable evaluation of
individual risk factors for the specific project being
managed. In the author's experience, a powerful
combination of rules of thumb, quantitative models, and
software risk management tools and techniques has
proven most effective.

References

1. Putnam, Lawrence H., and Myers, Ware, Measures
for Excellence, Yourdon Press, Englewood-Cliffs NJ,
1992.

Grady, Robert B., "Practicd Rules of Thumb for
Software Managers', Hewlett-Packard Software
Engineering Productivity Conference Proceedings,
August 1990, pages 647-651.

Grady, Robert B., "The Role of Software Metrics in
Managing Quality and Testing", January 30, 1990.

Peter Kulik is Managing Partner of Kulik & Lazarus Consulting, Inc. With more than 10 years
experience in all aspects of software development, he holds an MS in Engineering Management with the thesis
“Practical Quantitative Methods for Software Development Process Management”, a Certificate in Economics and
Finance, and a BSin Electrical Engineering. He can be reached via e-mail at pkulik@Xklci.com.

Kulik & Lazarus Consulting, Inc. focuses on enabling software development organizations to
accelerate completion of their projects. Leveraging more than 25 years practical experience, we use innovative tools to
apply leading-edge critical path and risk management methodologies in an action-oriented framework. Our services
enable clients to identify, quantify, and proactively address opportunities to improve their project completion dates on
projects of five to fifty people. Contact us at 513-291-1851, or via the World Wide Web at http://mmw.klci.com.

Copyright © 1996, Kulik & Lazarus Consulting, Inc.
http://www.klci.com
513-291-1851

Page 3




